
TL/EE10867

U
s
in

g
th

e
G

N
X

D
e
b
u
g
g
e
r
o
n

a
S
u
n

W
o
rk

s
ta

tio
n

A
N

-6
9
8

National Semiconductor
Application Note 698
Michael Orr
July 1990

Using the GNX Debugger
on a SunÉ Workstation

1.0 INTRODUCTION

The GNX debugger supports two different kinds of user in-

terfaces, line-oriented and graphics oriented.

The debugger’s graphic user interface has two implementa-

tions. One is available for graphic terminals in the X-Win-

dows environment, and one is available for use on ASCII

terminals.

Since a SunView implementation of the graphic user inter-

face of the debugger is not presently available, users of the

debugger on Sun machines were until now limited to using

only the ASCII terminal version. This mode does not allow

the user to take full advantage of the Sun’s mouse and

graphics facilities.

This note describes one way in which Sun users can add

convenient facilities to the ASCII terminal user interface of

the GNX debugger. These facilities include mouse pointing,

pull down menus, command buttons, etc.

The note is divided into four sections. Section 1 is an intro-

duction. Section 2 presents a general description of a tool

which allows the addition of graphic facilities to nongraphic

applications.

Section 4 contains a specification file which when input to

the tool described in section 2, provides graphic facilities to

GNX/Dbug users on Sun machines. See section 3 for usage

and installation notes.

2.0 TOOLTOOL DESCRIPTION

There are two requirements for adding graphic facilities to

non-graphic applications on a Sun machine.

1. A tool which opens a simple window which behaves like a

terminal and adds graphic facilities (referred to here as

gadgets) around this window. Any application can run in

the window, just like on a terminal.

2. A description file which tells this tool which gadgets to

add to which application.

A tool which answers the first requirement, and is already

part of the public domain is called Tooltool, and was written

by Chuck Musciano from the Advanced Technology Depart-

ment of Harris Corporation.

Tooltool is a software package that allows the user to take a

previously ‘‘unwindowed’’ application, and run it in a window

to which various ‘‘gadgets’’ are attached. These ‘‘gadgets’’

can generally be most types of SunView panel items (e.g.

buttons, menus, etc.) and other SunView windowing related

gadgets (e.g. Sliders). This window also supports mouse in-

teractions such as selection.

A full list of available gadgets can be found in the Tooltool

manual.

Tooltool users provide a ‘‘specification’’ file detailing the ap-

plication to be run and the gadgets to be attached to the

window in which the application will be run, and the actions

associated with each gadget.

Basically each gadget has an action associated with it. This

action may be related to the window and gadgets, (e.g. dis-

play or hide a button), or sending input to the application.

This second type of action sends a sequence of characters

to the application. The application understands these char-

acters as if the user has typed them on the keyboard.

Tooltool is copyright 1988, 1989 of Chuck Musciano and

Harris Corporation, but is available free of charge for use to

any and all. Tooltool is distributed in source form through

the UUCP network (USENET).

2.1 Getting Tooltool

If you currently do not have Tooltool, you can get if from one

of the archive sites of Sun sources, or by Anonymous FTP
from the machine called ‘‘trantor.harris-atd.com’’ whose IP

address is ‘‘26.13.0.98’’. (Anonymous FTP is a mechanism

by which your computer connects over a telephone line to

another computer, where you can login and have files trans-

ferred to your machine. Contact your system administrator

for details).

Getting the sources of Tooltool from an archive site is an

easy process, but since each site has its own procedures,

the description of how to get files vary from one archive site

to another, and are not detailed here. To find out the archive

site closest to you and the way to get files from it to your

machine, read the articles in the newsgroup

‘‘comp.archives’’.

2.2 Getting More Information

Tooltool’s author can be contacted at:

Chuck Musciano

Advanced Technology Department

Harris Corporation

P.O. Box 37, MS 3A/1912

Melbourne, FL 32902

Telephone: (407) 727-6131

Or using electronic mail at

chuck@trantor.harris-atd.com

If you have any questions about this application note you

can contact

Michael Orr

National Semiconductor (Israel)

P.O. Box 3007, 46104

Israel

Telephone: a972-52-522255

Or, using electronic mail at

orr@nsc.nsc.com

SunÉ is a registered trademark of Sun Microsystems.

