AN-786

LCD Direct Drive Using HPC

National Semiconductor Application Note 786 Santanu Roy November 1991

INTRODUCTION

Liquid Crystal Displays (LCD) are used in a wide variety of applications. They are extremely popular because of their low power consumption. Manufacturers of Automobiles to Measuring Equipment have taken advantage of these low power displays. Driving LCDs has always been done with dedicated driver chips which not only increase the system cost, but also increase the chip count and board space. This note is developed to demonstrate a low cost solution using the HPC to directly drive LCDs without any driver interface in applications involving LCD display control. A customized 2-way multiplexed LCD (13420) is being used to illustrate the above capability of HPC microcontrollers in the form of a simple decimal counter.

DRIVING AN LCD

An LCD consists of a backplane and any number of segments which will be used to form the image being displayed. Applying a voltage (nominally 4V-5V) between any segment and the backplane causes the segment to darken. The only catch is that the polarity of the applied voltage has to be periodically reversed, or else a chemical reaction takes place in the LCD which causes deterioration and eventual failure of the liquid crystal. (DC components higher than 100 mV can cause electrochemical reactions in LCDs). To prevent this from happening, the backplane and all the segments are driven with an AC signal, which is derived from a rectangular waveform. To turn a segment OFF, it is driven by the same waveform as the backplane. Thus it is always at backplane potential. If a segment is to be ON, it is driven with a waveform that is the inverse of the backplane waveform. Thus it has periodically changing polarity between it and the backplane.

MULTIPLEXED LCDs

Today a wide variety of LCDs ranging from static to multiplex rates of 1:64 are available on the market. The *MULTI-PLEX* rate of an LCD is determined by the number of backplanes. The higher the multiplex rate the more individual segments can be controlled using only one line e.g., a static LCD has only one backplane and hence only one segment can be controlled using one line. A two way multiplexed LCD has two backplanes and two segments can be controlled with one line. In general if the multiplex ratio of the LCD is N and the number of available outputs is M, the number of segments that can be driven is:

$$S = (M - N)*N$$

i.e., N lines out of M outputs will be used to drive N backplanes, the rest (M-N) outputs are available for segment control. Each line can control N segments, so (M-N) lines can drive $(M-N)^*N$ segments. So the maximum number of segments in a 2-way MUX LCD that can be driven with an HPC (if all outputs—16 PortA, 16 PortB, and 4 PortP are used) is:

$$S = (36 - 2)*2 = 68$$

The number of backplanes in the LCD also determines the number of levels to be generated for their control signals,

e.g., three different voltage levels V, 1/2V, and 0 are to be generated for a 1:2 LCD device (V = operating voltage of the LCD). A *Refresh Cycle* of LCDs (also known as "Scan Frequency") is the time period during which all backplanes and segments have to be updated. Typically this is between 39 Hz–208 Hz. During each half of the refresh cycle (Frame Time), the polarities of the voltages driving the backplanes and the segments are reversed because of the reason stated above. The current consumption of typical LCDs is in the range of 3 μ A–4 μ A (at V = 4.5, refresh rate 60 Hz) per square centimeter of activated area. Thus the backplane and segment terminals can be treated as Hi-Z loads. At high refresh rates the current consumption of LCDs increases dramatically, a reason why many LCD manufacturers recommend not to exceed a refresh rate of 60 Hz.

LCD CONTROL AND HPC

Figure 1 shows the schematic of the system. With the HPC, each I/O pin can be set individually to TRI-STATE®, "HI" or "LO". Here, in this application, B4 and B5 on the HPC's PortB are selected for backplane control of a 1:2 multiplexed customized LCD-I3420. The three different voltage levels viz. V, V/2, and 0 required for backplane control are achieved through an external voltage divider circuit. The procedure is to set B4 and B5 to "LO" for 0, Hi-Z (configuring them as inputs) for 0.5V, and "HI" for V at the backplane electrodes. For segment control: 8 PortA lines (A0-A7), 4 PortP lines (P0-P3) and 3 PortB lines (B0-B2) are used. All are used as outputs to drive individual segments of the LCD. The HPC in this application is used in single-chip mode to maximize the I/O pin count for LCD control.

