2-Way Multiplexed LCD Drive and Low Cost A/D Converter Using V/F Techniques with COP8 Microcontrollers

National Semiconductor Application Note 673 Volker Soffel April 1990

ABSTRACT

This application note is intended to show a general solution for implementing a low cost A/D and a 2-way multiplexed LCD drive using National Semiconductor's COP840C 8-bit microcontroller. The implementation is demonstrated by means of a digital personal scale. Details and function of the weight sensor itself are not covered in this note. Also the algorithms used to calculate the weight from the measured frequency are not included, as they are too specific and depend on the kind of sensor used.

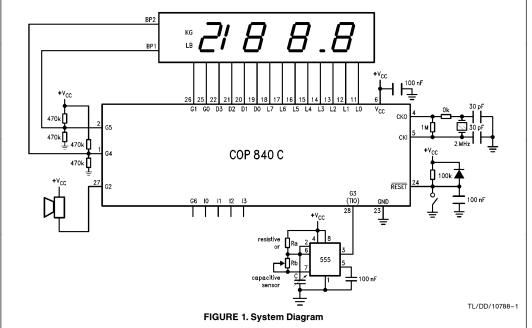
Typical Applications

- Weighing scales
- Sensors with voltage output
- Capacitive or resistive sensors
- All kinds of measuring equipment
- Automotive test and control systems

Features

- 2-way multiplexed LCD drive capability up to 30 segments (4 digit and 2 dot points)
- Precision frequency measurement
- Low current consumption
- Current saving HALT mode
- Additional computing power for application specific tasks

INTRODUCTION


Today's most popular digital scales all have the following characteristics:

They are battery powered and use a LCD to display the weight. Instead of using a discrete A/D-converter, in many cases a V/F converter is used, which converts an output voltage change of the weight sensor to a frequency change. This frequency is measured by a microcontroller and is used to calculate the weight. The advantages of a V/F over an A/D converter are multifold. Only one line from the V/F to the microcontroller is needed, whereas a parallel A/D needs at least 8 lines or even more (National also offers A/Ds with serial output). A V/F can be constructed very simply using National Semiconductor's low cost, precision voltage to frequency converters LM331 or LM331A. Other possibilities are using Op-amps or a 555-timer in astable mode.

V/F-CONVERSION

Hardware

The basic configuration of the scale described in this application note is shown in *Figure 1*.

A capacitive or resistive sensor's weight related capacitance or resistance change is transformed by a 555 timer (in astable mode) to a change of frequency. The output frequency f is determined by the formula:

$$f = 1.44/((Ra + 2Rb) *C)$$

The output high time is given by:

t1 = 0.693* (Ra + Rb) *C

The output low time is given by:

t2 = 0.693* Rb* C

This frequency is measured using the COP800 16-bit timer in the "input capture" mode. After calculation, the weight is displayed on a 2-way multiplexed LCD. Using this configuration a complete scale can be built using only two ICs and a few external passive components.

For more information on V/F converters generally used with voltage output sensors, refer to the literature listed in the reference section.

Frequency Measurement

The COP 16-bit timer is ideally suited for precise frequency measurements with minimum software overhead. This timer has three programmable operating modes, of which the "input capture" mode is used for the frequency measurement. Allocated with the timer is a 16-bit "autoload/capture register". The G3-I/O-pin serves as the timer capture input (TIO). In the "input capture" mode the timer is decremented with the instruction cycle frequency (tc). Each positive going edge at TIO (also neg. edge programmable) causes the timer value to be copied automatically to the autoload/capture register without stopping the timer or destroying its

contents. The "timer pending" flag (TPND) in the PSW-register is set to indicate a capture has occurred, and if the timer-interrupt is enabled, an interrupt is generated. The frequency measurement routine listed below executes the following operations (refer to the RAM/register definition file listed at the beginning for symbolic names used in the routines):

The timer is preset with FFFF Hex and is started by setting the TRUN bit, after which the software checks the TPND-flag in a loop (timer interrupt is disabled). When the TPND flag is set the first time, the contents of the capture register is saved in RAM locations STALO and STAHI (start value). The TPND pending flag now must be reset by the software. Then, another 255 positive going edges are counted (equal to 255 pulses) before the capture register is saved in RAM locations ENDLO, ENDHI (end value). The shortest time period that can be measured depends on the number of instruction cycles needed to save the capture register, because with the next positive going edge on TIO the contents of the capture register is overwritten (worst case is 18 instruction cycles, which equals a max. frequency of 55.5 kHz at tc $= 1~\mu s$).