C1995 National Semiconductor Corporation RRD-B30M75/Printed in U. S. A.

3.0 HOW TO INSTALL AND USE

THE SPECIFICATION FILE

This section explains how to install the specification file and

use it.

3.1 Generating and Naming the Specification File

Copy all the lines below the line marked ‘‘CUT HERE’’ to a

file called dbug.tt in the directory where you intend to use

the debugger.

3.2 Checking the Availability and Version of ToolTool

Make sure that ‘‘ToolTool’’ is installed in a directory which is

in your path, and that it is version 2.0 or later. This is easily

done as follows: type

tooltoolÐf dug.tt

If the response is ’tooltool : Command not found’ or some-

thing similar, it means that tooltool is not installed in any

directory mentioned in your $path. (To see the list of directo-

ries in your $path type ’echo $path’). To fix this ask your

system adminstrator to install tooltool in the right place.

(usually /usr/local/bin, or in the same directory with the

GNX tools).

If the response is ’dbug.tt : line xxx: syntax error at or near

‘‘dialog’’, or something similar, then you have a version of

tooltool earlier than 2.0. In that case you should do 2 things:

first, ask your system administrator to get and install a more

up-to-date version of tooltool; Second, type the following:

/lib/cpp bDOLD VERSION bC dbug.tt
l tmp.tt; mv tmp.tt dbug.tt

This will generate a specification file that your currently

available tooltool version can read, at the cost of losing

Pop-up windows for confirmation of the ‘‘quit’’ command

and for debugger alias definition.

3.3 Defining an Alias for Easier Use

Define an alias as follows:

alias DBUG ‘‘tooltool bf dbug.tt’’

(You may want to add this alias definition to your .login file.)

Now everything is ready, and all you have to do is invoke the

debugger exactly as you usually do, with the only difference

being that instead of typing ’dbug’ you now type ’DBUG’.

(e.g. instead of typing ’dbug -I myÐincludeÐdir myÐbug-

gyÐprogram core’ you now type ’DBUG -I myÐincludeÐdir

myÐbuggyÐprogram core’)

3.4 Customizing the Specification File to Your Needs

It is easy to customize the specification file for your particu-

lar needs, even without familiarity with Tooltool.

The specification file given in section 4 assumes you are

running your programs on a board with a NS32CG16 CPU,

no MMU, no FPU and using the MON16 monitor. If this is

untrue, you simply change the string following the word ‘‘ap-

plication’’ in the specification file. You can use this tech-

nique to add buttons and pull-down menus to the line inter-

face mode of the GNX debugger, by simply changing ’dbug’

to ’dbg’ in the string. Another good use of this feature is to

change the string after the ’application’ keyword to ’rlogin
kremote-machine-namel’ where ’remote-machine-name’

is the name of another machine such as a sys32/30 or a

VAX/VMS. The effect is to get a window in which you are

logged in to the remote machine, and in which you can run

any commands you want. This window, however, has the

associated gadgets for the case where you want to run the

GNX debugger on the remote machine.

Other modifications you may want to try are either changing

the strings sent to the application by the various gadgets, or

adding gadgets using the existing gadgets as templates to

add more commands.

4.0 THE TOOLTOOL SPECIFICATION FILE

This section contains a specification file for ‘‘tooltool’’ which

will run the GNX debugger in a window, and add buttons

and pull down menus for the most useful commands.

Almost all gadgets are of the type that send commands to

the debugger as if they were typed on the keyboard, and

thus serve mainly as convenience shortcuts. I tried to make

the specification file highly commented and readable. (Note

that familiarity with the GNX debugger commands is as-

sumed.)

2

/* ÐÐÐ CUT HERE ÐÐÐ CUT HERE ÐÐÐ CUT HERE ÐÐÐ CUT HERE ÐÐÐCUT HERE */

/*ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ

* ToolTool specification file for GNX/dbug

* Use by ’tooltool -f kthis-file-namelkanything-to-pass-to-dbugl’

* e.g: ‘tooltool -f dbug.tt buggy core‘

*

* Note:

* This specification file is intended for Tooltool version 2.

