
TL/EE10869

H
a
n
d
lin

g
o
f
O

n
-C

h
ip

D
M

A
C

In
te

rru
p
ts

in
th

e
N

S
3
2
G

X
3
2
0

A
N

-7
0
0

National Semiconductor
Application Note 700
Zohar Peleg
September 1990

Handling of On-Chip
DMAC Interrupts in the
NS32GX320

INTRODUCTION

The on-chip Interrupt Control Unit (ICU) of the NS32GX320

manages up to 15 levels of interrupt requests. Two of these

levels, 6 and 14, may be requested internally by the on-chip

DMAC, or externally by issuing the level number on the

IR0–3 input pins. The on-chip DMAC may request an inter-

rupt due to 3 possible events on each of its 2 channels.

Each event is associated with a status bit that may be read

and cleared by the software. The status bits are sticky, and

will keep issuing an interrupt request until they are cleared

by the software.

After receiving a DMAC interrupt, the user must perform the

following tasks:

1. Detect the cause of the interrupt.

2. Clear the corresponding status bit(s).

3. Handle the event and (if required) resume channel’s op-

eration.

This application note describes how to perform these three

tasks.

BACKGROUND

There are 3 events that can cause an interrupt in each

DMAC channel. These are:

1. TCÐTerminal Count. This occurs when the channel’s

transfer is completed by a terminal count condition (BLTC

register reaches zero).

2. EOTÐEnd Of Transfer. This occurs when the transfer is

externally terminated by the assertion of an EOT signal.

3. OVRÐChannel OverRun. This occurs in non-autoinitialize

mode when the current transfer is completed, and the

parameters for the next transfer are not ready (VLD bit in

the CNTL register is zero).

Each of these events has a corresponding status bit in the

DMAC status register called STAT (Figure 1) , and an enable

bit in the DMAC interrupt mask register called IMSK (Figure
2) . The status bit is set when the event has occurred. An

interrupt will be requested when both the status bit and cor-

responding enable bit are set. A status bit is cleared by

writing ‘‘1’’ into it. Writing ‘‘0’’ does not change the bit.

The DMAC interrupt request may have a priority level of 6 or

14. This priority level is programmed by setting the DMAC

Interrupt Priority bit (DIP) in the IMSK register (DIP e 0

means the priority level is 6, DIP e 1 means the priority

level is 14).

When a channel is stopped due to EOT or OVR (when un-

masked), the channel enable bit (CHEN) in the control regis-

ter (CNTL) is cleared (Figure 3) . Channel operation is re-

sumed by setting the CHEN bit to ‘‘1’’. This can be done

only after clearing or masking the pending bit(s).

Interrupts of priorities 6 and 14 may also be caused by ex-

ternal events. Though it is not recommended to do this,

there are ways to detect when this occurs. Note that the

more sources there are for an interrupt priority level, the

more software checks are required to detect the cause of

the interrupt.

31 8 7 0

STAT Reserved CHAC OVR EOT TC CHAC OVR EOT TC FFFFF014

w Channel 1 x w Channel 0 x
FIGURE 1. DMAC Status Register

31 8 7 0

IMSK Reserved DIP OVR EOT TC 0 OVR EOT TC FFFFF010

w Ch. 1 x w Ch. 0 x
FIGURE 2. DMAC Mask Register

31 2 1 0

CNTL-0 Reserved VLD CHEN FFFFF03C

31 2 1 0

CNTL-1 Reserved VLD CHEN FFFFF05C

FIGURE 3. DMAC Contol Registers

C1995 National Semiconductor Corporation RRD-B30M75/Printed in U. S. A.

DETECTION OF INTERRUPT SOURCE

This section lists the steps the user may follow to detect the

different interrupt sources. This includes the six interrupt

sources described above plus any external interrupt with the

same priority level.

1. If nesting of higher level interrupts is desired, set I bit in

PSR.

2. Read the DMAC’s IMSK register. (Address h’FFFFF014)

3. Test the DIP bit. If it does not match the interrupt level in

service, then it is an external interrupt request (this check

is redundant if the DMAC’s interrupt priority is not due to

change, or if there is no external request assigned for that

interrupt priority level).