The end-value is subtracted from the start-value and the result is restored in RAM locations STALO, STAHI. This value can then be used to calculate the time period of the frequency applied to TIO (G3) by multiplying it with the totime and dividing the result by the number of pulses measured (N = 255).

T = (startvalue - endvalue) *tc/N

```
; THE FOLLOWING "INCLUDE FILE" IS USED
; AS PART OF THE DEFINITION- AND INITIALIZATION PHASE
; IN COP800 PROGRAMS.
; REGISTER NAMES, CONTROL BITS ETC ARE NAMED IN THE
; SAME WAY IN THE COP800 DATA-SHEETS.
      --- COP800 MEMORY MAPPED ---
;
 ************
 * PORT -, CONFIGURATION - AND CONTROL REGISTERS *
 **********
                           ; L-PORT DATA REGISTER
    PORTLD
                0D0
    PORTLC
                0D1
                           ; L-PORT CONFIGURATION
```

TL/DD/10788-2

```
PORTLP
               0D2
                           ; L-PORT INPUT REGISTER
PORTGD
               0D4
                           ; G-PORT DATA REGISTER
          =
PORTGC
               0D5
                           ; G-PORT CONFIGURATION
                           ; G-PORT INPUT REGISTER
               0D6
PORTGP
               0DC
PORTD
          =
                           ; D-PORT (OUTPUT)
PORTI
               0D7
                           ; I-PORT (INPUT)
SIOR
               0E9
                           ; MWIRE SHIFT REGISTER
                           ; TIMER LOW-BYTE
TMRLO
          =
               0EA
                           ; TIMER HIGH-BYTE
; T.-AUTO REG.LOW BYTE
; T.-AUTO REG.HIGH BYTE
TMRHI
          =
               0EB
TAULO
               0EC
TAUHI
               0ED
               0EE
CNTRL
          =
                           ; CONTROL REGISTER
PSW
               0EF
                           ; PSW-REGISTER
               .FORM
         * CONSTANT DECLARE *
         ******
    --- CONTROL REGISTER BITS ---
S0
                00
                       ; MICROWIRE CLOCK DIVIDE BY
                              --- BIT 0 ---
S1
                01
                         MICROWIRE CLOCK DIVIDE BY
                               --- BIT 1 ---
                        ; EXTERNAL INTERRUPT EDGE
                02
IEDG
                        ; POLARITY SELECT (0=RISING
                       ; EDGE, 1=FALLING EDGE)
                        ; ENABLE MICROWIRE FUNCTION
MSEL
                03
                             --- SO AND SK ---
                       ; START/STOP THE TIM/COUNT.
TRUN
                04
                              (1=RUN; 0=STOP)
                        ; TIMER INPUT EDGE POL.SEL.
TEDG
                0.5
                        ; (0=RIS. EDGE; 1=FAL. EDGE)
                       ; SELECTS THE CAPTURE MODE
CSEL
          =
                06
                        ; SELECTS THE TIMER MODE
TSEL
                07
      --- P S W
                    REGISTER ---
GIE
                00
                      ; GLOBAL INTERRUPT ENABLE
                                                           TL/DD/10788-3
```

```
01
     ENT
                            ; EXTERNAL INTERRUPT ENABLE
                            ; MICROWIRE BUSY SHIFTING
     BUSY
     IPND
               =
                     03
                            ; EXTERNAL INTERR. PENDING
     ENTI
                            ; TIMER INTERRUPT ENABLE
               =
                     0.4
     TPND
                     05
                            ; TIMER INTERRUPT PENDING
               =
                            ; CARRY FLAG
                     06
                            ; HALF CARRY FLAG
     HC
                     07
; * * * *
               RAM-DEFINITIONS
                                    ****
        BCDLO = 000 ; CALCULATED WEIGHT IN BCD
                        ;LOW BYTE
        BCDHI
                 = 001 ; CALCULATED WEIGHT IN BCD
                         ;HIGH BYTE
        MWBUF0 = 003 ;7SEGMENT DATA FOR LCD DISPL
                         ;L-PORT
                = 004
        MWBUF1
                        ;D-PORT
                 = 005 ;G-PORT
        MWBUF2
                = 006 ;OFFSET REGISTERS FOR
= 007 ;7 SEGMENT CODE TABLE
        OFF1
        OFF2
        OFF3
                 = 008 ;
                 = 009 ;START VALUE,LOW BYTE
= 00A ;START VALUE,HIGH BYTE
        STALO
        STAHI
        ENDLO
                 = 00B ; END VALUE LOW BYTE
        ENDHI
                 = 00C ; END VALUE HIGH BYTE
        DIVO = 00D ; DIVISOR FOR DINBI248 ROUTINE
       ;022.. 02F RESERVED FOR STACK WITH COP820
       ;062..06F RESERVED FOR STACK WITH COP840
; * * * *
               REGISTER DEFINITIONS
                                         ****
        COUNT = 0F0
COUNT2 = 0F1
        COUNT3 = 0F2
        FLAG = OFF
                         ;FLAG REGISTER
; * * * *
               BIT DEFINITIONS FLAG REGISTER ****
        POUND = 04
                         ; POUND=1: DISPLAY POUND SEGMENT
                         ; POUND=0:DISPLAY kg SEGMENT
; ***** G-PORT BIT DEFINITIONS
                                            ****
        BP1 = 05 ; BACKPLANE 1
                                                                 TL/DD/10788-4
```