* if you only have an earlier version, you should do the following:

* 1. Run this file through the C preprocessor with the

* command line-arguments’-DOLD VERSION -C’

* 2. Use the resulting file as the Tooltool specification.

* Author: Michael Orr

* orr%taux01@nsc.nsc.com

/*ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ*/

#define STACK START ADDRESS 0x1ffff0 /* modify as needed */

/*

* The string after ’application’ should be the normal command line

* you usually use to invoke the debugger. This example shows a command

* line intended for debugging a program on a remote CG16 board

* with no MMU and no FPU, and using MON16 as the board’s monitor.

*/

application ‘dbug -mon 16 -cpu CG16 -mmu nommu -fpu nofpu‘ /* modify as needed */

size 40 by 80 characters /*modify to the size you want */

label ‘DBUG‘ /*Shown in top stripe - change to your favorite */

gadgets

top /* Use ’bottom’ to have gadgets under the window */

proportional

menu ‘Start-up‘

‘Connect‘ menu /* This menu entry has a pull-right sub-menu */

/* For remote operations. For native-mode debugging

* (e.g. on a sys/30) either remove this entry, or simply

* don’t use it in your debugging session.

*/

‘ttya‘ send ‘connect link ttyaTn‘;

‘ttyb‘ send ‘connect link ttybTn‘;

end menu

‘Load‘ send ‘load with sp STACK START ADDRESSTn‘;

‘Re-Load‘ send ‘load with nocodeTn‘;

‘Run‘ send ‘runTn‘;

‘Re-Run‘ send ‘rerunTn‘;

‘Arrange‘ menu

‘windows‘ À /* modify to arrange windows to your liking */

send ‘wdelete programTn‘;

send ‘wmove code vr r20Tn‘;

send ‘wmove dialog vr r20Tn‘;

send ‘wmove code d19Tn‘;

send ‘wmove dialog u20Tn‘;
Ó

‘Wreset‘ send ‘wresetTn‘;

end menu

end menu

menu ‘f(Selection)‘ /* Use strings selected with the mouse */

‘print‘ send format(‘print %sTn‘,selection(1));

‘print*‘ send format(‘print* %sTn‘,selection(1));

‘print&‘ send format(‘print& %sTn‘,selection(1));

‘Stop in‘ send format(‘stop in %sTn‘,selection(1));

‘Stop at‘ send format(‘stop at %sTn‘,selection(1));

‘whatis‘ send format(‘whatis %sTn‘,selection(1));

‘whereis‘ send format(‘whatis %sTn‘,selection(1));

‘which‘ send format(‘which %sTn‘,selection(1));

‘find-forward‘ send format(‘/%sTn‘,selection(1));

‘find-backward‘ send format(‘?%sTn‘,selection(1));

end menu

3

menu ‘run‘

‘run‘ send ‘runTn‘;

‘next‘ send ‘nextTn‘;

‘step‘ send ‘stepTn‘;

‘cont‘ send ‘contTn‘;

‘return‘ send ‘return‘;

‘rerun‘ send ‘rerunTn‘;

end menu

menu ‘CMDi‘ /* Assembly level commands */

‘Nexti‘ send ‘nextiTn‘;

‘Stepi‘ send ‘stepiTn‘;

end menu

menu ‘Env‘

‘where‘ send ‘whereTn‘;

‘status‘ send ‘statusTn‘;

‘list‘ send ‘listTn‘;

‘func‘ send ‘funcTn‘;

‘file‘ send ‘fileTn‘;

‘up‘ send ‘upTn‘;

‘down‘ send ‘downTn‘;

end menu

/*

* Usually you can send input to the debugger by typing into the ‘dialog‘

* window and to the program by typing in the ‘program‘ window, or by

* typing into the ‘dialog‘ window, but prefacing your input with a ’@’.

* I define any text typed into the gadget window as intended for

* the program, and it is sent to the program (i.e., as if you typed it

* into the ‘dialog‘ window) by prefacing it with a ’@’.

