Interfacing the HPC and
LM629 for Motion Control

INTRODUCTION

Control of servo motors has a wide range of applications
including industrial control, factory automation, position and
velocity servomechanism, and robotics. The basic tasks in-
volved in such motion controls include position, velocity,
and acceleration measurement, implementation of PID algo-
rithm, detection of overrun and stress conditions, and com-
munication back to a central controller. The HPC high per-
formance microcontroller in conjunction with LM629 motion
controller chip provides a solution for handling these re-
quired control tasks with extremely high degree of precision
and very little software overhead.

The HPC is a highly integrated and high performance mem-
ber of the HPC™ family of National’s microcontroller. The
availability of a wide variety of on-chip peripherals such as
high speed timers, high speed I/Os, input capture, A/D,
PWM, UART and MICROWIRE™ provides a flexible archi-
tecture for a wide variety of high performance applications
at a reasonable cost. The LM629 is a National’s dedicated
motion-control processor designed for use with a variety of
D.C. and brushless D.C. servomotors which provide a quad-
rature incremental position feedback signal for close-loop
operation. The LM629 stand alone can perform all the inten-
sive, real-time computational tasks required for high per-
formance digital motion control. As a result in a multi-task
system using the HPC where one of the tasks requires pre-
cision servo control can be achieved with this chip-set with
minimal software overhead and very little CPU time.

National Semiconductor
Application Note 868
Santanu Roy

January 1993

THE INTERFACE DESIGN

Figure 1 shows the interface between the HPC and the
LM629 via an 8-bit parallel bus. As shown in the figure, the
HPC (host controller) interfaces with the LM629 data bus
(D0-D7) on the lower half of PORTA (MUXed address/data
bus). The HPC in this application, is used in 8-bit Expanded-
Normal mode (strapping the HBE pin to Vcg, EXM pin to
ground and EA bit in the PSW set to a one). The advantage
of such a configuration is the upper half of the address/data
bus (PORTA bits 8:15) will latch the address which is used
to generate the required chip select for the LM629. This
eliminates the requirement of an address latch for the de-
coder logic.

The delay and the logic associated with HPC write strobe
(WR) is added to increase the write-data hold time (as
viewed from the LM629 end) effectively causing the WR
pulse to rise early. The LM629 clock is provided by the CK2
output of the HPC. Since the LM629 has a maximum run-
ning speed of 8 MHz, the fastest HPC could run in such
applications will be 16 MHz. The 74HC245 is used to de-
crease the read-data hold time), which is necessary when
interfacing HPC with slower peripherals.

4 Vee HC245
HBE
— A0-7 8 plat-s B1-8je—3< D0-7
RDY/HLD N " 4 "
Vee _
NMI | DR G
A3 A G1
Al4 B Y2 L » S
EXM A15 c G2A
I G28 j_l LM629
GND HC138 GND
RD »1 RD
HPC
WR WR
> CcLK > cLk
l_ l_ HC74
ck2 & * »] CLK
B1 » PS
12 |« HI

TL/DD/11770-1

FIGURE 1. Interface between the HPC and LM629

HPC™ and MICROWIRE™ are trademarks of National Semiconductor Corporation.

©1995 National Semiconductor Corporation

TL/DD11770

RRD-B30M75/Printed in U. S. A.

|01uU0D UOHON 10} 6Z9INTT PUE DdH 3} Buideiaju

898-NV

The LM629 Host Interrupt (HI) output could be hardwired to
an input capture port (12 in this case) or the NMI pin of the
HPC for handshaking purposes.

The Port Select (PS) input is hardwired to the pin B1 of the
HPC for selecting command or data when communicating
with the LM629.

The LM629 gets its RESET from the HPC which is low for a
minimum of 8 CK2 periods to satisfy its reset requirement.

USER-SYSTEM INTERFACE

Figure 2 shows a typical system implemented for handshak-
ing between the user and the motion controller block. In this
specific application, this is developed using the HPC’s on-
chip UART communicating at 4800 baud using a standard
10 MHz HPC input clock (CKI). Any terminal (e.g., a VT100)
hooked to the HPC UART via the MAX232 should serve the
purpose. The user can then input data required to control
the motor trajectory and tuning the PID filter for precision
motion control via this interface.