_

```
BP2 = 04
                          ;BACKPLANE 2
;TIME OF 255 PULSES, USING TIMER INPUT CAPTURE MODE
FMEAS:
                              ; PERIOD TIME=
                              ; (START-ENDVALUE) *tc/255
                              ; DIFFERENCE START-ENDVALUE
                              ; IS STORED IN ENDLO, ENDHI
        LD
                 COUNT, #000
                              ;LOAD PULSE COUNTER (255 PULSES)
                 X, #TAULO
                              ; POINT TO AUTO REG. LOW B.
         LD
        LD
                              ; PRESET TIMER
                 B, #TMRLO
                              ; REG. WITH FFFFh
         LD
                  [B+],#0FF
         LD
                 [B],#0FF
         LD
                 B, #CNTRL
                              ; CNTRL-REG.: TIMER CAPTURE
                 [B+],#0D0
                              ; MODE, TIO POS. TRIGGERED,
                              ;START TIMER
                               ; RESET TIMER PENDING FLAG
         RBIT
                 #TPND,[B]
L1:
         IFBIT
                 #TPND, [B]
                 SSTORE
         JΡ
         JΡ
                 L1
SSTORE:
                              ;STORE START VALUE
                 #TPND,[B]
         RBIT
                              ;LOAD TIMER CAPTURE REG.
         LD
                 A, [X+]
                              ; LOW BYTE
                 A, STALO
                              ;STORE IN RAM
         LD
                              ; LOAD HIGH BYTE CAPTURE,
                 A, [X-]
                              ; POINT TO LOW BYTE CAPTURE
                 A, STAHI
         Х
                              ;STORE IN RAM
         LD
                 B, #PSW
L256:
         IFBIT
                 #TPND,[B]
                 DCOU
         JΡ
         JP
                 L256
DCOU:
         RBIT
                              ; RESET TIMER PENDING FLAG
                 #TPND,[B]
                              ;DECREMENT PULSE COUNTER
         DRSZ
                 COUNT
                              ;COUNTER = 0 ?
;NO,LOOP 'TIL 255 PULSES
         JΡ
                 L256
                               ; HAVE BEEN MEASURED
ESTORE:
                              ;STORE END VALUE
         LD
                 CNTRL, #00
                              ;STOP TIMER
         LD
                 B, #STALO
                              ; POINT TO START VALUE LOW BYTE
                 A, [X+]
                              ;LOAD END VALUE LOW BYTE
         LD
         Χ
                 A,[B]
                              ;LOAD ACCU WITH STARTVALUE LOW BYTE
                              ; & STALO WITH END VALUE LOW BYTE
                                                                             TL/DD/10788-5
         SC
        SUBC
                              ;SUBTRACT ENDVALUE LOW BYTE
                 A, [B]
                              ;FROM STARTVALUE LOW BYTE
         Χ
                 A, [B+]
                              ;STORE RESULT IN STALO,
                              ; POINT TO STAHI
         LD
                              ;LOAD ACCU WITH ENDVALUE HIGH BYTE
                 A, [X]
                              ; LOAD ACCU WITH STARTVALUE HIGH BYTE
        Χ
                 A, [B]
                              ; & STAHI WITH ENDVALUE HIGH BYTE
        SUBC
                 A, [B]
                              ; SUBTRACT ENDVALUE HIGH BYTE FROM
                              ;STARTVALUE HIGH BYTE
                              ;STORE RESULT IN STAHI
                 A, [B]
        RET
         .END
                                                                         TL/DD/10788-6
```

