
TL/D/11274

S
ta

n
d

A
lo

n
e

C
o
n
tro

l
o
f
M

IC
R

O
W

IR
E

P
e
rip

h
e
ra

ls
U

s
in

g
th

e
N

M
C

8
7
C

2
5
7

A
N

-7
9
1

National Semiconductor
Application Note 791
Charlie Mitchell
October 1991

Stand Alone Control of
MICROWIRETM Peripherals
Using the NMC87C257

INTENT

This note describes the implementation and use of a stan-

dard memory element in the realization of state machine

control for the purpose of generating serial data. The appli-

cations shown here employ serial data streams to control

and program peripheral devices which would otherwise re-

quire CPU support for use.

The benefit to the user of the demonstrated techniques is

the low cost, low effort, implementation of tasks normally

allocated to more sophisticated and more engineering inten-

sive methods. These solutions expand the range of systems

and applications in which a variety of National Semiconduc-

tor’s MICROWIRE devices may be used.

MICROWIRE

The MICROWIRE standard is an interface technique first

developed at National in the 1970’s in an effort to reduce

the component pin count (and hence package size and

cost) required for the interfacing of microcontrollers to pe-

ripheral components. Over the ensuing years a wide variety

of devices employing this interface technique have been in-

troduced to the market. They include display drivers, analog

to digital converters, phase lock loop frequency synthesiz-

ers, memories and complex analog devices. A full list of all

but the most recent devices using the MICROWIRE inter-

face can be found in the Master Selection Guide.

A MICROWIRE connection is a straight forward serial hook-

up consisting of data and clock. Generally, input and output

data are presented on separate lines. The clock to data

relationship resembles that of a TTL or CMOS 7400 series

shift register with the positive edge of the clock performing

the active transfer of data into and out of the device. Care

must be taken to examine the data sheet for a device under

consideration as there may be deviations from this general

description. A more complete description of this interface

method is available in National Semiconductor Application

Note 452 by Abdul Aleaf.

STATE SEQUENCERS

State machines or sequencers in their simplest form consist

of a current state memory element and a next state determi-

nation network. Upon a clock edge the next state informa-

tion is converted and held as a new current state while a

fresh next state logical determination takes place. One way

of implementing this state sequencer is by utilizing a register

or latch as the memory element and a Read Only Memory

to supply the logic function for the next state. Because a

ROM is a ‘‘rectangular’’ or complete logic array (i.e., for ev-

ery input combination there exists a unique output), this next

state logic is a lookup table.

THE NMC87C257 UV ERASABLE CMOS PROM

WITH LATCHES

The NMC87C257 is a device first conceived to reduce the

chip count in microprocessor systems which had a multi-

plexed address/data bus. As such, the latches required to

capture the address while return data occupied the bus

were put on board the device. Intended for this microproc-

essor application, the NMC87C257 does not have the

speed of some of the bipolar ‘‘logic’’ PROMs (nor the power

dissipation), but it’s large memory array would be exceed-

ingly expensive in a bipolar device. The 32k x 8 memory

means that in a state machine application fifteen inputs can

define over 32,000 states, represented in eight output pins.

GENERATING A SERIAL OUTPUT WORD FROM THE

NMC87C257 BASED STATE MACHINE

Figure 1 depicts a state machine capable of generating 128

different 128-bit serial data streams. DIP switches 0–7 se-

lect the specific data stream program. Seven bits of output

data are fed back to inputs to define the next state in the

serial data sequence. Bit 08 is the serial data output. A

CMOS oscillator generates the clock. It is important to note

that the clock drives both the ALE (Address Latch Enable)

and OE (Output Enable) inputs. ALE is the signal which acti-

vates the ‘‘open’’ state of the input latch, as such, unlike an

edge triggered register, the outputs follow the inputs until its

(ALE’s) fall. To avoid a high speed feedback phenomenon

while the latches are open it is necessary to break the feed-

back loop and ‘‘freeze’’ the data at the desired output/input

state. This is accomplished by disabling the TRI-STATEÉ
outputs. As long as the outputs are loaded only by the high

impedance inputs of the CMOS device, the next state infor-

mation will be transferred into the latches. Resistive or bipo-

lar logic loads should not be attached to lines operating in

this manner.