TIMING CONSIDERATIONS

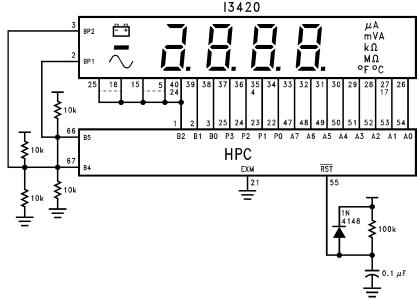
Figure 2 shows the backplane and segment waveforms of a typical 1:2 multiplexed LCD. One Refresh Cycle T_{scan} is subdivided into four equally spaced time slots ta, tb, tc and td during which the backplane and segment terminals have to be updated in order to switch a specific segment "ON" or "OFF". The voltage waveform during BP— is the mirror image of the waveform during BP+ which satisfies polarity reversal every T_{frame} . Considering a refresh frequency of 50 Hz i.e., $T_{scan} = 20$ ms: ta, tb, tc and td are each equal to 5 ms. The timer T2 is used to mark off one time phase (1/4 of T_{scan}) of the driving voltage waveform. The timer and autoreload value to get 5 ms time-out is 4999 (decimal) at an operating frequency of 16.0 MHz.

SEGMENT CONTROL

In Figure 2a, BP1 and BP2 are the typical backplane waveform of a 2-way multiplexed LCD. During BP+ time, backplane outputs are ON for driving voltage level V and OFF for the level $\frac{1}{2}V$. Again for BP — frame time, backplane outputs are ON for "0" and OFF for " $\frac{1}{2}V$ ". Voltage at a particular LCD segment is the resultant of the backplane output and voltage at the line driving that segment. Figure 2(b) shows the waveform at an LCD segment. Figure 2(c) and 2(d) are the resultant waveforms with respect to BP1 and BP2 obtained by subtracting the segment waveform in Figure 2(b) from the backplane waveforms BP1 and BP2 respectively.

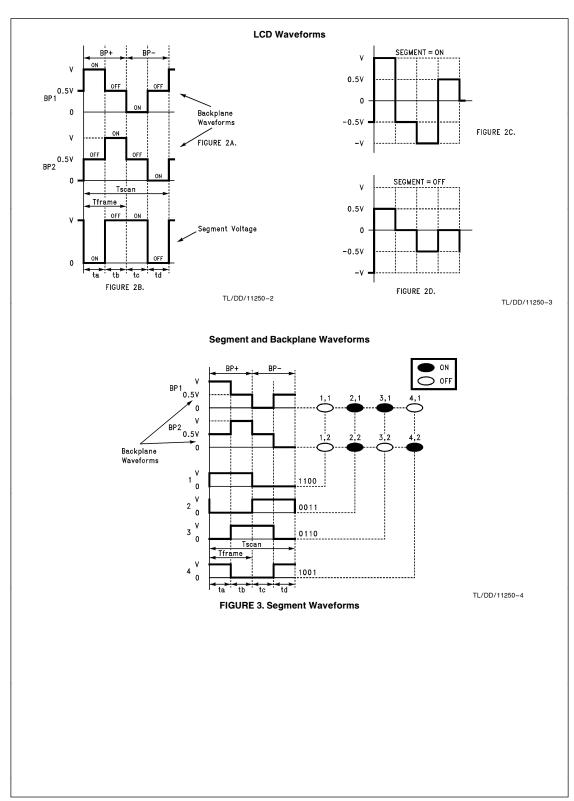
Figure 3 shows the four different waveforms which must be generated at the segments to meet all possible combinations ON and OFF sequence viz. OFF-OFF, ON-ON, ON-OFF, and OFF-ON. A segment is ON if the resultant voltage across it periodically oscillates between +V and -V and is OFF if the swing is between $\,+\,V/2$ and $\,-\,V/2$. The result of the combination is showed in form of white and black circles, representing OFF and ON segments respectively e.g., a waveform pattern "1" will always turn a segment OFF with respect to both the backplanes. However, the waveform "2" will keep it ON with respect to BP1 and BP2. Figurea 4a and Figure 4b show the resultant voltage waveforms at an LCD segment for the above possible combinations and the status of the segment during display operation. Figures 5 and 6 shows the internal segment and backplane connections for a typical 2-way LCD. Figure 7 gives the details of the LCD used in this application.