2-WAY MULTIPLEXED LCD DRIVE

Today a wide variety of LCDs, ranging from static to multiplex rates of 1:64 are available on the market. The multiplex rate of a LCD can be determined by the number of its backplanes (segment-common plate). The higher the multiplex rate the more individual segments can be controlled using only one line. e.g. a static LCD only has one backplane; only one segment can be controlled with one line. A two-way multiplexed LCD has two backplanes and two segments can be controlled with one line, etc.

Common to all LCDs is the fact that the drive voltage applied to the backplane(s) and segments has to be alternating. DC-components higher than 100 mV can cause electrochemical reactions (refer to manufacturer's spec), which reduce reliability and lifetime of the display.

If the multiplex ratio of the LCD is N and the amount of available outputs is M, the number of segments that can be driven is:

$$S = (M - N) * N$$

So the maximum number of a 2-way mux LCD's segments that can be driven with a COP800 in 28-pin package (if all outputs can be used to drive the LCD) is:

$$S = (18 - 2) * 2 = 32$$

During one LCD refresh cycle tx (typical values for 1/tx = fx are in the range 30 Hz . . . 60 Hz), three different voltages levels: Vop, 0.5°Vop and 0V have to be generated. The "off" voltage across a segment is not 0V as with static LCDs and also the "on" voltage is not Vop, but only a fraction of it. The ratio of "on" to "off" r.m.s.-voltage (discrimination) is determined by the multiplex ratio and the number of voltage levels involved. The most desirable discrimination ratio is one that maximizes the ratio of V_{ON} to V_{OFF} , allowing the maximum voltage difference between activated and non-activated states. In general the maximum achievable ratio for any particular value of N is given by:

$$(V_{ON}/V_{OFF})$$
 max = SQR ((SQR(N) + 1)/(SQR(N) - 1))
SQR = square root

Using this formula the maximum achievable discrimination ratio for a 2-way multiplex LCD is 2.41, however, it is also possible to order a customized display with a smaller ratio. For ease of operation, most LCD drivers use equal voltage steps (0V, 0.5 *Vop, Vop). Thus a discrimination ratio of 2.24 is achieved. When using the COP800 to drive a 2-way multiplexed LCD the only external hardware required to achieve the three voltage steps are 4 equal resistors that form two voltage dividers—one for each backplane

(Figure 1). The procedure is to set G4 and G5 to "0" for 0V, to HI-Z (TRI-STATE®) for 0.5*Vop and to "1" in order to establish Vop at the backplane electrodes.

With the COP800 each I/O pin can be set individually to TRI-STATE, "1" or "0", so this procedure can be implemented very easily.

The current consumption of typical LCDs is in the range of 3 μA to 4 μA (at Vop =4.5 V, refresh rate 60 Hz) per square centimeter of activated area. Thus the backplane and segment terminals can be treated as Hi-Z loads. At high refresh rates the LCD's current consumption increases dramatically, which is the reason why many LCD manufacturers recommend not using a refresh frequency higher than 60 Hz.