TRI-STATEÉ is a registered trademark of National Semiconductor Corporation.

MICROWIRETM and Simple SwitcherTM are trademarks of National Semiconductor Corporation.

C1995 National Semiconductor Corporation RRD-B30M75/Printed in U. S. A.

Note: Refer to AN 140 for R & C values. TL/D/11274–1

FIGURE 1. State Machine for Serial Word Generation

TABLE I. PROM Addresses and Data

Address
Data Serial

Comments
(7 Bits) Output

nn 7F 00 0 Startup Address Generates

1st Word

nn 00 01 1

nn 01 02 1

nn 02 B4 0

nn B4 03 1

#
#
#
#

nn 7E 7E 0 Loop to Self - Stop

Table I shows an example of the PROM code which gener-

ates the serial output. The address includes a leading byte

‘‘nn’’ which will determine which of the bit streams will be

selected. Notice that the 7-bit data is in fact the next state

information reflected in the next address.

APPLICATIONS FOR A SERIAL WORD GENERATOR

USING THE NMC87C257

A Power Supply Sequencer

The ADC0854 is a comparator circuit with a MICROWIRE

controlled four input multiplexer and a settable 8-bit refer-

ence divider which drives the second compare input. A

block diagram is depicted in Figure 2.

2

T
L
/
D

/
1
1
2
7
4
–
2

N
o
te

1
:
F
o
r
A

D
C

0
8
5
2
;
D

1
is

in
p
u
t
d
ir
e
c
tl
y

to
th

e
D

in
p
u
t
o
f
O

D
D

/
S
IG

N
,
s
e
le

c
t:

is
fo

rc
e
d

to
a

‘‘
1
’’
,
A

G
N

D
a
n
d

C
O

M
a
re

in
te

rn
a
lly

ti
e
d

to
D

G
N

D
,
o
n
ly

V
C

C
is

b
ro

u
g
h
t
o
u
t,

V
R

E
F

is
in

te
rn

a
lly

ti
e
d

to
V

C
C
,
o
n
ly

C
H

2
a
n
d

C
H

3
a
re

b
ro

u
g
h
t
o
u
t.

F
IG

U
R

E
2
.
A

D
C

0
8
5
4

D
e
ta

il
e
d

B
lo

c
k

D
ia

g
ra

m

3

Many voltage regulators feature an on-off input. Couple

these linear components along with the serial word genera-

tor and a sophisticated power supply sequencer can be

built.

The ADC0854 requires a 12-bit serial word to provide setup

information. A start bit is required, which is followed by one

bit to select four single ended or two differential inputs. A

two bit channel selection and the eight bit reference data

byte complete the serial word. It is depicted in Figure 3.

Referencing the simplified schematic in Figure 4, analog in-

put signals are presented to the multiple inputs of the com-

parator from the voltage sources, in this case Simple

SwitcherTM Regulators are used.

The serial word is presented to the ADC0854 is generated

from the sequence shown in Figure 4A. The Chip Select

input which acts to latch the data word into the comparator

is generated by a diode AND gate from the four output/input

lines controlling the count. All diodes depicted in the sche-

matic are in a single FSA2619P 16-pin dual-in-line package.

An MM74C14 hex Schmitt trigger circuit provides the neces-

sary clock wave form and an MM74C244 contributes buffer-

ing for the diode gates.

Note: Valid Output can change only on Falling Edge of CLK. TL/D/11274–3

FIGURE 3. ADC0854 Clock, Control Data and Output Data Relationships

4

T
L
/
D

/
1
1
2
7
4
–
4

N
o
te

:
R

e
fe

r
to

A
N

1
4
0

fo
r
R

&
C

v
a
lu

e
s
.