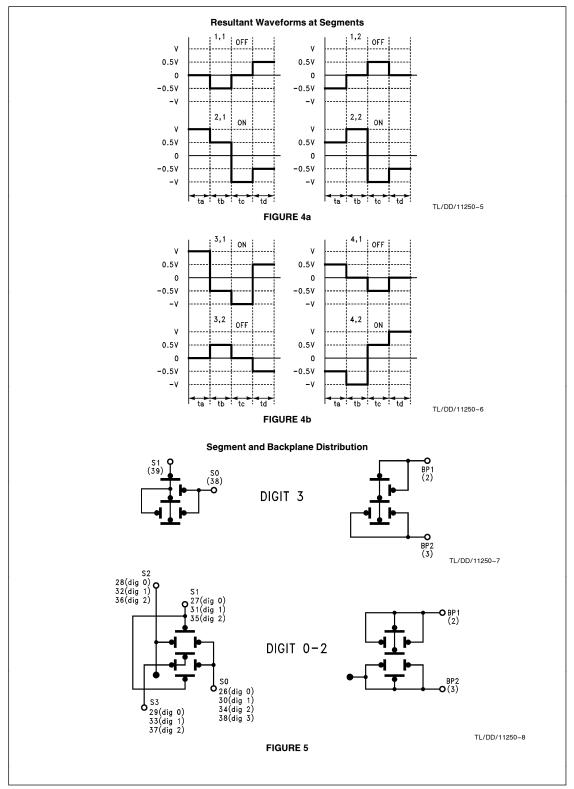
LCD DRIVE SUBROUTINE

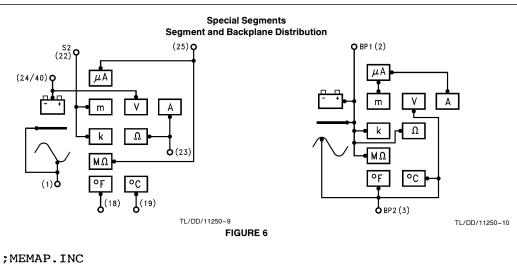

The software for the LCD drive is provided at the end of this application note. The drive subroutine <code>DISPL</code> converts a 16-bit binary value to a 20-bit BCD value for easier display data fetch. This subroutine itself is comprised of a main routine for backplane refresh and seven subroutines (<code>SEGTA, SEGTB, SEGTC, SEGTD, SEGOUT, TMPND, and DISPD</code>). The subroutines <code>SEGTA</code> through <code>SEGTD</code> are used to fetch LCD segment data from a lookup table in ROM for time phases ta, tb, tc, and td respectively. In the table, the subroutine <code>SEGOUT</code> writes these data for each time phase to the respective ports of the HPC connected to the LCD

device. For a refresh cycle of 50 Hz (20 ms), each time phase ($\frac{1}{4}$ of T_{scan}) is equal to 5.0 ms. This time base is generated by the HPC timer T2 with the associated autoreload register R2. The polling routine TMPND checks for timer underflow flag at the end of each time phase. If the flag is set, it is reset and the program returns to the calling routine. This way a 5 ms time delay is created before the segment and backplane data for the next time phase is updated. The **DISPD** subroutine switches the LCD OFF by driving the segment and backplane ports to logic "LO". In this application, the display is initialized with "399.9" (which uses all LCD segments) for a BCD down counter. Each count is displayed for a fixed period of time (here a present time of 100 ms is chosen) which is user programmable. The special segments e.g., "m", "A", "V" . . . etc. which are not used are all connected together to a common port pin (B2) of the HPC and kept turned OFF throughout the display. It is mandatory to drive any unused segment lines to the OFF state rather than leaving them open or grounded which might result in ghost images.

Note: Selecting the resistors for the voltage divider circuits on B4 and B5 will depend on the type of LCD used.


TYPICAL APPLICATIONS


- · Automotive test and control systems
- · Weighing scales
- Control Panel
- Microwave
- · Clocks and watches etc.



TL/DD/11250-1

FIGURE 1

= 04

;This is the memory map of different RAM areas used in the ;LCD program.