Timing Considerations

As shown in Figures 2 and 3, one LCD refresh cycle tx is subdivided into four equally distant time sections ta, tb, tc and td during which the backplane and segment terminals have to be updated in order to switch a specific segment on or off. Considering a refresh frequency of 50 Hz (tx = 20 ms) ta, tb, tc and td are equal to 5 ms; a COP800 running from an external clock of 2 MHz has an internal instruction cycle time of 5 μs and a typical current consumption of less than 350 μA (at $V_{\rm CC}=3V$ and room temperature), thus meeting both the requirements of low current consumption and additional computing power between LCD refreshes.

The timing is done using the COP800's 16-bit timer in the PWM autoload mode. The timer and the assigned 16-bit autoload register are preset with proper values. By setting the TRUN-flag in the CNTRL-register the timer is decremented each instruction cycle. A flag (TPND) is set at underflow and the timer is automatically reloaded with the value stored in the autoload-register. Timer underflow can also be programmed to generate an interrupt.

Segment Control

Figure 2 shows the voltage-waveforms applied to the two backplane-electrodes (a) and the waveform at a segement-electrode (b), which is needed to switch segment A on and segment B off. The resulting voltage over the segments (c and d) is achieved by subtracting waveform (b) from BP1 (segment A) and waveform (b) from BP2 (segment B).

Figure 3 shows the four different waveforms which must be generated to meet all possible combinations of two segments connected to the same driving terminal (off-off, on-off, off-on, on-on).

Figure 4 shows the internal segment and backplane connections for a typical 2-way mux LCD.

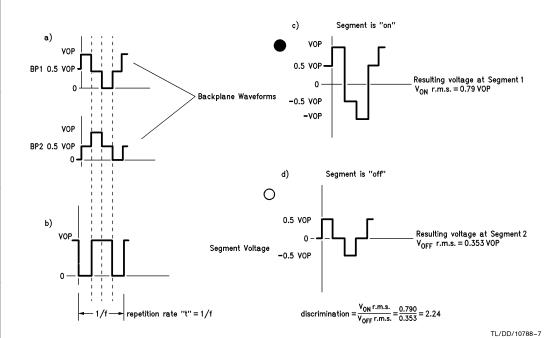


FIGURE 2. LCD Waveforms

Typical Backplane Waveforms Resulting Voltages at Segments = segment on BP1 voltage - segment voltage 1 BP2 voltage - segment voltage 1 VOP VOP/2 VOP VOP/2 VOP VOP/2 -VOP/2 -VOP Segment = "OFF" Segment = "OFF" ta tb tc td VOP ① BP1 voltage - segment voltage 3 BP2 voltage - segment voltage 3 VOP 2 0 VOP/2 VOP 3 -VOP/2 0 VOP -VOP

FIGURE 3. Backplane and Segment Voltage Scheme for 1:2 Mux LCD-Drive

4

 $\mathsf{ta} \mid \mathsf{tb} \mid \mathsf{tc} \mid \mathsf{td}$

-1/f-

tx = pulse width

1/f = refresh rate

| Segment = "OFF"

TL/DD/10788-8

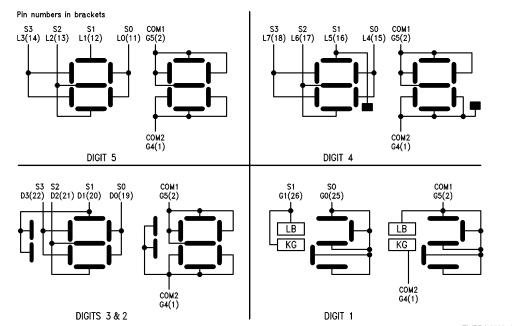


FIGURE 4. Customized LCD Display (Backplane and Segment Organization)