N
o
te

:
A

s
re

s
is

ti
v
e

a
n
d

c
a
p
a
c
it
iv

e
v
a
lu

e
s

in
th

is
c
ir
c
u
it

w
ill

v
a
ry

w
it
h

a
p
p
lic

a
ti
o
n
,
c
o
n
s
u
lt

th
e

d
a
ta

s
h
e
e
ts

o
f
th

e
a
s
s
o
c
ia

te
d

d
e
v
ic

e
s

fo
r
c
o
m

p
o
n
e
n
t
s
e
le

c
ti
o
n
.

F
IG

U
R

E
4
.
P
a
rt

ia
l
S
c
h
e
m

a
ti
c

o
f
P
o
w

e
r
S
u
p
p
ly

S
e
q
u
e
n
c
e
r

5

Each regulator output is sequentially selected by the PROM

generated MICROWIRE and tested for compliance to a volt-

age level also set via the MICROWIRE. When Voltage A

reaches its terminal value, the sequencer delays for a de-

fined period while voltage settles as determined here by the

RC network at the comparator input and then raises the

control voltage to the regulator B ON/OFF input and, after

monitoring that regulator’s voltage rise, continues to regula-

tor C. A stable and fixed reference is supplied for the com-

parisons by an LM385.

A similar control procedure allows an orderly shutdown.

During operation the controller monitors the sum of the

three supply voltages. A drop from the proper sum will com-

mence the controlled shutdown. These procedures are de-

lineated by the state diagram in Figure 5b. In order to differ-

entiate the state defining the condition of the voltages when

powering up and the state produced when shutting down a

‘‘history circuit’’ consisting of four diodes and a capacitor

records the ‘‘all supplies on’’ condition. The ON/OFF switch

must be recycled for the system to power up once again.

A Zener diode regulated output is provided from the

ADC0854 permitting the PROM and the Schmitt Trigger os-

cillator to be powered from the primary source.

TL/D/11274–5

FIGURE 5. State Diagram for Power Supply Sequencer

6

PRODUCTION LINE PROGRAMMING OF

MICROWIRE EEPROMS

EEPROMs are frequently programmed prior to board inser-

tion on the production line. This programming may reflect

the revision level of the system software and the engineer-

ing change level of the printed circuit board.

In this case an NM93C06 256-bit device has been selected.

In a production line situation it is desirable to write a seg-

ment of memory with the parameters described above.

In order to perform this task the memory must receive a

series of MICROWIRE commands. Each of the commands

is itself a state ordered sequence. The command se-

quences first enable the write capability, write 16 bits of

information to the specified address and then turn off the

write enable. Table II lists the inputs and outputs of the

NMC87C257 for a sequence to write a sixteen bit word.

The logic diagram in Figure 6 depicts a circuit which in-

cludes keypad entry capability such that an operator can

select up to 20 different such commands.

TL/D/11274–6

*Consult MM74C923 datasheet for component values appropriate to the specific application.

FIGURE 6. Logic Diagram for EEPROM Programmer

7

TABLE II. PROM Listing for EEPROM Programming

Address 00–04
EN

74HC173
CS DI DO Comments

(Hex) (Hex) (Hex)