CRT

BO (TDX)

RS232

16 (RDX)

MAX232

A 4

TL/DD/11770-2
FIGURE 2. User-System Interface

PWM MOTOR DRIVE INTERFACE

Figure 3 shows an LMD 18200—a 3A H-bridge driver is in-
terfaced to the LM629 PWM outputs to provide power am-
plification for driving brush/commutator and brushless D.C.
motors. The motor used in this application is a brush D.C.
motor with a HP HEDS 5300 incremental optical shaft en-
coder with 2-channel (without the index pulse) and 500 cps
providing TTL compatible digital output.

ouTt

PiM BOOT. 1

LMD18200
ouT2

DIR

BOOT.2

CURRENT
BRAKE ~ SENSE

Optical Shaft
2.1k Encoder
Output (A,B)

(To LM629 Pins 1,2)
GND

TL/DD/11770-3
FIGURE 3. DC Motor Output Driver Stage

MOTION CONTROL SOFTWARE

Appended at the end of this application note is a flowchart
(Figure 4) for initiating a simple motor movement and a sam-
ple software (in ““C”) provided for the benefit of the reader.
Note that the requirements of individual routines are very
much application specific and left for the user to develop as
required.

TUNING THE PID

When connecting up a drive system for the first time, there
could be a possibility that the loop phasing is incorrect. As
this may cause severe oscillation, it is recommended to use
a low value for the proportional gain, say Kp = 1 (with Kd,
Ki, and il all set to zero), which will provide a weak level of
drive to the motor. If the system does oscillate with this Kp
value then the motor connections should be reversed.

Having determined that the loop phasing is correct Kp can
now be increased to about 20 to see that the control system
basically works. This value of Kp should hold the motor
shaft reasonably stiffly, returning the motor to the set posi-
tion, which will be zero until trajectory values have been
input and a position move performed. If oscillation and un-
acceptable ringing still occurs, Kp should be reduced until it
stops. Low values of acceleration and velocity can now be
input, of around 100, and a position move commanded to
say 1000 counts. All values suggested here are decimal.

It is useful at this stage to try different values of acceleration
and velocity to get a feel for the system limitation. These
can be determined by reporting desired and actual velocity
and acceleration to see that the error is not increasing with-
out bound.

CONCLUSION

Power on
System Reset

&
<

A 4

Initialize HPC
UART for user
interface

v

Delay
1.50ms

I

Hardware
System Reset

Read LM629
Status Register

629 Reset
correct?

Additional Reset
check for LM629

Correct 629
Reset?

A

A 4

y

Load Filter
Data to LM629
Kp, Ki, il etc..

y

Update Filter

y

Load Trajectory
Data to LM629
Pos, Vel, Acc ete..

A 4
Start Motor

Check for trajectory
Completion

Continue

FIGURE 4. Flowchart of a Simple Motor Move

The combination chip-set HPC and LM629 (also the LM628)
form the core of a powerful solution to position servo prob-
lems. Commanded by the HPC microcontroller, the most
powerful single-chip microcontroller available, this unique
combination is the key to a flexible and easy-to-implement
coordinated multi-axis motion system.

REFERENCES
Special Purpose Linear Devices Data Book—NSC

1.
. HP HEDS-5000 series Optical Encoder Data Book
. Linear Data Book—NSC
. HPC User’'s Manual—NSC

. Motion Control Handbook—NSC

o~ DN

TL/DD/11770-4

#include "hpcl6083.h"

#include <stdio.h>

#define 1lm629 (*(char *)(0x5000))
extern int atoi (const char *);
extern char getchar();

/**

* LM629 COMMAND SET

* Use 8.00 MHz part; HPC running at 10.00 MHz

* Optical Shaft Encoder: HP HEDS5300

* which has 500 cycles/rev (lines) & -20 to 85

* degree celcius op. range

* Vmax = 30,000 rpm & Accl(max) = 250,000 rad/s2
R e P LY

¥ %k Ok % ¥ X

#define RESET 0x00 /* reset 1m629 */

#define RSTI 0x1D /* reset interrupts */
#define DFH 0x02 /* define home */

#define SIP 0x03 /* set index position */
#define LPEI 0x1B /* intrpt. on error */
#define LPES OxlA /* stop on error */

#define SBPA 0x20 /* set bkpt. absolute */
#define SBPR 0x21 /* set bkpt. relative */
#define MSKI 0x1C /* mask intrpts */

#define LFIL Ox1lE /* load filter parameters */
#define UDF 0x04 /* update filter */

