
TL/F/11140

S
o
ftw

a
re

D
riv

e
r
P
ro

g
ra

m
m

e
r’s

G
u
id

e
fo

r
th

e
D

P
8
3
9
3
2

S
O

N
IC

A
N

-7
4
6

National Semiconductor
Application Note 746
Wesley Lee
Mike Lui
March 1991

Software Driver
Programmer’s Guide for the
DP83932 SONICTM

INTRODUCTION

In the past, Ethernet chips have concentrated on interfacing

well with the hardware, but have given the software inter-

face only passing notice. While hardware designers may

have been satisfied, the software developers were forced to

write drivers for unwieldy silicon. Recently, with companies

looking for ways to increase performance, they have found

that the software interface is crucial and has been one of

the bottlenecks in the system. A chip with an over constrain-

ing buffer management slows down the system by introduc-

ing more levels of indirection (pointers) than are truly need-

ed by the system software. In view of these shortcomings,

National surveyed a number of software developers to de-

fine a buffer management system which operates efficiently

with the driver. Their basic response was Keep it Simple.
The reasons were twofold. First, a simple software interface

engenders a driver which is easy to write and secondly, a

simpler, thus shorter, driver leads to a faster driver. The

SONIC’s buffer management epitomizes this with three sa-

lient features. First, only one level of indirection is used to

reference data in memory; secondly, link-lists are chosen to

endow the software developer with the flexibility to easily

manipulate descriptors, and thirdly, a register-based com-

mand interface is provided to make commands fast and im-

mediate.

ABOUT THIS GUIDE

This guide will provide you the information needed to write a

driver for the DP83932 System-Oriented Network Interface

Controller (SONIC). You will first be introduced to basic al-

gorithms using the SONIC’s buffer management, then be

shown actual implementation examples. It is recommended

that you are familiar with the DP83932 SONIC datasheet

before reading this document.

1.0 THE DRIVER SOFTWAREÐSONIC INTERACTION

The key to making a Driver and all upper levels of the net-

work software efficient, is to ensure that they must be capa-

ble of referencing received or transmitted packets via point-

ers and then conveying these pointers up to the next level

of software. By employing pointers in this manner, needless

packet copying from one area in memory to another is elimi-

nated. As shown in Figure 1-1 , the SONIC’s descriptor

areas, the RDA and TDA reference the received and trans-

mitted packet and the RRA references the buffers for the

received packets. The actual received and transmitted

packets remain in their original locations in the RBA and

TBA and are not copied elsewhere. In this section the basic

algorithms are given to illustrate the usage of the RDA, RRA

and TDA. Section 4.0 describes the implementation exam-

ples.

TL/F/11140–1

R e resource descriptor

D e packet descriptor

P e packet

TL/F/11140–2

FIGURE 1-1. Overview of the SONIC’s Buffer Management

SONICTM is a trademark of National Semiconductor Corporation.

C1995 National Semiconductor Corporation RRD-B30M75/Printed in U. S. A.

1.1 Processing Packets in the Receive Descriptor Area

(RDA)

After the SONIC has received the packet, it places the

packet in the RBA and the packet information in the RDA.

The Driver, in turn, processes this packet by locating the

packet from the packet pointer (RXpkt.ptr0,1) fields in the

RDA and then delivering the pointer up to the next level

software for further processing. The Driver then returns the

descriptor to the front of the list for reuse. This process is

illustrated in Figures 1-2 (a) , (b) , and (c) . Note that the link-

list allows descriptors to be appended to the front of the list

in any order. Note also that no special considerations are

required to append receive descriptors. The pseudo code

below illustrates the simplicity in appending descriptors.

append descr()

new RXpkt.link 4 1;

old RXpkt.link 4 new RXpkt.status

/* Old link field points to

address of new status field */

1.2 Recycling Buffers in the Receiver Resource Area

(RRA)

Intermixed with processing of packets, the Driver must also

replenish the receive buffer pool by adding resources de-

scriptors to the RRA. A suggested method for replenishing

receive buffers is given in the following example. (This

method assumes that more than one packet is stored in an

RBA.)

TL/F/11140–3 TL/F/11140–4 TL/F/11140–5

FIGURE 1-2 a, b, c. Processing Descriptors in the RDA
(a) Initial condition: four descriptors are available for use

(b) Packets received: three packets having been received are then passed up to the upper level software for further processing.

(c) Packets processed: the upper level software having finished processing the packets, the Driver returns the descriptors to the front of the list.

2

The Driver allocates a fixed number of receive buffers

(RBAs), determined at initialization, and recycles them as

they are used. When the upper level software receives a

packet from the driver (via pointers), it processes the packet

at the location received (in the RBA), and when done, noti-

fies the Driver of the freed memory space. The Driver, then,

records this event by tallying the packet in a ‘‘scoreboard’’

corresponding to the RBA (see Figure 1-3). When the num-

ber of packets processed equals the total number of pack-

ets in an RBA, then RBA is free and may be returned to the

RRA ring.

RBAÝ
Packets Total Packets

Processed in RBA

0 5 5

1 2 4

2 3 6

3 3 Unknown

FIGURE 1-3: RBA Scoreboard Example

RBAÝ0 is now free since packets processed equals total

packets in RBA. For RBA Ý3, the software does not yet

know how many packets reside in an RBA since the SONIC

has not finished using this RBA. When the software detects

the LPKT bit set, the packet sequence number reveals the

total number of packets (see below).