;******************* RAM DEFINITIONS ***********

```
BCDLO = 02:b
                      ;Measured period in BCD (lo byte)
BCDHI = 03:b
                      ;High Byte
MWBUFO = 05:b
                      ;A-port data (7-segment)
MWBUF1 = 06:w
                      ;P-port data
MWBUF2 = 08:b
                      ;B-port data
OFF1
      = 0a:b
                      ;offset reg. for 7-seg code table
      = 0b:b
OFF2
                      ;
      = 0c:b
OFF3
      = 0e:w
EVAL
                      ;end value lo-byte (period)
SVAL
      = 010:w
                      ;hi-byte
COUNT
     = 020:b
                      ;counter #1
COUNT2 = 021:b
                      ;counter #2
     = 022:w
BCNT
= 05
                      ;Backplane 1
BP2
```

;Backplane 2

TL/DD/11250-12

```
;File Name:CNTR.ASM
; Function: Counter displayed on a 2-way muxed LCD display
; directly driven by the HPC16083.
.incld reg16083.inc
                                  ;HPC register def. file
                                  ;Chip - HPC16083
.incld memap.inc
.extrn DISPL, DISPD, COPY
.sect cntr,rom16
BEGIN:
          ld
               sp,#01c0
                               ;set the stack pointer
BINIT:
          jsr DISPD
                               ;define port config,
                               ;switch diplay OFF
OK1:
          ld
               BCNT, #0f9f
                               ;set counter to 3999 decimal
BLOOP:
          ld
               b, #BCNT
                               ; copy the decimal value
          ld
               x, #EVAL
                               ; to the location which
          jsr
               COPY
                               ;undergoes conversion
          ld
               COUNT2,#01
                               ;display time=100 ms
          jsr DISPL
                               ;Display 399.9 first
BLOOP2:
          decsz BCNT
                               ;display till
          jр
               BLOOP
                               ;counter=0
                               ;display "0" also
          ld
               b, #BCNT
               x,#EVAL
          ld
                               ;and then restart
          jsr
               COPY
                               ; the session
               COUNT2, #01
          ld
          jsr
               DISPL
                               ;go back and start
               BINIT
          jр
.endsect
.end BEGIN
                                                         TI /DD/11250-13
```

```
;Title: DISPL.ASM
;COUNT2 = Contains display time in seconds e.g if "1" ->
;display time is 1 second.
;SEGTA: Gets LCD segment data for time phase Ta
;SEGTB: .... Time phase Tb
;SEGTC: .... Time phase Tc
;SEGTD: .... Time phase Td
       .... Offset register for DIGIT 0+1
;OFF1:
;OFF2:
       .... Offset register for DIGIT 2
       .... Offset register for DIGIT 3
;OFF3:
.incld reg16083.inc
.incld memap.inc
.extrn TMPND, TBL, BINBCD
.public DISPL, DISPD
.sect drive, rom16
SEGTA:
          1d
                OFF1.w,#0
                                   ;clear OFF1 and OFF2
          ld
                a,#042
                                    ;point to DIG3 data
$APORT:
                a,OFF3
                                    ; put it in OFF3 reg.
          st
                                    ; point to BCDLO byte
          ld
                x,#BCDLO
                                   ;point to MWBUFO
          ld
                b,#MWBUFO
                a,[x].b
                                   ;get the bcd lo byte
          ld
                                   ; get low nibble
          and
                a,#0f
                a,OFF1
          add
                                   ;add to the offset regl
          ld
                a,TBL[a].b
                                   ;get the 7-seg code
                a,[b].b
                                   ; save the data in MWBUFO
          st
                a,[x+].b
          ld
                                   ;x reg points to BCDLO+1
                                   ;upper nibble of lower
          and
                a,#0f0
          swap
                                   ; byte of BCDLO
                a
                a,#00f
                                    ;clear other bits
          and
                a,OFF2
                                    ; add to the OFF2 reg
          add
          ld
                a,TBL[a].b
          swap
                                    ;position upper nibble
                a,#0f0
                                    ;clear all other bits
          and
                                    ;data (+ dec. point)
          or
                MWBUFO,a
$PPORT:
                                    ;point to MWBUF1
          ld
                b,#MWBUF1
                                    ;get BCDLO+1 data
          ld
                a,[x].b
                a,#0f
                                    ;get the lower nibble
          and
                                    ;add the reqd. offset
          add
                a,OFF2
                                    ;get the 7-seg data
          ld
                a, TBL[a].b
          st
                a,[b].w
                                    ;rearrange as PORTP
          ifbit 1,[b].b
                                                        TI /DD/11250-14
```

```
sbit 4,MWBUF1
                                     ; data bits are 0,4,7,15
          ifbit 2,[b].b
                                     ;locations in portP
          sbit 0,MWBUF1+1.b
          ifbit 3,[b].b
          sbit 4,MWBUF1+1.b
SBPORT:
          ld
                 b,#MWBUF2
                                     ;point to MWBUF2
          ld
                 a,[x].b
                                     ;get digit3 data
          and
                 a,#0f0
                                     ;get the higher nibble
          swap
                 а
          and
                 a,#0f
                                    ;position it right
          add
                 a,OFF3
                                     ;add the reqd. offset
                 a,TBL[a].b
          ld
                                     ;from the table
          or
                 a,#0f8
                                     ;sbit 3...7 and save
                                     ; save it in MWBUF2
          st
                 a,[b].b
          ret
SEGTB:
                OFF1,#016
          ld
                                     ; with dec. pt
          ld
                OFF2,#00b
                                     ; without dec. pt
          ld
                a,#046
                $APORT
          jр
                                     ;
SEGTC:
          ld
                OFF1,#021
          1d
                OFF2,#021
          ld
                a,#04a
                                     ;
                $APORT
          jр
SEGTD:
          ld
                OFF1,#037
                OFF2,#02c
          ld
                a,#04e
          ld
                $APORT
          jр
DISPL:
               BINBCD
          jsr
                                     ; convert bin to BCD
          ld
                COUNT,#05
                                     ;50*20 \text{ ms} = 1 \text{ sec}
                                     ;10*1 = 10 sec display
                                     ;clear all pending bits
          ld
                irpd,#0
          ld
                tmmode, #04440
                                     ;timer ckt. initialize
          ld
                pwmode, #04444
                                     ;stop all timers
          ld
                tmmode, #0ccc8
                                     ; and acknowledge all
          ld
                pwmode, #0ccc
                                     ;interrupts
          ld
                divby, #02222
                                     ;select T2 clock=CKI/16
          ld
                t2reg, #01387
                                     ;LCD refresh rate of
          ld
               r2reg, #01387
                                     ;50 Hz (20 ms) -> 5ms
                                     ;per time slot (5000
                                     ;counts @ 16.0 Mhz)
          rbit 2,tmmodeh
                                     ;start timer T2
DISP1:
                                                          TI /DD/11250-15
```