#define LTRJ 0x1F /* load trajectory */
#define STT 0x01 /* start motion */

#define RDSIGS O0x0C /* read signals reg */
#define RDIP 0x09 /* read indx. position */
#define RDDP 0x08 /* read desired position */
#define RDRP 0x0A /* read real position */
#define RDDV 0x07 /* read desired velocity */
#define RDRV 0x0OB /* read real velocity */

#define RDSUM 0x0D /* read integration sum */

char num[5];

int getnum(void);

void wr data(unsigned char);
void wr cmd(unsigned char);
unsigned int getnum(void);
unsigned char rd st(void);
void chk bsy(void):;

unsigned char rd data(void);
void traj_sel(void);

void filter sel(void);

int cnt = O;

void run motor(void);

BASEPAGE INDXPH, INDXPL, SIGREGH, SIGREGL;

BASEPAGE volatile struct
{

TL/DD/11770-5

/* busy bit */

/* command err (int) */
/* traj. over (int) */
/* indx. pulse (int) */
wraparound (int) */
/* excess pos.err(int)*/
/* bkpt. reached(int) */
/* motor off */

unsigned bsy:
unsigned cmd_err:
unsigned trj cmp:
unsigned indx pls:
unsigned WIrp_OCC:
unsigned posn_err:
unsigned bkpt rch:
unsigned motor off:

N e

Ne Ne Ne Ne Ne oNe Ne N
~
*

} status;

#define STATUS (*(volatile unsigned char *)&status)

INTERRUPT2 HOST INTR(void)
{

if(cnt == 0)
goto done;

printf("\r\n\n");
printf("***kkkkkkkkx HOST INTERRUPT!! *¥kkkkkkkkxk%k\r\n");

rd_st():
printf("STATUS : %x\r\n",STATUS):;

if(status.bsy)
printf("ERROR .. RD/WR WHILE LM629 IS BUSY !! \r\n");

if(status.cmd_err)
printf("COMMAND ERROR !! \r\n");

if(status.trj_cmp)
printf("MOTOR TRAJECTORY COMPLETE!\r\n");

if(status.indx_pls)
printf("INDEX PULSE OCCURRED.\r\n");

if(status.wrp_occ)
printf("POSITION RANGE ERROR !!\r\n");

if(status.posn_err)
printf("EXCESSIVE POSITION ERROR !!\r\n");

if(status.bkpt rch)
printf("MOTOR REACHED SET BRKPT. POSITION.\r\n");

if(status.motor_ off)
printf("STALLED MOTOR CONDITION.\r\n");

done:

TL/DD/11770-6

cnt = 1;

/* Variables */

unsigned char val,CMD,c;

unsigned int NLINE,VEL FIN,ACCL,FIN POS,CLK_SC;
int SMP_RT,CLK,Kp;

long VEL VAL,ACC VAL,POS_ VAL;

int ACCHI,ACCLO,POSHI, POSLO,VELHI,VELLO,SMP TIME;

void main(void)

{

s/

/8

unsigned int choice;

LD OxcO0.b, #010

set uart():

IRPD = O;

IRCD = 0x04; /* rising edge on 12 for HI */

printf("\r\n\nRESETTING THE LM629 FOR TEST RUN.\r\n\n");

ENIR = 5;

rd st():; /* Read status byte */
if(STATUS == 0xC4 || STATUS == 0x84)

{

printf("H/W RESET SUCCESSFULLY COMPLETED\r\n"):;
printf("STATUS BYTE : %x\r\n\n\n",STATUS);
printf("EXECUTING RSTI NOW..\r\n"):;

chk _bsy():
wr_cmd(RSTI); /* Command code = 0x1D */

chk bsy();
wr_data(0x00):; /* Reset byte of Int. control Reg */
wr_data(0x00); /* Reset byte of Int. control Reg */

}

else

TL/DD/11770-7

printf("*** H/W RESET FAILURE, TRY AGAIN ***\r\n");
printf("STATUS BYTE : $%$x\r\n\n",STATUS);
while(1);

3
rd st():
if (STATUS == 0x80 !! STATUS ==0xCO)
{
printf("LM629 RESET SUCCESSFULLY COMPLETED.\r\n");
printf("STATUS BYTE (AFTER RSTI) : %x\r\n\n\n",STATUS);

menu:
printf("\r\n\n\n\n");

printf(" SELECT ONE FROM THE FOLLOWING NOW:\r\n");
printf(" - e \r\n");
printf(" R LOAD NEW FILTER DATA \r\n"):
printf(" 2 i et LOAD NEW TRAJECTORY DATA \r\n");
printf(" 1 J RUN THE MOTOR\r\n"):;

printf("-->");

choice = getnum();
switch(choice)
{

case 1 :
filter sel():
break:;

case 2 :
traj sel():
break:

case 3 :
run_motor();
break;

default:
printf("\r\nBAD SELECTION, TEST EXITED !!\r\n");
3

goto menu;