Because packets may be processed in any order (thus,

packets may be freed up out of sequence), freeing up an

RBA is not a straight forward. However, the SONIC reduces

this task to a simple tallying procedure with its Receive Se-

quence Numbers (RXpkt.seqÐno). When the Driver detects

the LPKT (last packet) bit set to a 1, the sequence numbers

indicate how many packets are in a given RBA. Thus, the

Driver simply tallies the number of packets processed for a

given RBA and when this is equal to the total number of

packets, the RBA is free. The sequence numbers are shown

below.

15 8 7 0

RBA Sequence Number Packet Sequence Number

(Modulo 256) (Modulo 256)

If LPKT e 1
packet sequence number equals total number of

packets minus one in the RBA (packet sequence

number starts at zero)

The following three figures (Figures 1-4a, 1-4b, and 1-4c)

show a scenario depicting the Driver using 3 RBAs and up-

dating the RBA ‘‘scoreboard’’. The flowchart in section 4.2

(Figure 4-3) illustrates the recycling of RBAs during receive

processing.

TL/F/11140–6

RBA Scoreboard

RBAÝ Processed Packets Total Packets

1 0 3

2 0 2

3 0 2

FIGURE 1-4 (a). Recycling Buffers in the RRA

(a) This figure shows the SONIC, having stored seven packets (P1–P7) in the RBA, has exhausted all its receive buffers (RRP e RWP). The RBA scoreboard

indicates that there are 3 unprocessed packets in RBA Ý1, 2 in RBA Ý2 and 2 in RBA Ý3. These numbers are determined by the RXpkt.seqÐno field.

3

TL/F/11140–7

RBA Scoreboard

RBAÝ Processed Packets Total Packets

1 2 3

2 1 2

3 1 2

FIGURE 1-4(b). Recycling Buffers in the RRA

(b) The upper level software has finished processing four packets (P1, P3, P4, and P6) and has notified the Driver of this action. The RBA scoreboard now indicates

that there is 1 unprocessed packet in RBA Ý1, 1 in RBA Ý2 and 1 in RBA Ý3.

TL/F/11140–8

RBA Scoreboard

RBAÝ Processed Packets Total Packets

1 3 3 xRBA 1 may be recycled

2 1 2

3 2 2 xRBA 3 may be recycled

FIGURE 1-4 (c). Recycling Buffers in the RRA

(c) The upper level has now finished processing 6 packets (P1, P2, P3, P4, P6, and P7). The RBA scoreboard now indicates that RBA Ý1 and RBA Ý3 are freed

up. The Driver returns these buffers back to the RRA and increments the RWP register accordingly.

4

1.3 Transmitting Packets from the Transmit Descriptor

Area (TDA)

For transmit operation, the Driver uses the TDA to enqueue

packets for transmission. Multiple packets may be sent from

a single command with each packet allowed to be fragment-

ed (reside in different areas in memory). The fragments

themselves may be as small as 1 byte and begin on any

byte boundary. Furthermore, particular attention has been

made to allow the Driver to append descriptors ‘‘on the fly’’.

To send packets, the driver first creates a list of descriptors

in the TDA, then issues the transmit command. The SONIC

then reads the TDA and transmits the packets. Once a list is

created, the Driver can add to this list ‘‘on the fly’’ without

the SONIC stopping. The following rule, however, must be

followed: the last TXpkt.link field must point to the next loca-
tion where a descriptor will be added as illustrated in Figure
1-5 (a). The procedure for appending descriptors is outlined

as follows:

1. Create a new descriptor with its TXpkt.link pointing to the

next vacant descriptor location and its EOL bit set to a

‘‘1’’.

2. Reset the EOL bit to a ‘‘0’’ of the previously last descrip-

tor.

3. Re-issue the Transmit command (setting the TXP bit in

the Command register).

Re-issuing the Transmit command assures that the SONIC

will continue to send all packets in the list. If the SONIC is

currently transmitting, the Transmit command has no effect.

If the SONIC has stopped transmitting (which occurs if the

SONIC has reached the last descriptor before the Driver

has had a chance to appand to it) it continues transmitting

from where it had previously stopped. The rule, as stated

above, guarantees that the Current Transmit Descriptor

(CTDA) register points to a valid descriptor after the SONIC

has stopped transmitting (see Figures 1-5 (a), (b) and (c)).

TL/F/11140–9 TL/F/11140–10 TL/F/11140–11

FIGURE 1-5 a, b, c. Appending Descriptors ‘‘On the Fly’’ in the TDA

These series of figures shows a scenario whereby the SONIC has reached the end of the descriptor list before the Driver has appended a new descriptor.

(a)This figure shows the Driver has created a list of four descriptors with the last descriptor pointing to the next location where a descriptor will be added. The

transmit command has subsequently been issued and the SONIC has reached the last descriptor.

(b) The SONIC has finished transmitting the last descriptor. It reads the last link field and updates the CTDA register to point to the vacant descriptor location. Note

that the CTDA register is already prepared for the next transmission.

(c) The Driver has appended a descriptor at the vacant location and reissues the transmit command. Note that the CTDA register is pointing to the proper location.

5

2.0 REGISTER MODEL OF THE SONIC

As a brief review, this section gives a short description of

the SONIC User registers. This section is similar to section

4.0 of the SONIC datasheet. It may be skipped without loss

of continuity.