TL/DD/10788-9

LCD Drive Subroutine

The LCD drive subroutine DISPL converts a 16-bit binary value to a 24-bit BCD-value for easier display data fetch. The drive subroutine itself is built up of a main routine doing the backplane refresh and 7 subroutines (SEG0, SEG1, SEG2, SEG3, SEGOUT, TTPND, DISPD). The subroutines SEG0 to SEG4 are used to get the LCD segment data from a look-up table in ROM for time phases ta, tb, tc and td respectively. Subroutine SEGOUT writes the segment data for each time phase to the corresponding output ports. One time phase takes 5 ms, giving a total refresh cycle time of 20 ms (50 Hz). The exact timing is done by using the COP800 16-bit timer in the PWM autoload mode. In that mode the timer is reloaded with the value stored in the autoload register on every timer underflow. At the same time the timer pending flag is set. The subroutine TTPND checks this flag in a loop. If the timer pending flag is set, this subroutine resets it and returns to the calling program. Thus a 5 ms time delay is created before the segment and backplane data for the next time phase is written to the output ports. Finally the subroutine DISPD switches off the LCD by setting the backplane and segment connections to "0". In this digital scale application a frequency measurement is made while the LCD is off. Then the weight is calculated from this frequency and is displayed for 10s. After this 10s the LCD is switched off again and the COP800 is programmed to enter the current saving HALT mode (I_{DD} \leq 10 μ A). A new weight cycle on the digital scale is initiated by pressing a push button, which causes a reset of the microcontroller.

CONCLUSIONS

National Semiconductor's COP800 Microcontroller family is ideally suited for use with V/F converters and 2-way multiplexed LCDs, as they offer features, which are essential for these types of applications. The high resolution, 3-mode programmable 16-bit timer allows precise frequency measurement in the input capture mode with minimum software overhead. The timer's PWM autoreload mode offers an easy way to implement a precise timebase for the LCD refresh. The COP800's programmable I/O ports provide flexibility in driving 2-way multiplexed LCDs directly. The COP800 family, fabricated using M2CMOS technology, offers both low voltage (min V_{CC} of 2.5V) and low current drain.

REFERENCES

- National Semiconductor, "Linear Databook 2, Rev. 1" LM331, LM331A datasheets pages 3–285 ff.
- National Semiconductor, "Linear Applications Databook, 1986", "Versatile monolithic V/Fs can compute as well as convert with high accuracy", pages 1213 ff.
- 3. National Semiconductor, "Microcontrollers Databook, Rev. 1", COP820C/COP840C datasheets pages 2-7 ff.
- U. Tietze, Ch. Schenk, "Halbleiter-Schaltungstechnik"
 Auflage 1986, Springer Verlag, ISBN 0-387-16720-X,
 "Funktionsgeneratoren mit steuerbarer Frequenz",
 pages 465 ff, "Multivibratoren", pages 183 ff.
- Lucid Displays, "LCD design guide", English Electric Valve Company Ltd., Chelmsford, Essex, Great Britain.