4. Read the DMAC’s STAT register. (Address h’FFFFF010)

5. Screen out all masked events. Retain a copy of all the

unmasked pending bits in a general purpose register (the

rest of this application note refers to this register as the

‘‘unmasked-pending word’’).

6. If the Unmasked-Pending word is ‘‘0’’, then it is an exter-

nal vector. This check is redundant if there is no external

request assigned for that level.

7. Write the Unmasked-Pending word back to the DMAC

status register. This clears all the unmasked pending bits.

Note that the masked bits should not be cleared here,

since they may be handled by another piece of software

which is not called by an interrupt.

8. Test all the relevant bits in the Unmasked-Pending word.

Perform the service routines for each of the pending

events (see the next section). Reinitialize the DMAC

channel(s) according to the specific application and re-

turn from the interrupt.

Note that if a new pending bit is set in the status register

after the DMAC’s STAT register is read, then it will not be

cleared by writing the Unmasked-Pending word back to the

DMAC status register. The pending bit will remain set, and

will issue another interrupt immediately after returning from

the current interrupt.

SERVICE ROUTINES

This section describes the implications that should be con-

sidered when handling the interrupt events.

EOT (End of Transfer) Handling

The transfer is externally terminated by the assertion of

EOT signal. That means that the external condition for the

transfer’s completion is met, and the channel is free for the

next DMAC task. The handler may initialize the channel for

its next task and resume its operation.

OVR (Channel OVerRun) Handling

Channel Overrun occurs in non-autoinitialize mode when

the current transfer is completed, and the parameters for

the next transfer are not ready (VLD bit in the CNTL register

is zero). The channel is halted.

In single transfer operation, this indicates that the channel’s

task is over, and the channel is free for another task.

In double buffer operation, this indicates that the DMAC is

stopped since the parameters for the next transfer are not

ready yet, and the handler has to prepare the parameters, to

set the VLD bit and to resume the channel’s operation. It

may also consider the data of the last transfer as ready, and

start processing it.

TC (Terminal Count) Handling

TC condition occurs when the BLTC reaches zero. This

event does not disable the channel regardless of the value

of the corresponding bit in IMSK.

In single transfer operation the TC will always be accompa-

nied by OVR, which will stop the channel’s operation. In that

case the TC is redundant, and can be masked if OVR is not

masked. It indicates that the previous transfer is complete,

the current one has started, and that it is time to go ahead

and prepare the next buffer in advance, in order to avoid

channel overrun. The TC will be accompained by OVR, so if

OVR is found set, then the handling of TC may be included

in the OVR handling, and the check of TC event may be

skipped.

In autoinitialize operation the TC indicates completion of an-

other transfer, and may be used to count number of trans-

fers, and, if required, to stop the channel’s operation when a

desired number of transfers is reached.

In all cases TC indicates that the data of the last transfer is

ready in its destination, and may be further processed.

2

IMPLEMENTATION IN ASSEMBLY

Following is an assembly code implementation of how to handle interrupts with priority level six. Comments inserted within the

code described how it works.

#
Example of on-chip DMAC interrupts handling

#
.set dma imsk, h’fffff014

.set dma stat, h’fffff010

.set dma0 cntl, h’fffff03c

.set dma1 cntl, h’fffff05c

int 6:

bispsrw $h’0800 # set I bit in PSR to enable

nesting of higher level interrupt

movd dma imsk, r0 # Store dma interrupt mask.

cbitb $7, r0 # Test and clear interrupt priority.

bfs ext int 6 # If set - this is external int.

andd dma stat, r0 # Record all unmasked pending events.

cmpd $0, r0 # Are there any?

beq ext int 6

movd r0, dma stat # clear all unmasked pending events.

chk ovr0: tbitb $2, r0 # Check if DMAC0 OVR event.

bfc chk tc0

jsr dma0 ovr

chk tc0: tbitb $0, ro # Check if DMAC0 TC event.

bfc chk eot0

jsr dma0 tc

chk eot0: tbitb $1, r0 # Check if DMAC0 EOT event.

bfc chk ovr1

jsr dma0 eot

chk ovr1: tbitb $6, r0 # Check if DMAC1 OVR event.

bfc chk tc1

jsr dma1 ovr

chk tc1: tbitb $4, r0 # Check if DMAC1 TC event.

bfc chk eot1

jsr dma1 tc

chk eot1: tbitb $5, r0 # Check if DMAC1 EOT event.

bfc chk out

jsr dma1 eot

chk out: reti

#
If some of the events are guaranteed to be masked, the above check

can be optimized by not testing the non relevant bits.