000 01 0 0 0 0 X

001 02 0 0 1 0 X Start Erase/Write Enable

002 03 0 0 1 1 X Start Bit

003 04 0 0 1 0 X Opcode

004 05 0 0 1 0 X

005 06 0 0 1 1 X

006 07 0 0 1 1 X

007 08 0 0 1 0 X

008 09 0 0 1 0 X

009 0A 0 0 1 0 X

00A 0B 0 0 1 0 X

00B 0C 0 0 1 0 X

00C 0D 0 0 1 0 X

00D 0E 0 0 0 0 X End Erase/Write Enable

00E 0F 0 0 0 0 X

00F 10 0 0 1 0 X Start Write of Data

010 11 0 0 1 1 X

011 12 0 0 1 0 X

012 13 0 0 1 1 X

013 14 0 0 1 a X Address Entry

014 15 0 0 1 a X

015 16 0 0 1 a X

016 17 0 0 1 a X

017 18 0 0 1 a X

018 19 0 0 1 a X

019 1A 0 0 1 a X

01A 1A 0 0 1 a X

01A 1A 0 0 1 d X Data Input

01A 1B 0 0 1 d X

01B 1F 1 0 1 d X

01F 00 0 F 1 d X

020 01 0 F 1 d X

021 02 0 F 1 d X

022 03 0 F 1 d X

023 04 0 F 1 d X

024 05 0 F 1 d X

025 06 0 F 1 d X

026 07 0 F 1 d X

027 08 0 F 1 d X

028 09 0 F 1 d X

029 0A 0 F 1 d X

02A 0B 0 F 1 d X

02B 0C 0 F 1 d 0 End of Cycle

02C 0D 0 F 0 0 0 Wait for Data Out to

02D 0E 0 F 1 0 0 Go High

02E 0F 0 F 1 1 1

02F 10 0 F 0 0 X

030 11 0 F 1 0 X Start of Erase/Write

031 12 0 F 1 1 X Disable Cycle

032 13 0 F 1 0 X

033 14 0 F 1 0 X

034 15 0 F 1 0 X

035 16 0 F 1 0 X

036 17 0 F 1 0 X

037 18 0 F 0 0 X End of EWDS Command

038 19 0 F 0 0 X

8

FILTER PARAMETER CONTROL

The LMC835 provides the complete resistor and switch set

to implement a stereo 7 band equalizer or a mono 14 band

system. While control of this device is usually provided from

a microcontroller there are instances where that expense

and effort are not necessary to achieve a complex filtering

function.

To program the LMC835 one of fourteen frequency bands

must be selected and the gain for that band entered. This

band gain setting requires a minimum of 18 states. All four-

teen bands must be preset and various control states must

be implemented. Because of the large number of states in-

volved in setting each of the fourteen bands a wider word is

needed than can be implemented in a single PROM. There

are several methods of dealing with this, however the most

straight forward (for purposes of illustration) is to employ

two PROMs.

The MICROWIRE interface used with the LMC835 differs

slightly from those implemented above in that it uses a

strobe to transfer data from the internal shift register to the

latch for the addressed switch matrix. This permits the re-

programming of individual bands without the necessity of

rewriting the entire machine state.

A complete logic diagram for the word generator is shown in

Figure 7. The schematics for the implementation of the lin-

ear portions of the circuit can be obtained by referencing

the LMC835 datasheet. A template for the PROM listing is

also shown in Figure 8.

TL/D/11274–7

FIGURE 7. Logic Diagram for Equalizer Controller

9

TL/D/11274–8

FIGURE 8. Template for PROM Program for Filter Controller

10

SUMMARY

The use of the NMC87C257 CMOS PROM with latches has

been shown to be an effective element in the implementa-

tion of several MICROWIRE interfaces. This use allows the

designer to implement systems with devices necessitating a

MICROWIRE interface without the use of a microcontroller

or microprocessor.

In constructing or adapting any of the circuits described in

this note the reader is advised to obtain copies of the Na-

tional Semiconductor data sheets for the components in-

cluded and to review their operation for applicability to their

system requirements.

TL/D/11274–9

FIGURE A1. A Ramp Transfer Characteristic.

Refer to Table A1 for program inputs.

TL/D/11274–10

FIGURE A2. Vocal Presence Filter.

Refer to Table A2 for program inputs.

TABLE A1. Program Inputs for

Ramp Transfer Characteristic

Frequency (Hz) Level (dB)

40 b7

63 b6

100 b5

160 b4

250 b3

400 b2

630 b1

1k 0

1.6k a1

2.5k a2

4k a3

6.3k a4

10k a5

16k a6

TABLE A2. Program Inputs

for Vocal Presence Filter

Frequency (Hz) Level (dB)

40 0 Subsonic Filter

63 0

100 0

160 0

250 0

400 a3

630 a3

1k a3

1.6k a3

2.5k a3

4k a3

6.3k 0 Supersonic Filter

10k 0

16k 0

Figures A1 and A2 are gain vs. frequency plots of specimen filters realized using the logic of Figure 7 and PROM code

generated with SM835.c.