2.1 Register Layout

The SONIC contains 64 16-bit registers used for conveying

status and control information. Not all registers, however,

are needed by the system since some registers are used for

internal operations of the SONIC and others used for in-

house factory testing. The registers are categorized as fol-

lows:

User Registers: The registers are accessed by the user to

status, control and monitor SONIC operations. These are

the only registers you need to access.

Internal Use Registers: These registers are used by the

SONIC during the course of operation and are not intended

to be accessed by you.

Factory Test Registers: These registers are used by Nation-

al Semiconductor for production testing of the SONIC and

should not be accessed. Accessing these registers during

SONIC operations may cause erratic behavior.

RAk5:0l 15 0

0h Command Register Status and Control Fields

1 Data Configuration Register Status and Control Fields

Status and
2 Receive Control Register Status and Control Fields

Control Registers
3 Transmit Control Register Status and Control Fields

4 Interrupt Mask Register Mask Fields% 5 Interrupt Status Register Status Fields

6 Upper Transmit Descriptor Address Register Upper 16-Bit Address Base

Registers

Transmit
7 Current Transmit Address Register Lower 16-Bit Address Offset) 2F Maximum Deferral Timer Count Value

0D Upper Receive Descriptor Address Register Upper 16-Bit Address Base

0E Current Receive Address Register Lower 16-Bit Address Offset

14 Upper Receive Resource Address Register Lower 16-Bit Address Offset

Receive
15 Resource Start Address Register Lower 16-Bit Address Offset

Registers
16 Resource End Address Register Lower 16-Bit Address Offset

17 Resource Read Register Lower 16-Bit Address Offset

18 Resource Write Register Lower 16-Bit Address Offset$ 2B Receive Sequence Counter Count Value 8 7 Count Value

4

21 CAM Entry Pointer Pointer

22 CAM Address Port 2 Most Signif. 16 Bits of CAM Entry

23 CAM Address Port 1 Middle 16 Bits of CAM Entry

CAM
24 CAM Address Port 0 Least Signif. 16 Bits of CAM Entry

Registers 25 CAM Enable Register Mask Fields

26 CAM Descriptor Pointer Lower 16-Bit Address Offset

5$ 27 CAM Descriptor Count Count Value

2C CRC Error Tally Counter Count Value

Counters

Tally
2D Frame Alignment Error Tally Count Value) 2E Missed Packet Tally Count Value

Watchdog 29 Watchdog Timer 0 Lower 16-Bit Count Value

Timer Ð 2A Watchdog Timer 1 Upper 16-Bit Count Value

28 Silicon Revision Register Chip Revision Number

FIGURE 2-1. User Register Grouping

6

2.2 User Register Grouping

The User register may be further categorized into 6 groups

(Figure 2-1) based upon their functionality, i.e., Status and

Control, Transmit, Receive, Content Addressable Memory

(CAM), Tally counters, and General-Purpose timer. These

groups are described as follows:

2.2.1 Status and Control Registers

These registers, controlling the transmit, receive, bus, and

interrupt operations of the SONIC, consist of the Command,

Data Configuration, Receive Control, Transmit Control, In-

terrupt Mask, and Interrupt Status registers. Of these regis-

ters, only the Command and Interrupt Status register are

accessed frequently during operation; all others are gener-

ally accessed only once during initialization (see section

3.0). These registers are briefly described below.

Command register. This register is used for issuing the com-

mands to the SONIC such as transmitting packets, enabling

the receiver, and software reset. Commands may be issued

by setting the corresponding bit to a ‘‘1’’. During normal

operation, the transmit command is the only command that

is generally used.

Data Configuration register: This register configures the bus

interface circuitry, programming the data width size (16 or

32 bits), wait-state insertion (if any), and FIFO threshold.

This register may only be written to while the SONIC is in

software reset.

Receive Control register. This register contains two type of

bits, configuration and status. The configuration bits pro-

gram the SONIC to accept the different classes of packets

which may be received such as Physical, Multicast, Broad-

cast packets, and Runt and Errored packets. The SONIC

can also accept all packets from the network for network

management and Bridge applications. The Receive Control

register also reports the status of the received packet. The

software should not read this register directly since status is

updated from the next incoming packet and the previous

status is overwritten. Instead, the software obtains the

status in the status field (RXpkt.status) of the Receive De-

scriptor Area.

Transmit Control register. This register also contains two

types of bits, configuration and status. The configuration bits

program the various transmit options for (1) generating and

interrupts after selected packets have been transmitted, (2)

enabling when the ‘‘Out of Window’’ collision timer begins

(either at the beginning of the packet or at the State of

Frame Delimiter), (3) inhibiting the CRC from being append-

ed to the packet, and (4) enabling the excessive deferral

timer (3.2 ms). The software should not load this register

directly; instead, it writes to the configuration field

(TXpkt.config) of the Transmit Descriptor Area (TDA) which

the SONIC reads before transmission. The status bits post

status of the transmitted packet. Again, this register is not

directly read since the SONIC clears the status after it reads

the TXpkt.link field. Instead, the software acquires status

from the state field (TXpkt.status) in the TDA.

Interrupt Mask register. This register enables the various

interrupts that the SONIC may generate. Writing a ‘‘1’’ to the

bit enables the corresponding interrupt.

Interrupt Status register. This register reports interrupts

which the SONIC has generated. Interrupts are indicated by

a ‘‘1’’ and are cleared when a ‘‘1’’ has been written to it.