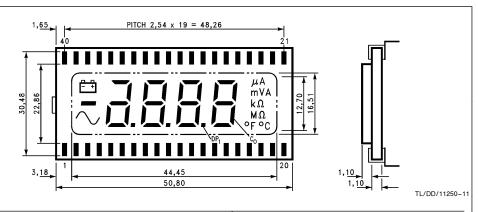
```
jsr SEGTA
                                    ;get 7 seg. dat for
                                    ;refresh time phase Ta
                                    ;test pending T2
               TMPND
          jsr
TPO:
          sbit BP1,portbl
                                    ;backplane refresh Ta
          rbit BP2, dirbl
                                    ;make it i/p (Hi-z)
          sbit BP1,dirbl
          rbit BP2, portbl
                                    ;BP1=1, BP2=.5
          jsr SEGOUT
          jsr
               SEGTB
                                    ;time phase Tb
          jsr
               TMPND
TP1:
          sbit BP2, portbl
                                    ;BP2 data = 1
          rbit BP1,dirbl
                                    ;make BP1 i/p
          sbit BP2,dirbl
                                    ;send BP2=1
          rbit BP1, portbl
                                    ;Hi-z
          jsr SEGOUT
                                    ;BP1=.5, BP2=1
          jsr SEGTC
          jsr TMPND
TP2:
          rbit BP1, portbl
                                    ;BP1 data=0
          rbit BP2,dirbl
sbit BP1,dirbl
                                    ;BP2 i/p
;o/p "0" on BP1
                                    ;BP2 = 0.5
          rbit BP2, portbl
          jsr SEGOUT
          jsr SEGTD
               TMPND
          jsr
                                    ;
TP3:
          rbit BP2, portbl
                                    ;BP1 data=0
                                    ;BP2 data=0
          rbit BP1,dirbl
                                    ;make BP1 Hi-z (0.5)
          sbit BP2,dirbl
          rbit BP1, portbl
                                    ;BP1=.5, BP2=0
          jsr SEGOUT
          decsz COUNT
                                    ; do the loop N times
          jр
               DISP1
          ld
               COUNT,#5
                                    ;COUNT2 = X*N = set time
          decsz COUNT2
          jр
               DISP1
          ret
DISPD:
               portal,#00
          ld
                                    ;switch display OFF
          ld
               diral,#0ff
                                    ;as o/p
          ld
               portbl,#0
          ld
               dirbl, #037
                                    ;B0-B2,B5,B4 = outputs
          ld
               portp,#0
          ret
SEGOUT:
          ld
               porta, MWBUF0
                                    ;portA data (DIG 4+5)
                                                          TL/DD/11250-16
```

```
ld
     portp,MWBUF1
                          ;portP data (16-bit reg)
ld
     b,#MWBUF2
     x, #portbl
ld
                          ;read portb low byte
ld
     a,[x].b
                          ;and it with MWBUF2
and a,[b].b
                          ;save original MWBUF2 in
ld
     k,MWBUF2
                        ;K register
st
     a,[b].b
                         ;store MWBUF2&PORTBL in
ld
     a,k
                         ;MWBUF2
                        ;get orig. MWBUF2 and
    a,#007
and
                         ;extract B0-B2, OR it
;with new MWBUF2 and
or
     a,[b].b
st
     a,portbl
ret
                          ;send it
```