11

/***

* *

* File: SM835.C *

* Author: Bob Moses, Rane Corporation, Mukilteo, WA *

* Revision: 18 June 1991 *

* Compiler: Borland TurboC *

* *

* Description: Generates Intel Hex file for NMC87C257 based *

* LMC835 state machine loader. *

* *

* File Input: void *

* File Output: SML835.HEX *

* *

***/

#include ‘stdio.h‘

/*------------*/

/* Data Types */

/*------------*/

struct LMC835 RECORD

À

int chAbands[7]; /* gains for chan A bands */

int chArng; /* chan A range */

int chBbands[7]; /* gains for chan B bands */

int chBrng; /* chan B range */

Ó;

/*-----------–--------*/

/* Function Prototypes */

/*-----------–--------*/

void say howdy(void);

void get parameters(struct LMC835 RECORD *eq);

void compile state mach(struct LMC835 RECORD *eq, unsigned int states[]);

void output data(unsigned int states[]);

void wr ihex data rec(FILE *outfile, unsigned int addr, unsigned char recsize,

unsigned char data[]);

/*--------------*/

/* Main Program */

/*--------------*/

main()

À

/* declare one LMC835 equalizer */

struct LMC835 RECORD eq1;

12

/* 14 bands * 2 blocks/band * 9 states/block 0 final state 4 253 states */

unsigned int states[253];

say howdy();

get parameters(&eq1);

compile state mach(&eq1,states);

output data(states);

Ó

/*------------*/

/* Functions */

/*------------*/

void say howdy(void)

À

clrscr();

fprintf(stdout,‘TnSM835 - NMC87C257 LM835 State Machine Loader.‘);

fprintf(stdout,‘TnTnThis Program accepts parameters for an LMC835-based‘);

fprintf(stdout,‘Tnequalizer and generates an Intel Hex file (SML835.HEX)‘);

fprintf(stdout,‘Tnfor the NMC87C257 State Machine Loader. This file can be‘);

fprintf(stdout,‘Tnloaded into most EPROM programmers and split-programmed‘);

fprintf(stdout,‘Tn(even and odd bytes) into two EPROMs.‘);

fprintf(stdout,‘TnTnThe LMC835 graphic equalizer consists of two channels‘);

fprintf(stdout,‘Tn(chan A & chan B), each channel has 7 bands. The range of‘);

fprintf(stdout,‘Tneach band is selectable for 6 12 dB in 1 dB steps, or‘);

fprintf(stdout,‘Tn6 6 dB in 1/2 dB steps.Tn‘);

Ó

void get parameters(struct LMC835 RECORD *eq)

À

unsigned int i,currng;

int tempint;

char chan;

float tempfloat;

/* get range for chan A */

fprintf(stdout,‘TnPlease enter range of chan A (0 4 612dB, 1 4 66dB): ‘);

fscanf(stdin,‘%d‘,&tempint);

eq-lchArng 4 tempint&0x0001;

/* get range for chan B */

fprintf(stdout,‘Please enter range of chan B (0 4 612dB, 1 4 66dB): ‘);

fscanf(stdin,‘%d‘,&tempint);

eq-lchBrng 4 tempint&0x0001;

13

/* get EQ bands */

for(i 4 0,chan 4 ÊAÊ,currng 4 12–6*(eq-lchArng);i k 14;)

À

/* if start of chan B, modify chan flag and chan range variables */

if(i 44 7)

À

chan 4 ÊBÊ;
currng 4 12–6*(eq-lchBrng);

Ó

/* get a band value */

fprintf(stdout,‘Gain of chan %c band #%d? ‘,chan,(i%7)01);

fscanf(stdin,‘%g‘,&tempfloat);