Since writing a ‘‘0’’ to any bit has no effect, only the speci-

fied bits are cleared during the write operation.

2.2.2 Transmit Register

The Transmit registers, the Upper Transmit Descriptor Ad-

dress (UTDA) and the Current Transmit Descriptor Address

(CTDA) registers, locate the active descriptor in the Trans-

mit Descriptor Area. The UTDA register, containing a fixed

upper 16 bits of address, Ak31:16l and CTDA register,

containing an active lower 15 bits of address, Ak15:1l are

concatenated together to form a complete 31-bit address.

(The SONIC only provides word or double word addressing.)

The LSB of the CTDA register is the End of List (EOL) bit

and is used by the SONIC to determine the last descriptor in

the list.

2.2.3 Receive Registers

The receive registers consist of the Receive Sequence

Counter, the End of Buffer Count (EOBC) register, and two

groups of registers, the descriptor registers and the re-

source registers. These registers are briefly described as

follows:

The Receive Sequence Counter: This counter indicates the

number of packets that reside in a particular Receive Buffer

Area (RBA). See section 1.1 for an explanation on how to

use this register.

EOBC register. This register defines the lower boundary in

the RBA. If after reception, the remaining numbers words in

the RBA are equal to or greater than the EOBC register,

reception continues within the same RBA; otherwise, the

SONIC stores the packet in another RBA.

Descriptor registers: These registers locate the active de-

scriptor in the Receive Descriptor Area (RDA) and are com-

posed of the Upper Receive Descriptor (URDA) and the

Current Receive Descriptor (CRDA) registers. These regis-

ters are concatenated similarly as the Transmit registers

(UTDA and CTDA) above where the URDA contains a fixed

upper 16 address bits, Ak31:16l and the CRDA contains

the lower 15 address bits, Ak15:1l. The LSB of the CRDA

register is used by the SONIC to determine the last descrip-

tor in the receive list.

Resource registers: These registers, used to define the Re-

ceive Resource Area (RRA), composed of the Resource

Start Area (RSA), the Resource End Area (REA), Resource

Write Pointer (RWP), Resource Read Pointer (RRP) and the

Upper Receive Resource Address (URRA) registers. The

first two registers are static and define the starting and end-

ing points of the RRA. The second two are active and re-

spectively point to the next location where the software

places a new descriptor and where the SONIC reads the

next descriptor. The SONIC concatenates the last register,

the URRA with the other registers to provide a full 31-bit

address. The URRA register contains a fixed upper address,

Ak31:16l and the other four contain an active lower ad-

dress, Ak15:1l. The LSB of these registers is not used

since the SONIC only provide word or double word address-

ability.

7

2.2.4 CAM Registers

The CAM registers are used to access the 16 48-bit CAM

entries. Because random accessibility to all CAM entries

would consume too much register space (16 x 3 e 48 loca-

tions), the CAM entries are accessed via a 4-bit pointer reg-

ister (CAM Entry Pointer) and 3 16-bit ports (CAM Access

Ports 0 to 2). The CAM Entry Pointer selects 1 of 16 entries

and the CAM Access Ports 0 to 2, respectively access the

least through the most significant portions of the 48-bit entry

(Figure 2-2) .

Note: The least significant byte of the address is the first byte received/

transmitted from the network.

Reading the CAM

The CAM is accessed in the following manner:

1) Place the SONIC in software reset by setting the RST bit

in the Command register. This condition must be met be-

fore reading the CAM.

2) Select the CAM entry by writing the corresponding value

in the CAM Entry Pointer.

3) Read the CAM Address Ports 0 to 2 to obtain the com-

plete 48-bit entry.

TL/F/11140–12

FIGURE 2-2. CAM Organization

Writing to the CAM

To avoid internal conflicts with the CAM entries when re-

ceiving packets, the SONIC does not allow the entries to be

written to directly. Instead, the entries are written to indirect-

ly via the CAM Descriptor Area (CDA). This area, maintained

in memory, contains the data to be written into the CAM and

upon command, the SONIC reads this area and load its

CAM. The CDA is composed of n number descriptors (Fig-
ure 2-3) which are used to load the CAM Entry Pointer, the

CAM Access Ports, and the CAM Enable register. To pro-

gram the CAM, you first initialize the CDA, load the CAM

Descriptor Count register with the number of descriptors

and the CAM Descriptor Pointer register with the starting

address of the CDA, then issue the Load CAM command to

the SONIC. This operation is summarized below:

1) Load the CDA as specified in Figure 2-3 .

2) Load the CAM Descriptor Count register with the

number of descriptors.

3) Load the CAM Descriptor Pointer register with the

starting address of the CDA.

4) Issue the Load CAM command (setting the LCAM bit

in the Command register). The SONIC finishes this

command when the LCAM bit is reset.

TL/F/11140–13

FIGURE 2-3. CAM Descriptor Area Format

2.2.5 Tally Counters

The Tally counters maintain the network management

events which occur too frequently for the software to main-

tain. These events, CRC errors, frame alignment errors, and

missed packets are tallied by the CRC, FAE and Missed

Packets Tally counters. these counters are 16-bit counters

and can generate an interrupt when a rollover occurs.

These registers are generally used in conjunction with soft-

ware to maintain a 32-bit counter. These counters maintain

the time-sensitive lower 16 bits of the count while software

maintains the upper 16 bits.