APPENDIX—Software Routines ;LOOKUP TABLE FOR CUSTOMIZED 2-WAY MULIPLEX LCD ;START LOOK-UP TABLE AT ROM ADRESS 200 x = x'200;TIMEPHASE Ta 7 SEGMENT DATA 004 ;"0" AND ".0" 00E ;"1" AND ".1" 008 ;"2" AND ".2" 008 ;"3" AND ".3" .BYTE .BYTE .BYTE .BYTE ;"4" AND ".4" .BYTE 002 ;"5" AND ".5" ;"6" AND ".6" ;"7" AND ".7" .BYTE 001 .BYTE 001 .BYTE 00C ;"8" AND ".8" .BYTE 000 ;"9" AND ".9" .BYTE 000 ;" " AND ". " .BYTE 00F ; SPECIAL SEGMENTS TIMPHASE Ta ;"LB" ;"LB 2" .BYTE 001 .BYTE 000 ; "KG" .BYTE 003 ;"KG 2" .BYTE 002 . = . + 1;TIMEPHASE Tb 7 SEGMENT DATA ;"0" .BYTE 002 ;"1" ;"2" ;"3" .BYTE 00E .BYTE 003 .BYTE 00A ;"4" .BYTE 00E ;"5" .BYTE 00A ;"6" .BYTE 002 ;"7" .BYTE 00E TL/DD/10788-10

```
.BYTE
                   002
                             ;"8"
                             ;"9"
          .BYTE
                   00A
                            ; " "
          .BYTE
                   00F
                            ;".0"
;".1"
;".2"
          .BYTE
                   000
          .BYTE
                   00C
         .BYTE
                   001
                            ;".3"
                   008
          .BYTE
          .BYTE
                            ;".4"
                   00C
          .BYTE
                            ;".5"
;".6"
                   008
                   000
          .BYTE
                             ;".7"
          .BYTE
                   00C
                             ;".8"
          .BYTE
                   000
                             ;".9"
          .BYTE
                   008
                             ;". "
          .BYTE
                   00D
          .LOCAL
TTPND:
                   B, #PSW
         LD
$LOOP:
                   #TPND,[B]
         IFBIT
         JΡ
                   $END
         JP
                   $LOOP
$END:
         RBIT
                   #TPND, [B]
         LD
                   B, #PORTGD
         RET
         .LOCAL
         . = . + 1
         ;TIMEPHASE TC 7 SEGMENT DATA
                   00B ;"0" AND ".0"
         .BYTE
                           ;"1" AND ".1"
;"2" AND ".2"
;"3" AND ".3"
          .BYTE
                   001
          .BYTE
                   007
          .BYTE
                   007
                             ;"4" AND ".4"
         .BYTE
                   00D
                            ;"5" AND ".5"
          .BYTE
                   00E
                            ;"6" AND ".6"
;"7" AND ".7"
;"8" AND ".8"
;"9" AND ".9"
          .BYTE
                   00E
          .BYTE
                   003
          .BYTE
                   00F
          .BYTE
                   00F
                             ;" " AND ". "
          .BYTE
                   000
                                  ; COPY 2BYTES POINTED TO
COPY:
                                  ;BY B AND B+1 TO RAM
                                  ; POINTED TO BY X AND X+1
                   A, [B+]
         LD
         Х
                   A, [X+]
         LD
                   A, [B+]
         X
                   A, [X+]
         RET
         .LOCAL
                                                                           TL/DD/10788-11
```

```
;TIMEPHASE Td 7 SEGMENT DATA
                       ;"0"
        .BYTE 00D
                        ;"1"
                001
        .BYTE
                        ;"2"
        .BYTE
                00C
                        ;"3"
        .BYTE
                005
                         ;"4"
                001
        .BYTE
                        ;"5"
        .BYTE
                005
                        ;"6"
        .BYTE
                00D
                        ;"7"
        .BYTE
                001
                         ;"8"
        .BYTE
                00D
                         ;"9"
                005
        .BYTE
                        ;""
        .BYTE
                000
                         ;".0"
        .BYTE
               00F
                         ;".1"
        .BYTE
                003
                         ;".2";".3"
        .BYTE
                00E
        .BYTE
               007
                        ;".4"
        .BYTE
               003
        .BYTE
               007
                        ;".5"
                         ;".6"
        .BYTE
                00F
                         ;".7"
                003
        .BYTE
                         ;".8"
        .BYTE
                00F
                        ;".9"
               007
        .BYTE
        .BYTE
               002
                         ;". "
        ; SPECIAL SEGMENTS TIMEPHASE Tb
        .BYTE 003 ;"LB"
.BYTE 003 ;"LB 2 "