3

printf("RSTI COMMAND FAILED, RESET LM629 AGAIN\r\n");
while(1l);

TL/DD/11770-8

/**********************************

* Check the BUSY bit *
Kk kkhkhkhkk kA A AIARRRRK KKK I K KXIRKX KKK /

void chk bsy(void) /* Check if 1m629 bsy */
char ST;
ST = rd st():;

while(ST & 0x01);

/**********************************

* Command WR to the LM629 *
AAKKEIKRKKKARKKIAX K I ARk kkxkkkhkhk /

void wr_cmd(unsigned char CMD)

{
portbl.bitl = O; /* Pull /PS=low */
dirbl.bitl = 1;
1m629 = CMD; /* write to LM629 */
dirbl.bitl = 0O;
printf("COMMAND SENT TO LM629 : %x \r\n",CMD);
}

/********************************

* Data WR to the LM629 *

* data written in byte pairs *
Fkkkk kKA RRKKKKRRKKKRKKKARKKKRKK /

void wr_ data(unsigned char val) /* Most significant byte first
*x/
{
portbl.bitl = 1; /* Pull /PS=high */
dirbl.bitl = 1;
1m629 = val; /* write to LM629 */

dirbl.bitl = O;
printf("DATA SENT TO LM629 : %x \r\n",val);

3
/********************************
* Data RD from the LM629 *
* data read in byte pairs *

********************************/

unsigned char rd_data(void)

{

char tmp;

portbl.bitl 1; /* Pull PS high */
dirbl.bitl = 1;
tmp = 1m629;

TL/DD/11770-9

dirbl.bitl

= 0;
return(tmp);

}

/************************************

* Reading Status Byte From LM629 *
***********************************/

unsigned char rd_st(void)

{
portbl.bitl = O; /* Pull /PS low */
dirbl.bitl = 1;
STATUS=1m629; /* Dummy read to pull /RD and /CS low */
dirbl.bitl = O; /* Deselect LM629 */
return(STATUS);
/* Save it in status memory */
}
unsigned int getnum(void)
{
unsigned int i=0,NUM;
char c;

extern char num[];

while(c=getchar())

{

num[i++] = c;
if(¢ == '"\r'}{] ¢ == '\n') {
num[i] = '"\O';

break:; }

NUM = atoi(num);
return(NUM);

void traj sel(void)

printf("\r\n\n");

printf("ENTER ENCODER LINES :");
NLINE = getnum();
printf("\r\n");

printf("ENTER FINAL VELOCITY (RPM) :");
VEL_FIN = getnum();
printf("\r\n"):;

printf("ENTER FINAL POSITION (REVS) : ");
FIN POS = getnum();
printf("\r\n");

printf("ENTER ACCELERATION (REVS/S-2) : ");
ACCL = getnum();
printf("\r\n");

POS_VAL = NLINE *¥ 4.0 * FIN POS;
printf("POSITION VALUE TO LOAD : %1x\r\n",POS VAL);

TL/DD/11770-10

VEL VAL = NLINE *

65536.0;

4.0 * SMP TIME * 1.0E-6 * VEL_FIN *

printf("VELOCITY VALUE TO LOAD : %lx\r\n",6VEL VAL);

ACC_VAL = NLINE * a |
printf("ACCL. VALUE TO LOAD : %lx\r\n",ACC VAL);

ACCLO
ACCHI

VELHI
VELLO

POSHI
POSLO

(unsigned
(unsigned

(]