* This lets you remove the annoying narrow vertical program window and

* make better use of the window area.

* (note - any output of the program will appear in the dialog box when

* the ‘program‘ window is hidden)

*/

text program

label ‘Input to the Program:‘

display 55

action À

send format(‘@%sTn‘,program);

program 4 ‘‘; /* Erase what we just typed */
Ó

end text

/*

* Definition of buttons

*

* Note - some buttons have different actions associated with them

* if you click the mouse on them or you click the mouse while

* holding down SHIFT or CONTROL. These buttons have an associated

* menu which can be seen by pressing and holding down the RIGHT

* mouse button on them.

*/

button

normal ‘next‘ send ‘nextTn‘; /* just click mouse over the button */

shift ‘step‘ send ‘stepTn‘; /* hold down SHIFT and click mouse */

control ‘cont‘ send ‘contTn‘; /* hold down CTL and click mouse */

end button

button

normal ‘step‘ send ‘stepTn‘;

end button

button

normal ‘cont‘ send ‘contTn‘;

end button

button

normal ‘print‘ send format(‘print %sTn‘,selection(1));

shift ‘Print*‘ send format(‘print* %sTn‘,selection(1));

control ‘Print&‘ send format(‘print&%sTn‘,selection(1));

end button

4

button

normal ‘print*‘ send format(‘print* %sTn‘,selection(1));

end button

button

normal ‘list‘ send ‘listTn‘;

end button

#ifdef OLD VERSION

button

normal ‘Quit‘ send ‘quitTn‘;

end button

#else

button

normal ‘quit‘ popup quit popup;

end button

button alias button

normal ‘alias‘ display define alias;

end button

#endif

end gadgets

/*Dialog boxes Ð only supported in Tooltool version 2 and above */

#ifndef OLD VERSION

dialog define alias /* define a new alias or list existing ones */

label ‘Define aliases‘

open remove alias button;

close display alias button;

gadgets

text alias

display 40

label ‘Alias:‘

end text

button

normal ‘Ok‘ À

send format(‘alias %sTn‘,alias);

alias 4 ‘‘;
Ó

end button

button

normal ‘List‘ send ‘aliasTn‘;

end button

button

normal ‘Done‘ remove define alias;

end button

end gadgets

end dialog

dialog quit popup /* Exit confirmation Popup */

size 1 by 20 characters

label ‘Really quit?‘

gadgets

button

normal ‘Yes‘ À remove quit popup; send ‘quitTn‘; Ó

end button

button

normal ‘Cancel‘ À remove quit popup; Ó

end button

end gadgets

end dialog

#endif

5

A
N

-6
9
8

U
s
in

g
th

e
G

N
X

D
e
b
u
g
g
e
r
o
n

a
S
u
n

W
o
rk

s
ta

ti
o
n

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor National Semiconductores National Semiconductor
Corporation GmbH Japan Ltd. Hong Kong Ltd. Do Brazil Ltda. (Australia) Pty, Ltd.
2900 Semiconductor Drive Livry-Gargan-Str. 10 Sumitomo Chemical 13th Floor, Straight Block, Rue Deputado Lacorda Franco Building 16
P.O. Box 58090 D-82256 F 4urstenfeldbruck Engineering Center Ocean Centre, 5 Canton Rd. 120-3A Business Park Drive
Santa Clara, CA 95052-8090 Germany Bldg. 7F Tsimshatsui, Kowloon Sao Paulo-SP Monash Business Park
Tel: 1(800) 272-9959 Tel: (81-41) 35-0 1-7-1, Nakase, Mihama-Ku Hong Kong Brazil 05418-000 Nottinghill, Melbourne
TWX: (910) 339-9240 Telex: 527649 Chiba-City, Tel: (852) 2737-1600 Tel: (55-11) 212-5066 Victoria 3168 Australia

Fax: (81-41) 35-1 Ciba Prefecture 261 Fax: (852) 2736-9960 Telex: 391-1131931 NSBR BR Tel: (3) 558-9999
Tel: (043) 299-2300 Fax: (55-11) 212-1181 Fax: (3) 558-9998
Fax: (043) 299-2500

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