2.2.6 General-Purpose Timer

This 32-bit timer, clocked at one half the 10 MHz transmit

clock frequency, is used for timing user definable events.

The timer measures events ranging from microseconds up

to minutes. The time can be calculated by multiplying the

count value by 200 ns ((/2 the transmit clock period). Table

2-1 gives some example values. To use the timer, you first

load the timer with a count value, then start the timer by

setting the ST bit in the Command register. The SONIC then

begins decrementing the timer. When the rollover is

reached (0000 0000h to FFFF FFFFh), the Timer Complete

(TC) bit in the Interrupt Status register is set. Note that the

timer does not stop when the rollover occurs, but continues

to decrement (from FFFF FFFFh). It must be explicitly

stopped by setting the STP bit in the Command register.

Table 2-1. Example Timer Values

Timer WT1 WT0

0.1 sec 7 A120

0.5 sec 26 25A0

1.0 sec 4C 4B4

10 sec 2FA F080

30 sec 8F0 D180

1 min 11E1 A300

5 min 5968 2F00

10 min B2D0 2E00

2.2.7 Silicon Revision Register

This register supplies information on the revision stepping of

the SONIC. This register begins at zero and counts upward.

Contact National Semiconductor for latest information on

this register.

8

3.0 INITIALIZING THE SONIC

Initializing the SONIC is the crucial first step before any

SONIC operations can commence. This step involves set-

ting up the SONIC’s registers for reception and transmission

and initializing the memory structures for the Buffer Man-

agement. This section describes the initialization process by

introducing what information is needed, then discussing an

example initialization routine.

Getting Started

Before initializing the SONIC, a few details regarding the

hardware and network operating system must be obtained.

By answering the questions below, the required information

can be gathered.

1) What is the bus size?

The SONIC supports bus sizes of 16 or 32 bits.

2) Does the system operate in a synchronous or asynchro-

nous manner?

This question refers to how the RDYi (or DASCK0,1) in-

put is issued to the SONIC. If this line is asserted with

guaranteed setup and hold times by the hardware, use

synchronous mode; otherwise, use asynchronous mode.

Synchronous mode has the advantage of having a mini-

mum memory cycle of 2 bus clocks as opposed to 3 bus

clocks for asynchronous mode.

3) What is the maximum bus latency does the SONIC ex-

pect?

The bus latency is the time from when the SONIC re-

quests for the bus (by asserting the HOLD or BR pin) to

when the SONIC begins using the bus. The bus latency

tolerance can be increased by programming the transmit

FIFO threshold higher and the receive FIFO lower. The

bus latency tolerance is calculated by the following equa-

tions:

TX FIFO Tolerance e (FIFO threshold)

* (0.8 ms)

RXFIFO Tolerance e (32 b FIFO threshold)

* (0.8 ms)

4) Do wait-states need to be added into the memory cycle?

The SONIC can operate up to a 2 bus clock memory

cycle. If this is too fast, you can program the SONIC to

insert 1 to 3 wait-states for each memory cycle. A two

clock memory cycle requires a memory access time of

approximately 40 ns–50 ns. (Note that wait state can

also be inserted by hardware using the RDYi or DSACK0,

1 inputs.)

5) What type of packets do you want to accept?

The SONIC is generally programmed to accept its own

physical address and the Broadcast address. In some

applications, however, the SONIC may be programmed

to accept multiple physical/multicast addresses (up to

16), and errored and runt packets.

6) What is the maximum number of consecutive packets

that you expect to receive?

This question is perhaps the most difficult to answer

since it deals with the upper level protocols. In many

transport protocols, flow control is used by the receiving

node to limit the number of consecutive packets the

transmitting node may send unacknowledged. This is

generally called the ‘‘window size’’. Ideally, the software

provides the SONIC with the memory resources it needs

to completely buffer a complete ‘‘window’’.

7) What types of interrupts do you want the system to re-

spond to?

The SONIC can generate a variety of interrupts. Not all

interrupts, however, need be (or should be) used to gen-

erate interrupts to the system. For maximum perform-

ance, you want as few interrupts as possible. A typical

system allows interrupts occurring from good receptions

and transmissions, and errored transmissions.

Initialization Example

Once the above questions have been answered, you can

begin coding the initialization routine. This routine has been

divided into 9 steps, but, only steps 1 and 9 need to be

followed in the order presented. Example code is provided

in the appendix.

1) Reset the SONIC: When the SONIC is powered-on, the

hardware generally resets the SONIC by pulsing the

RESET pin low. Thus, software does nothing to reset the

SONIC. Once reset, the SONIC remains in reset mode

until the RST bit in the Command register is cleared. If

the hardware does not provide the reset, the software

can perform the functional equivalent by simply setting

the RST bit. All initialization should be done in reset mode

to prevent spurious actions by the SONIC.

2) Configure the System Interface: This step writes to the

Data Configuration Register (DCR) to configure the SON-

IC’s bus interface circuitry. The configuration information

is found by answering questions 1 through 4, discussed

above. Note that the DCR can only be written to in reset

mode.

3) Set Up the Receive Filters: This step determines what

types of packets to accept (i.e., Physical, Multicast,

Broadcast, Runt, and Errored packets) and what ad-

dresses to accept. The type of packet to accept is pro-

grammed in the Receive Configuration register and the

addresses to accept are programmed into the Content

Address Memory (CAM). See section 2.2.4 for loading

the CAM.