(unsigned
(unsigned

(unsigned
(unsigned

4.0 * SMP TIME * SMP TIME * 1.0E-12

int)(ACC_VAL & Ox0000ffff);
int)((ACC VAL >> 16) & 0xO0000ffff);

int) ((VEL VAL >> 16) & Ox0000ffff);

int) (VEL VAL & OxO000ffff);

int) ((POS_VAL >> 16)& O0xO000ffff);
int) (POS_VAL & Ox0000ffff);

printf("LOADING NEW TRAJECTORY DATA\r\n"):

chk bsy():

wr_cmd(LTRJ);

chk bsy();
wr_data(0x00);

wr_data(0x2A);

chk bsy():

chk_

wr_data((ACCHI >> 8) & 0x00ff):
wr_data(ACCHI & 0x00ff);
chk bsy():
wr_data((ACCLO >> 8) & 0x00ff);
wr_data(ACCLO & Ox00ff);
chk bsy():
wr_data((VELHI >> 8) & 0x00ff);
wr_data(VELHI & Ox00ff);
chk _bsy();
wr_data((VELLO >> 8) & 0x00ff);
wr data(VELLO & OxQ00ff);

bsy();

wr_data((POSHI >> 8) & 0x00£ff);
wr data(POSHI & 0x00ff);
chk bsy();
wr_data((POSLO >> 8) & Ox00ff);
wr_data(POSLO & 0x00ff);

printf("TRAJECTORY DATA LOAD COMPLETED.\r\n\n\n");

(1.0/60.0)*

* ACCL * 65536.0;

TL/DD/11770-11

10

void filter sel(void)

{
printf("\r\n\n");
printf("SELECT CLOCK RATE (2-8 MHz) :"):
CLK = getnum();
printf("\r\nCLOCK RATE IS : %d MHz\r\n",CLK);
printf("SELECT CLOCK SCALAR (0-255 DEC) :");
CLK_SC = getnum();
printf("\r\nSCALAR TO LOAD: %x\r\n",CLK SC);
SMP_RT = 2048/CLK;
SMP_TIME = (CLK_SC+1) * SMP_RT;
printf("SAMPLE TIME : %d usecs\r\n\n",SMP TIME);
printf("SELECT Kp TO LOAD : ");
Kp = getnum();
printf("\r\n");
printf("LOADING NEW FILTER DATA\r\n");
chk bsy();
wr_cmd(LFIL); /* Load filter parameter cmd = Oxle */
chk _bsy():
wr_data(SMP_RT); /* Bits 8-15 (MSB) set the derivative */
wr_data(0x08); /* sampling rate. = 256 uS */
chk bsy():
wr_data(0x00);
wr_data(Kp);
printf("FILTER DATA LOADED\r\n");
printf("UPDATING FILTER DATA NOW (UDF)\r\n");
chk_bsy();
wr_cmd(UDF); /* Update filter */
printf("UPDATED FILTER PARAMETERS (UDF)\r\n\n\n");
3
void run_motor(void)
{
printf("EXECUTING STT TO RUN THE MOTOR ..!!\r\n");
printf("WATCH THE MOTOR NOW .. !!\r\nm\n\n");
chk_bsy();
wr_cmd(STT); /* start motion 0x01 */

TL/DD/11770-12

1

Interfacing the HPC and LM629 for Motion Control

AN-868

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or
systems which, (a) are intended for surgical implant
into the body, or (b) support or sustain life, and whose
failure to perform, when properly used in accordance

2. A critical component is any component of a life
support device or system whose failure to perform can
be reasonably expected to cause the failure of the life
support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.
National i National i National National i National Semiconductores National Semiconductor
Corporation GmbH Japan Ltd. Hong Kong Ltd. Do Brazil Ltda. (Australia) Pty, Ltd.
2900 Semiconductor Drive Livry-Gargan-Str. 10 Sumitomo Chemical 13th Floor, Straight Block, Rue Deputado Lacorda Franco Building 16
P.O. Box 58090 D-82256 Furstenfeldbruck Engineering Center Ocean Centre, 5 Canton Rd. 120-3A Business Park Drive
Santa Clara, CA 95052-8090 Germany Bldg. 7F Tsimshatsui, Kowloon Sao Paulo-SP Monash Business Park
Tel: 1(800) 272-9959 Tel: (81-41) 35-0 1-7-1, Nakase, Mihama-Ku Hong Kong Brazil 05418-000 Nottinghill, Melbourne
TWX: (910) 339-9240 Telex: 527649 Chiba-City, Tel: (852) 2737-1600 Tel: (55-11) 212-5066 Victoria 3168 Australia

Fax: (81-41) 35-1 Ciba Prefecture 261 Fax: (852) 2736-9960 Telex: 391-1131931 NSBR BR Tel: (3) 558-9999

Tel: (043) 299-2300
Fax: (043) 299-2500

Fax: (55-11) 212-1181

Fax: (3) 558-9998

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