/* scale for range */

if(currng 44 6) tempint 4 (int)(tempfloat*2.0);

else tempint 4 (int)tempfloat;

/* check limits */

if((tempint l 12) ll (tempint k b12))

À

fprintf(stderr,‘...err! value must be between 1%d and 0%dTn‘,currng,currng);

continue;

Ó

/* save band */

if(chan 44 ÊAÊ) eq-lchAbands[i] 4 tempint;

else eq-lchBbands[i–7] 4 tempint;

i00; /* band counter */

Ó

Ó

void compile state mach(struct LMC835 RECORD *eq, unsigned int states[])

À

LMC835 CONTROL CODES

TL/D/11274–11

14

/*

TL/D/11274–13

TL/D/11274–12

/*

15

unsigned int band,substate,stateimg,curstate;

unsigned char LMC835GainCodeTable[] 4 [0x2F,0x2D,0x29,0x01,0x16,0x2A,

0x12,0x02,0x04,0x08,0x10,0x20,

0x00,

0x20,0x10,0x08,0x04,0x02,0x12,

0x2A,0x16,0x01,0x29,0x2D,0x2FÓ;

/*--------*/

/* chan A */

/*--------*/

for(band 4 0,curstate 4 0;band k 7;band00)

À

for(substate 4 0;substate k 18;substate00)

À

/* next state 4 current state 01 */

stateimg 4 (curstate01)&0x1FFF;

/* CLK Enable */

stateimg &4 0xDFFF;

/* Prestrobe */

if((substate 44 7)ll(substate 44 16)) stateimg 04 0x8000;

/* Data */

switch(substate)

À

case 0: /* DATA I b0 */

stateimg 04 (((band01)&0x0001)kk14);

break;

case 1: /* DATA I b1 */

stateimg 04 (((band01)&0x0002)kk13);

break;

case 2: /* DATA I b2 */

stateimg 04 (((band01)%0x0004)kk12);

break;

case 3: /* DATA I b3 */

stateimg 04 (((band01)%0x0008)kk11);

break;

case 4: /* DATA I rB */

stateimg 04 (((eq-lchBrng)&0x0001)kk14);

break;

case 5: /* DATA I rA */

stateimg 04 (((eq-lchArng)&0x0001)kk14);

break;

case 6: /* DATA I don’t care */

break;

case 7: /* DATA I 1 */

stateimg 04 0x4000;

break;

*/

16

case 8: /* rest for strobe */

break;

case 9: /* DATA II g0 */

stateimg 04 ((LMC835GainCodeTable[eq-lchAbands[band]012]&0x0001)kk14);

break;

case 10: /* DATA II g1 */

stateimg 04 ((LMC835GainCodeTable[eq-lchAbands[band]012]&0x0002)kk13);

break;

case 11: /* DATA II g0 */

stateimg 04 ((LMC835GainCodeTable[eq-lchAbands[band]012]&0x0004)kk12);

break;

case 12: /* DATA II g3 */

stateimg 04 ((LMC835GainCodeTable[eq-lchAbands[band]012]&0x0008)kk11);

break;

case 13: /* DATA II g4 */

stateimg 04 ((LMC835GainCodeTable[eq-lchAbands[band]012]&0x0010)kk10);

break;

case 14: /* DATA II g5 */

stateimg 04 ((LMC835GainCodeTable[eq-lchAbands[band]012]&0x0020)kk9);

break;

case 15: /* DATA II bc (0 4 cut, 1 4 boost) */

if(eq-lchAbands[band] k 0) stateimg &4 0xBFFF;

else stateimg 04 0x4000;

break;

case 16: /* DATA II 0 */

stateimg &4 0xBFFF;

break;

case 17: /* rest for strobe */

break;

Ó /* switch... */

/* write this state to states array */

states[curstate00] 4 stateimg;

Ó /* for(substate... */

Ó /* for(band... */

/*--------*/

/* chan B */

/*--------*/

for(band 4 7;band k 14;band00)