4) Enable the Interrupts: This step enables the interrupts by

writing to the Interrupt Mask register (IMR). Note that the

interrupting condition is indicated by the Interrupt Status

Register (ISR), but will not generate an interrupt unless

the corresponding IMR bit is set. Note also that if the

SONIC is initialized in reset mode, no interrupts can be

generated.

5) Initialize Memory: This step initializes the three memory

structures used by the SONIC for transmission and re-

ception and allocates the memory blocks for storing re-

ceived packets. An initialization example is illustrated in

Figures 3-1 and 3-2 . The non-shaded areas indicate

fields which must be initialized and shaded areas indicate

fields which are written to by the SONIC.

9

There are a few caveats discussed below:

All Descriptor Areas:

Descriptor must be aligned to word (16-bit) boundaries

in 16-bit mode and aligned to double word (32-bit)

boundaries in 32-bit mode.

The Descriptor Areas must not cross over a 32k word

boundary since it only operates within this range.

In 32-bit mode, the upper 16 data bits, Dk31:16l are

not used.

Transmit Descriptor Area:

The transmit buffers (Transmit Buffer Area) may be

aligned to any boundary; that is, the TXpkt.ptr0, 1 fields

may contain any value.

The packet and fragment size may be as low as 1 byte;

that is, the TXpkt.pktÐsize and TXpkt.fragÐsize may

contain the value of one.

Receive Resource Area

The resource descriptors must be contiguous and can

not straddle the endpoints.

In the lower buffer pointer field, RXrsrc.ptr0, the SONIC

ignores least significant bit in 16-bit mode and the 2

least significant bits in 32-bit mode. This forces receive

buffers to always align to either word or double word

boundaries.

6) Initialize the Buffer Management Registers: This step ini-

tializes the buffer management registers to the starting

positions in the buffer management (see Figures 3-1 and

3-2). These initialized registers are shown in Table 3-1.

7) Issue RRA command: By setting the RRRA bit in the

Command register, you force the SONIC to read the

RRA. The SONIC reads the RRA beginning at the RRP

location and loads the following registers. (For mnemon-

ics description, see appendix.)

CRBA0wRXrsrc.ptr0

CRBA1wRXrsrc.ptr1

RBWC0wRXrsrc.wc0

RBWC1wRXrsrc.wc1

After this command has executed (RRRA bit resets), the

SONIC is ready to store the next packet in the first RBA

allocated to it.

8) Clear and Tally Counters (optional): The tally counters

(CRC, Frame Alignment, and Missed Packets) may be

cleared by writing FFFFh to these registers. These coun-

ters will rollover after FFFFh is reached.

9) Bring the SONIC On-line: This last step commissions the

SONIC to receive, transmit, and generate interrupts. The

software enables the SONIC by setting the RXEN bit and

clearing the RST bit in the Command register.

10

TABLE 3-1. Initialization of Buffer Management Registers

Reg. Initialized with

URDA Ak31:16l of starting location of RDA

CRDA Ak15:1l of starting location of RDA

UTDA Ak31:16l of starting location of TDA

CTDA Ak15:1l of starting location of TDA

URRA Ak31:16l of starting location of RRA

RSA Ak15:1l of starting location of RRA

REA Ak15:1l of ending location of RRA

RRP Points to first descriptor the SONIC reads

RWP Points to next location where the software

will place a descriptor

Transmit Transmit

Descriptor Area Buffer Area

TL/F/11140–14

FIGURE 3-1. Initialization Example for Transmit Buffer Management

(shaded areas not initialized)

11

TL/F/11140–15

FIGURE 3-2. Initialization Example for Receive Buffer Management

(shaded areas not initialized)

4.0 WRITING DRIVERS FOR THE SONIC

The Driver (see Figure 4-1), being the lowest level of soft-

ware, shields the upper software levels from the details of

the hardware. The Driver performs the required low-level

transmit and receive functions such as passing packet up to

the upper level software, recycling receive buffers, and en-

queuing packets for transmission. The Driver performance

is important since it may potentially receive packets at the

full network rate. Any packet losses at this level can severe-

ly affect the overall performance of the network. This sec-

tion describes the basic algorithms for writing a Driver for

the SONIC. Example code is provided in the appendix.

TL/F/11140–16

FIGURE 4-1. Relationship of Driver

of Upper Level Software

Overview

The Driver for the SONIC consist of two procedures, INITI-

ATEÐTX (Figure 4-2) and SONICÐISR (Figure 4-3) for

transmit and receive operations. During transmit operations,

the upper level software first assembles packets for trans-

mission by gathering the pointers to the fragments and then

calling INITIATEÐTX to begin the transmission. When the

SONIC finishes transmission, it interrupts the system. The

system then enters the interrupt service routine,

SONICÐISR, where it reports the status of the packets

transmitted. During received operations, the SONIC also in-

terrupts the system upon receiving a packet. The system

enters SONICÐISR to post status and then to pass the

packet up to the upper level software via pointers.

4.1 INITIATEÐTX

This procedure requires that all pointers to the fragments

and the sizes of these fragments are passed down to it by

the upper level software. It only initiates a packet for trans-

mission; it does not report status. This action is performed

by SONICÐISR after the packet has been transmitted.

INITIATEÐTX operates as follows:

1) Obtains the pointers delivered by the upper level soft-

ware and fills out a descriptor in the Transmit Descriptor

area (TDA).