.endsect

TL/DD/11250-17

```
;Title: BINBCD.ASM
; Function: This program takes a 16-bit binary number and
; converts into a 20-bit BCD number.
;INPUT DATA -> BINLO+1 BINLO
;BCD OUTPUT -> BCDLO+2
                       BCDLO+1 BCDLO
.incld memap.inc
BINLO = EVAL
.public BINBCD
.sect code, rom8
BINBCD:
         ld
              COUNT,#16
                                   ; Number of left shifts
         ld
              bk, #BCDLO, #BCDLO+2
SCBCD:
         clr
              а
                                   ;clear BCD ram space
         xs
              a,[b+].b
         jр
              $CBCD
SLSH:
                                   ;left shift binary
                                   ;routine
         ld
              bk, #BINLO, #BINLO+1
         rc
                                   ;reset carry
$LSHFT:
              a,[b].b
         ld
                                   ;start shifting
         adc
              a,[b].b
                                   ;if MSB=1, set C
              a,[b+].b
                                   ;do for all 4 nibbles
         XS
              $LSHFT
                                   ;of the Binary data
         jр
         ld
              bk, #BCDLO, #BCDLO+2
$BCDADD:
         ld
              a,[b].b
                                   ;get the BCD data
         dadc a,[b].b
                                   ;decimal add with carry
              a,[b+].b
                                   ; put it back
         xs
              $BCDADD
                                   ;loop for all 3 bytes
         jр
         decsz COUNT
                                   ;is shift =16?
COUNTER:
         jр
              $LSH
                                   ;no - go back
         ret
.endsect
                                                     TL/DD/11250-18
```


```
;Lookup table for customized 2-way MUX LCD 13420
.incld reg16083.inc
.public TBL, TMPND, COPY
.sect table,rom8
TBL:
;Timephase Ta ---- 7 segment data
                                  ;'0' and '.0'
;'1' and '.1'
;'2' and '.2'
;'3' and '.3'
;'4' and '.4'
           80
.byte
.byte
           0e
.byte
           04
.byte
           04
.byte
           02
                                  ;'5' and '.5'
.byte
           01
                                  ;'6' and '.6'
.byte
           01
                                  ;'7' and '.7'
.byte
           0c
.byte
           00
                                  ;'8' and '.8'
                                  ;'9' and '.9'
;' ' and '.'
.byte
           00
.byte
           0f
;Timephase Tb ---- 7 segment data
           04
.byte
                                   ;'0'
                                  ;'1'
.byte
           0e
                                  ;'2'
.byte
           05
                                  ; '3'
           0c
.byte
                                  ; '4'
.byte
           0e
                                  ; '5'
.byte
           0с
.byte
           04
                                  ;'6'
                                  ; '7'
.byte
           0e
                                  ;'8'
.byte
           04
                                  ;'9'
           0с
.byte
.byte
           0f
                                                                    TL/DD/11250-19
```

```
;'.0';'.1';'.2';'.3';'.4';'.5';'.6';'.7';'.8';'.9';'.'
.byte
                  00
.byte
                  0a
.byte
                  01
.byte
                  80
.byte
                  0a
.byte
                  80
                  00
.byte
.byte
                  0a
.byte
                  00
.byte
                  08
                 0b
.byte
;Timephase Tc ---- 7 segment data
                                                     ;'0' and '.0'
;'1' and '.1'
;'2' and '.2'
;'3' and '.3'
.byte
                 07
.byte
                 01
.byte
                 0b
.byte
                 0b
                                                    ;'3' and '.3'
;'4' and '.4'
;'5' and '.5'
;'6' and '.6'
;'7' and '.7'
;'8' and '.8'
;'9' and '.9'
;' and '.'
.byte
                 0d
.byte
                 0e
.byte
                 0e
.byte
                 03
                 0f
.byte
.byte
                 Of
.byte
                 00
                                                                                                   TI /DD/11250-20
```

```
;Timephase Td ---- 7 segment data
.byte
            0b
                                     ;'0'
                                     ;'1'
.byte
            01
                                    ;'2';'3'
.byte
            0a
            03
.byte
                                    ; '4'
.byte
            01
                                    ; '5'
            03
.byte
            0b
                                    ;'6'
.byte
                                    ;'7';'8'
.byte
            01
.byte
            0b
                                    ; '9'
.byte
            03
                                    ; , ,
            00
.byte
                                    ;'.0';'.1';'.2';'.3';'.4';'.5';'.6';'.7';'.8';'.9';'.'
            0f
.byte
.byte
            05
.byte
            0e
.byte
            07
.byte
            05
            07
.byte
.byte
            Of
            05
.byte
            0f
.byte
            07
.byte
.byte
            04
;Digit '3' codes
;Time phase Ta
                                           ; ' '
               07
.byte
                                           ;'1'
.byte
               06
               04
                                           ;'2'
.byte
               04
                                           ; '3'
.byte
;Timephase Tb
                                          ; ' '
.byte
                07
                                           ;'1'
.byte
               06
                                           ;'2';'3'
               05
.byte
               06
.byte
;Timephase Tc
                                           ;''
.byte
                00
                                          ;'1'
.byte
                01
                                           ;'2'
               03
.byte
                                           ; '3'
               03
.byte
;Timephase Td
                                                                  TL/DD/11250-21
```

```
.byte
.byte
.byte
.byte
                                                    ;''
;'1'
;'2'
;'3'
                   00
01
                   02
                   01
TMPND:
                   ld
                             b,#tmmodeh
$LOOP:
                             1,[b].b
$END
                   ifbit
                   jp
jp
                              $LOOP
$END:
                   sbit
                             3,[b].b
                   ret
COPY:
                             a,[b].w
a,[x].w
                   ld
                   х
                   ret
.endsect
                                                                               TL/DD/11250-22
```