À

for(substate 4 0;substate k 18;substate00)

À

/* next state 4 current state 01 */

stateimg 4 (curstate01)&0x1FFF;

/* CLK Enable */

stateimg &4 0xDFFF;

17

/* Prestrobe */

if((substate 44 7)ll(substate 44 16)) stateimg 04 0x8000;

/* Data */

switch(substate)

À

case 0: /* DATA I b0 */

stateimg 04 (((band01)&0x0001)kk14);

break;

case 1: /* DATA I b1 */

stateimg 04 (((band01)&0x0002)kk13);

break;

case 2: /* DATA I b2 */

stateimg 04 (((band01)&0x0004)kk12);

break;

case 3: /* DATA I b3 */

stateimg 04 (((band01)&0x0008)kk11);

break;

case 4: /* DATA I rB */

stateimg 04 (((eq-lchBrng)&0x0001)kk14);

break;

case 5: /* DATA I rA */

stateimg 04 (((eq-lchArng)&0x0001)kk14);

break;

case 6: /* DATA I don’t care */

break;

case 7: /* DATA I 1 */

stateimg 04 0x4000;

break;

case 8: /* rest for strobe */

break;

case 9: /* DATA II g0 */

stateimg 04 ((LMC835GainCodeTable[eq-lchBbands[band17]012]&0x0001)kk14);

break;

case 10: /* DATA II g1 */

stateimg 04 ((LMC835GainCodeTable[eq-lchBbands[band17]012]&0x0002)kk13);

break;

case 11: /* DATA II g2 */

stateimg 04 ((LMC835GainCodeTable[eq-lchBbands[band17]012]&0x0004)kk12);

break;

case 12: /* DATA II g3 */

stateimg 04 ((LMC835GainCodeTable[eq-lchBbands[band17]012]&0x0008)kk11);

break;

case 13: /* DATA II g4 */

stateimg 04 ((LMC835GainCodeTable[eq-lchBbands[band17]012]&0x0010)kk10);

break;

18

case 14: /* DATA II g5 */

stateimg 04((LMC835GainCodeTable[eq-lchBbands[band17]012]&0x0020)kk9);

break;

case 15: /* DATA II bc (0 4 cut, 1 4 boost) */

if(eq-lchBbands[band17] k 0) stateimg &4 0xBFFF;

else stateimg 04 0x4000;

break;

case 16: /* DATA II 0 */

stateimg &4 0xBFFF;

break;

case 17: /* rest for strobe */

break;

Ó /* switch... */

/* write this state to states array */

states[curstate00] 4 stateimg;

Ó /* for(substate... */

Ó /* for(band... */

/* final state: ‘jump 0‘ with clock disabled */

states[252] 4 25200x2000;

Ó

void output data(unsigned int states[])

À

unsigned int i,addr,bitmask;

unsigned char csum,data[16];

FILE *outfile;

/* open output file */

if((outfile 4 fopen(‘sml835.hex‘,‘w‘)) 44 NULL)

À

fprintf(stderr,‘can’t open file SML835.HEX‘);

exit(0);

Ó

/* write states to stdout */

/*------------------------*/

for(i 4 0;i k 253;i00)

À

if(i 44 252) fprintf(stdout,‘TnTnFinal state...‘);

else if (!(i&18)) fprintf(stdout,‘TnTnBand %d...‘,(i/18)01);

fprintf(stdout,‘TnState %d: ‘,i);

/* write each state as a binary image */

for(bitmask 4 0;bitmask k 16;bitmask00)

À

if((states[i]kkbitmask)&0x8000) fprintf(stdout,‘1‘);

else fprintf(stdout,‘0‘);

Ó

Ó

19

/* write states to Intel Hex file */

/*-------------------------------*/

fprintf(stdout,‘TnTnWriting Intex Hex file: SML835.HEX...Tn‘);

/* write first 252 states */

for(addr 4 0;addr k 252;addr 04 8)