2) If the packet is less than 64 bytes, it pads it out to this

length.

3) Issue the transmit command to the SONIC and return.

It is important that descriptors are appended in the manner

prescribed in section 1.3. This algorithm improves perform-

ance by guaranteeing that the SONIC continues to transmit

all packets in the descriptor list.

12

4.2 SONICÐISR

This procedure is the interrupt service routine which re-

sponds to three interrupts generated by the SONIC: PACK-

ET RECEIVED, TRANSMISSION DONE, and TRANSMIT

ERROR. Interrupts occurring before and during the interrupt

service routine are serviced before SONICÐISR exits.

SONICÐISR is broken down into three main sections: (1)

reading the cause of the interrupt, (2) processing received

packets, and (3) posting status of transmitted packets. The

first action performed is finding the cause of the interrupt.

For receive interrupts, SONICÐISR jumps to the receive

routine, and for transmit interrupts (good and errored trans-

missions), it jumps to the transmit routine. The receive rou-

tine examines the first descriptor in the RDA, then passes

the pointer of the packet up to the upper level software for

further processing. It continues reading the RDA until it

reaches the end of the descriptor list. The receive routine

also recycles receive buffers as necessary. The transmit

routine reads the first descriptor in the TDA and reports the

status of the transmitted packet to the upper level software.

If more than one packet has been enqueued, the transmit

routine examines the complete list in the TDA. SONICÐISR

is summarized below.

Reading the Interrupt

1) Read the Interrupt Status register for the cause of inter-

rupt. If a transmit interrupt has occurred, go to step 2; if a

receive interrupt has occurred, go to step 4; or if no more

interrupts are present, return.

Transmit Routine

2) Read the next TXpkt.status in the Transmit Descriptor

Area and post status to the upper level software.

3) Read the End of List (EOL) bit in the TXpkt.link field to

determine if the current descriptor is the last descriptor. If

it is not, go back to step 2 to post status of the remaining

packets; otherwise go back to step 1.

Receive Routine

4) Read the next RXpkt.status field in the Receive Descrip-

tor Area and pass the pointer and status of the packet up

to the upper level software.

5) Read the RXpkt.seqÐno field. If the RBA number is dif-

ferent from the previous one, enter the RBA number into

the RBA ‘‘scoreboard’’. For more information, see sec-

tion 1.2.

6) Check the LPKT bit from the RXpkt.status field. If set to

‘‘1’’, enter the packet sequence number (from the

RXpkt.seqÐno) into the RBA scoreboard.

7) Read the RXpkt.inÐuse field, if the field is cleared to all

zeros, go back to step 4 to process the remaining pack-

ets; otherwise if RXpkt.inÐuse is not equal to zero, the

end of the list has been reached; proceed to step 7.

8) Call the system to determine which packets have been

processed by the upper level software. Tally the process-

ed packets in he RBA scoreboard.

9) Find freed up RBAs and return them to the front of Re-

ceive Resource Area (RRA).

10) Find the freed up receive descriptors and return them to

the front of the descriptor list; then go to step 1.

TL/F/11140–17

FIGURE 4-2. INITIATEÐTX Routine

13

TL/F/11140–18

FIGURE 4-3. SONICÐISR Routine

14

5.0 STRATEGIES FOR IMPROVING DRIVER

PERFORMANCE

Making the Driver as efficient as possible is crucial for the

overall performance of the network. Empirical results have

shown that the difference between a poor and a good Driver

can vary as much as 10% to 20%. The Driver is particularly

vulnerable to becoming a bottleneck since it may, at times,

be receiving data at the full network bandwidth (10 Mb/s).

Any packets that are lost at the Driver level impacts all lev-

els. While upper level protocols provide packet recovery

mechanisms, these tend to be quite slow (on the order of

seconds). Typically, software timers must time out before

the upper level software retransmits an unacknowledged

packet. In this section, some hints are discussed to make a

fast Driver.

1) Write the Driver in assembly code: The fastest code is

generally written in assembly code since people write

more efficient code than a compiler. Writing your own

assembly code also gives you the option to use some

‘‘tricks’’ which are not normally accepted as ‘‘good’’ pro-

gramming practice. One such example is using a JUMP

statement instead of a CALL statement. The JUMP state-

ment, by nature, is quite messy, but is considerably faster

since it involves less CPU cycles. Of course, the disad-

vantage in using assembly code is that it is less readable

and portable. As a compromise, you may consider a good

optimizing compiler.

2) Reduce the Number of Interrupts: Interrupts to the sys-

tem inherently make it less efficient since the CPU must

make a context switch between what it was currently do-

ing to the interrupt service routine. This switch involves

pushing the CPU registers onto the stack, jumping to an

interrupt vector table, issuing an interrupt acknowledge to

the interrupt controller, then executing the interrupt serv-

ice routine. The overhead associated with each interrupt

makes the CPU less efficient. The example interrupt serv-

ice routine discussed in section 4.0, responded to inter-

rupts generated from good transmission and receptions,

and errored transmission. It is possible, however, to re-

duce the source of interrupts to just two, allowing only

interrupts to occur from good receptions and errored

transmissions. The reason good transmission interrupts

may be eliminated is because the upper level software

generally does nothing for these events. Only for an er-

rored transmission must the upper level software inter-

vene such as to retransmit the packet. Good transmis-

sions, while they still need to be reported, can be status

on a less timely basis such as after processing receive

interrupts or after a specified time period. The SONIC’s

General Purpose timer can be used to generate such a

time period.