AN-786

Segment BP1	/	Backplane BP2	Pin Assignment (Proposal)	
			23	
Minus		\sim	1	
K		m	22	
Ω		Α	23	
$n\Omega$		μΑ	25	The pairing and
±		V	40/24	the annunciators
B ₀		C ₀	26	may be slightly
A ₀		D_0	27/17	rearranged by the
G_0		E ₀	29	LCD manufacturer.
F ₀		DP ₁	28	
B ₁		C ₁	30	
A ₁		D ₁	31/16	
G ₁		E ₁	33	
F ₁		DP ₂	32	
B ₂		C_2	34	
A ₂		D_2	35/4	
G_2		E ₂	37	
F ₂		DP ₃	36	
В3		C ₃	38	$ADG_3 = A_3, D_3, G_3$
ADG ₃		E ₃	39	(One segment)
		°C	19	
		°F	18	

FIGURE 7

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor National Semiconductor Corporation 2900 Semiconductor Drive P.O. Box 58090 Santa Clara, CA 95052-8090 Tel: 1(800) 272-9959 TWX: (910) 339-9240 National Semiconductor GmbH GmbH Livry-Gargan-Str. 10 D-82256 Fürstenfeldbruck Germany Tel: (81-41) 35-0 Telex: 527649 Fax: (81-41) 35-1

National Semiconductor National Semiconductor Japan Ltd. Sumitomo Chemical Engineering Center Bldg. 7F 1-7-1, Nakase, Mihama-Ku Chiba-City, Ciba Prefecture 261

Fax: (043) 299-2500

National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tei: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductores De Brazil Ltda. Rue Deputado Lacorda Franco 120-3A Sao Paulo-SP Brazil 05418-000 Tei: (55-11) 212-5066 Telex: 391-1131931 NSBR BR Fax: (55-11) 212-1181

National Semiconductor (Australia) Pty, Ltd. Building 16 Business Park Drive Monash Business Park Nottinghill, Melbourne Victoria 3168 Australia Tel: (3) 558-9999 Fax: (3) 558-9998