À

/* copy 8 states (16 bytes) to temp data buffer */

for(i 4 0;i k 16;i 04 2)

À

data[i] 4 (char)(states[addr0(i/2)]&0x00FF);

data[i01] 4 (char)((states[addr0(i/2)]ll8)*0x00FF);

Ó

/* write data to Intex Hex record */

wr ihex data rec(outfile,addr*2,16,data);

Ó

/* write last state */

data[0] 4 (char)(states[252]&0x00FF);

data[1] 4 (char)((states[252]ll8)&0x00FF);

wr ihex data rec(outfile,252*2,2,data);

/* EOF record */

fprintf(outfile,‘Tn:00000001FF‘);

/* close file */

fclose(outfile);

Ó

void wr ihex data rec(FILE *outfile, unsigned int addr, unsigned char recsize, unsigned

char data[])

À

unsigned int i;

unsigned char csum;

/* record mark, record length, record address, and record type fields */

fprintf(outfile,‘Tn:%2.2X%4.4X00‘,recsize,addr);

csum 4 recsize 0 (char))addr&0x00FF) 0 (char)((addrll8)&0x00FF);

/* data field */

for(i 4 0;i k recsize;i00)

À

fprintf(outfile,‘%2.2X‘,data[i]);

csum 04 data[i];

Ó

/* checksum field */

csum &4 0x00FF;

csum *4 11;

fprintf(outfile,‘%2.2X‘,csum);

Ó

20

BIBLIOGRAPHY

NMC87C257 Ð CMOS PROM with Address Latches

ADC0854 Ð Multiplexed Comparator with 8-bit Refer-

ence Divider

FSA2619 Ð Monolithic Diode Array

MM74C14 Ð Hex CMOS Schmitt Trigger

NM93C06 Ð 256-bit Electrically Erasable Programmable

Memory

MM74C923 Ð 20 Key Encoder

LMC35 Ð Digital Controlled Graphic Equalizer

AN-452 Ð MICROWIRE Serial Interface

AN-140 Ð CMOS Schmift Trigger

Appendix
ACKNOWLEDGEMENTS

The author would like to express his gratitude to the engi-

neering staff at Rane Corporation in Mukilteo, Washington

for providing expert assistance and breadboarding of the

LMC835 application and to Bob Moses for contributing a C

program (see Appendix) to generate the ROM map.

21

A
N

-7
9
1

S
ta

n
d

A
lo

n
e

C
o
n
tr

o
l
o
f
M

IC
R

O
W

IR
E

P
e
ri
p
h
e
ra

ls
U

s
in

g
th

e
N

M
C

8
7
C

2
5
7

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor National Semiconductores National Semiconductor
Corporation GmbH Japan Ltd. Hong Kong Ltd. Do Brazil Ltda. (Australia) Pty, Ltd.
2900 Semiconductor Drive Livry-Gargan-Str. 10 Sumitomo Chemical 13th Floor, Straight Block, Rue Deputado Lacorda Franco Building 16
P.O. Box 58090 D-82256 F 4urstenfeldbruck Engineering Center Ocean Centre, 5 Canton Rd. 120-3A Business Park Drive
Santa Clara, CA 95052-8090 Germany Bldg. 7F Tsimshatsui, Kowloon Sao Paulo-SP Monash Business Park
Tel: 1(800) 272-9959 Tel: (81-41) 35-0 1-7-1, Nakase, Mihama-Ku Hong Kong Brazil 05418-000 Nottinghill, Melbourne
TWX: (910) 339-9240 Telex: 527649 Chiba-City, Tel: (852) 2737-1600 Tel: (55-11) 212-5066 Victoria 3168 Australia

Fax: (81-41) 35-1 Ciba Prefecture 261 Fax: (852) 2736-9960 Telex: 391-1131931 NSBR BR Tel: (3) 558-9999
Tel: (043) 299-2300 Fax: (55-11) 212-1181 Fax: (3) 558-9998
Fax: (043) 299-2500

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