3) Append Transmit Descriptors as described in section 1.0:

The algorithm described guarantees that the SONIC con-

tinues to transmit all packets in the list, even if it has

reached the point where the new descriptor(s) have been

appended to the end of the list. If the algorithm is not

followed, the SONIC may stop at the enjoining point and

this forces the Driver to intervene.

4) Supply Sufficient Number of Receive Packet Descriptors:

Since the receive descriptor uses a relatively small

amount of memory (7 words or double words, depending

on the data size mode), allocate sufficient number of

them such that the SONIC never (or at least rarely) runs

out of them. If the SONIC ever runs out of them, recep-

tion ceases, resulting in packet losses. The number of

descriptors to allocate can be determined by answering

question 6 of section 3.0.

5) Make the Receive Resource Area (RRA) Sufficiently

Large: Since the RRA does not take up much memory (4

words or double words per descriptor), make it larger

than the total number descriptors you expect to put into

it. For example, if you expect you will need 10 resource

descriptors, make the RRA large enough to accommo-

date 15 descriptors. Making the RRA larger than you will

need, prevents the RRA from becoming a bottleneck in

adding more resources.

6) Optimize the Size of the Receive Buffer Areas (RBAs):

Generally speaking, the larger the RBAs, the more effi-

cient the Driver. This is because the Driver handles fewer

number of receive buffers and, thus, less processing time

is dedicated to managing the buffers. There is a tradeoff,

however. If the buffers are very large, the entire buffer

areas are locked out for recycling so that large buffers

become less space efficient in memory. As a guideline,

4k to 8k byte RBAs are good starting points for experi-

mentation. Use larger buffers, if memory is plentiful.

6.0 SELF-TEST DIAGNOSTICS

After the hardware has been designed and the Drivers writ-

ten, there is still a need to verify that the hardware is still

functioning. Rough shipping or improper handling (without

static protection) can produce innumerable problems. Some

boards which work fine in the lab invariably fail in the field.

Thus, self-test diagnostics are used to determine the health

of the boards and diagnose problems if something is amiss.

Figure 6-1 shows the basic components of the Ethernet sys-

tem: address decode circuitry, data buffers, bus interface

logic, Ethernet chipset (SONIC and transceiver) and the

Ethernet connectors (BNC and 15-pin D). The Ethernet

hardware can be fully tested by using the SONIC’s three

loopback modes. Each loopback mode is full-duplex, trans-

mitting data as well as receiving it and are summarized be-

low. An example routine is given in the appendix.

Mode 1: Data is routed back through the SONIC’s MAC

Unit. Both the transmit and receive Buffer Manage-

ment operations are active and must be initialized

accordingly. Verifies the MAC Unit, Bus interface

logic, address decode circuitry and data buffers.

Mode 2: Similar to above, but data is routed back through

the SONIC’s ENDEC Unit. Verifies the SONIC’s

ENDEC unit.

Mode 3: Similar to above, but data is routed back at the

transceiver. Verifies the Ethernet connectors (BNC

and 15-pin D) and Ethernet transceiver (DP8392

CTI).

TL/F/11140–19

FIGURE 6-1. Basic Components of Ethernet Hardware

15

Appendix

A. Initialization Routine

TL/F/11140–20

16

TL/F/11140–21

17

TL/F/11140–22

18

TL/F/11140–23

19

TL/F/11140–24

20

TL/F/11140–25

21

TL/F/11140–26

22

TL/F/11140–27

23

B. Initiate Transmission Routine

TL/F/11140–28

24

C. Interrupt Service Routine

TL/F/11140–29

25

TL/F/11140–30

26

TL/F/11140–31

27

D. Diagnostic Routine

TL/F/11140–32

28

TL/F/11140–33

29

A
N

-7
4
6

S
o
ft

w
a
re

D
ri
v
e
r
P
ro

g
ra

m
m

e
r’
s

G
u
id

e
fo

r
th

e
D

P
8
3
9
3
2

S
O

N
IC

TL/F/11140–34

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor National Semiconductores National Semiconductor
Corporation GmbH Japan Ltd. Hong Kong Ltd. Do Brazil Ltda. (Australia) Pty, Ltd.
2900 Semiconductor Drive Livry-Gargan-Str. 10 Sumitomo Chemical 13th Floor, Straight Block, Rue Deputado Lacorda Franco Building 16
P.O. Box 58090 D-82256 F 4urstenfeldbruck Engineering Center Ocean Centre, 5 Canton Rd. 120-3A Business Park Drive
Santa Clara, CA 95052-8090 Germany Bldg. 7F Tsimshatsui, Kowloon Sao Paulo-SP Monash Business Park
Tel: 1(800) 272-9959 Tel: (81-41) 35-0 1-7-1, Nakase, Mihama-Ku Hong Kong Brazil 05418-000 Nottinghill, Melbourne
TWX: (910) 339-9240 Telex: 527649 Chiba-City, Tel: (852) 2737-1600 Tel: (55-11) 212-5066 Victoria 3168 Australia

Fax: (81-41) 35-1 Ciba Prefecture 261 Fax: (852) 2736-9960 Telex: 391-1131931 NSBR BR Tel: (3) 558-9999
Tel: (043) 299-2300 Fax: (55-11) 212-1181 Fax: (3) 558-9998
Fax: (043) 299-2500

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