If TC and OVR are both unmasked then OVR implies also TC,

or no TC implies no OVR and that can be used to optimize

the check as followings: (example for ch-0 only)

#
chk tc0: tbitb $0, r0 # Check if DMAC0 TC event.

bfc chk eot0 # no TC 4l no OVR

tbitb $2, r0 # if TC - is there also OVR?

bfc jmp tc0 # no 4l only TC.

jsr dma0 ovr # yes - handle OVR. Consider

TC implied in OVR.

br chk eot0 # Skip TC handler.

jmp tc0: jsr dma0 tc

chk eot0: tbitb $1, r0 # Check if DMAC0 EOT event.

bfc chk tc1

jsr dma0 eot

3

IMPLEMENTATION IN ASSEMBLY (Continued)

dma0 ovr:

Body of service routine for DMAC0 over-run.

Prepare the next buffer parameters.

To resume channel operation use:

movd $3, dma0 ctl # set channel enable bit and

input data valid bit of dma0

If handling TC event is implied in handling OVR event, use

the following to skip the TC check:

movd $chk eot0, tos # Change the return address in

the stuck to skip the TC check

ret 0

dma0 tc:

#
Body of service routine for DMAC0 Terminal Count.

To resume channel operation use:

movd $1, dma0 ct1 # set channel enable bit of dma0

ret 0

dma0 eot:

#
Body of service routine for DMAC0 external End Of Transfer.

Initialize channel for next DMAC task.

To resume channel operation use:

movd $1, dma0 ctl # set channel enable bit of dma0

ret 0

dma1 ovr:

#
Body of service routine for DMAC1 over-run.

Prepare the next buffer parameters.

To resume channel operation use:

movd $3, dma1 ctl # set channel enable bit and

input data valid bit of dma1

If handling TC event is implied in handling OVR event, use

the following to skip the TC check:

movd $chk eot1, tos # Change the return address in

the stuck to skip the TC check

ret 0

dma1 tc:

#
Body of service routine for DMAC1 Terminal Count.

to resume channel operation use:

movd $1, dma1 ctl # set channel enable bit of dma1

ret 0

dma1 eot:

#
Body of service routine for DMAC1 external End Of Transfer.

Initialize channel for next DMAC task.

to resume channel operation use:

movd $1, dma1 ctl # set channel enable bit of dma1

ret 0

ext int 6:

#
Body of service routine for priority level 6 external interrupt.

#
reti

4

5

A
N

-7
0
0

H
a
n
d
li
n
g

o
f
O

n
-C

h
ip

D
M

A
C

In
te

rr
u
p
ts

in
th

e
N

S
3
2
G

X
3
2
0

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor National Semiconductores National Semiconductor
Corporation GmbH Japan Ltd. Hong Kong Ltd. Do Brazil Ltda. (Australia) Pty, Ltd.
2900 Semiconductor Drive Livry-Gargan-Str. 10 Sumitomo Chemical 13th Floor, Straight Block, Rue Deputado Lacorda Franco Building 16
P.O. Box 58090 D-82256 F 4urstenfeldbruck Engineering Center Ocean Centre, 5 Canton Rd. 120-3A Business Park Drive
Santa Clara, CA 95052-8090 Germany Bldg. 7F Tsimshatsui, Kowloon Sao Paulo-SP Monash Business Park
Tel: 1(800) 272-9959 Tel: (81-41) 35-0 1-7-1, Nakase, Mihama-Ku Hong Kong Brazil 05418-000 Nottinghill, Melbourne
TWX: (910) 339-9240 Telex: 527649 Chiba-City, Tel: (852) 2737-1600 Tel: (55-11) 212-5066 Victoria 3168 Australia

Fax: (81-41) 35-1 Ciba Prefecture 261 Fax: (852) 2736-9960 Telex: 391-1131931 NSBR BR Tel: (3) 558-9999
Tel: (043) 299-2300 Fax: (55-11) 212-1181 Fax: (3) 558-9998
Fax: (043) 299-2500

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