               001
001
                        ;"KG"
;"KG 2"
        .BYTE
        .BYTE
                       ;"LB"
;"LB 2"
;"KG"
;"KC
        ;SPECIAL SEGMENTS TIMPHASE To
        .BYTE 002
        .BYTE
                 003
        .BYTE
                 000
                         ;"KG 2"
        .BYTE
               001
        ;SPECIAL SEGMENTS TIMEPHASE Td
                      ;"LB"
;"LB 2"
        .BYTE
               000
                 000
        .BYTE
                        ;"KG"
        .BYTE
                 002
                         ;"KG 2"
        .BYTE
               002
        .END
;DISPL:
; INPUT PARAMETER: COUNT2 = RAM REGISTER, WHICH CONTAINS
; THE DISPLAY TIME IN SEC.
; EXAMPLE COUNT2= 1-> DISPLAY TIME IS 1SEC.
;LCD DRIVE ROUTINE FOR CUSTOMIZED 2 WAY MULTIPLEX
; LCD
                                                                 TL/DD/10788-12
```

```
; ROUTINE CONVERTS BCD DATA STORED IN RAM LOCATIONS
; BCDLO, BCDHI INTO LCD OUTPUT DATA STORED AT
;MWBUF0 = LPORT DATA
;MWBUF1 = DPORT DATA
;MWBUF2 = G-PORT DATA (G0,G1 ONLY, OTHER BITS
                        STAY UNCHANGED)
; SUBROUTINES INCLUDED:
;SEGO: GETS LCD SEGMENT DATA FOR TIMEPHASE TA
; SEG1: GETS LCD SEGMENT DATA FOR TIMEPHASE TB
; SEG2: GETS LCD SEGMENT DATA FOR TIMEPHASE TC
;SEG3: GETS LCD SEGMENT DATA FOR TIMEPHASE TD
; DISPD: SWITCHES THE DISPLAY OFF AND
         CONFIGURES G-, L- AND D-PORTS
;TTPND: CHECKS TIMER PENDING FLAG (REFRESH
         RATE GENERATION)
; SEGOUT: OUTPUTS LCD SEGMENT AND BACKPLANE DATA
;SUBROUTINES SEGO... SEG1 MUST FOLLOW DIRECTLY AFTER LOOK-UP
; TABLE, BECAUSE OF THE USE OF THE LAID-INSTRUCTION
        .LOCAL
SEG0:
        LD
                B, #OFF1 ; POINT TO OFFSET 1 REG.
                 [B+],#000
        LD
                 [B+],#000
        LD
        LD
                A, #00B
$TWO:
        IFBIT
                 #05, BCDHI ; WEIGHT >= 200 POUNDS?
                           ;YES DISPLAY DIGIT5 ("2")
        INCA
$POUND:
        IFBIT
                 #POUND, FLAG
        JΡ
                 $LPORT
                A, #002
        ADD
$LPORT:
        X
                A, [B]
                X, #BCDLO
        LD
        LD
                B, #MWBUF0
                A, [X]
        LD
        AND
                A, #00F
                         ;ELIMINATE DIGIT1 BITS
        ADD
                A,OFF2
                         ;GET DIGIT1 DATA
        LAID
        Χ
                         ; SAVE DIGIT1 DATA
                A, [B]
                         ; IN MWBUF0
        LD
                A, [X+]
                         ;ELIMINATE DIGIT1 BITS
        AND
                A, #0F0
        SWAP
                Α
                         ; ALWAYS DISPLAY DECIMAL POINT
        ADD
                A,OFF1
        LAID
                         ;GET DIGIT1 DATA
        SWAP
                Α
        OR
                A, [B]
                         ;STORE DIGIT1 AND
        Χ
                A, [B+] ; DIGIT2 DATA IN MWBUF0
                                                                 TL/DD/10788-13
```

```
$DPORT:
         LD
                 A, [X]
         IFBIT
                  #04,BCDHI
         JΡ
                 $ADD1
         AND
                 A, #00F
                          ;DISPLAY NO LEADING ZERO
         ADD
                 A,OFF2
                  $GET
         JΡ
$ADD1:
         AND
                 A, #00F
                          ;DISPLAY "1" (DIGIT4)
         ADD
                 A, OFF1
$GET:
         LAID
                          ;GET DIGIT3 DATA
                 A, [B+]
                          ;STORE DIGIT3 DATA IN
         Χ
                          ; MWBUF1
$GPORT:
         LD
                 A, OFF3
                          ;GET DIGIT5 ("2") AND SPECIAL
         LAID
                          ;SEGMENT DATA
                         ;SET BITS 2...7 TO 1
         OR
                 A, #OFC
         Х
                          ;SAVE DATA IN MWBUF2
                 A,[B]
         RET
SEG1:
         LD
                 B, #OFF1
         LD
                  [B+],#01B
                  [B+], #010
         LD
         LD
                 A,#056
         JΡ
                  $TWO
SEG2:
                 B, #OFF1
         LD
         LD
                  [B+],#030
         LD
                  [B+], #030
         LD
                 A, #05A
                  $TWO
         JΡ
SEG3:
         LD
                 B, #OFF1
                  [B+],#04B
         LD
         LD
                  [B+],#040
         LD
                 A, #05E
         JΡ
                  $TWO
         .LOCAL
DISPL:
         IFBIT
                  #POUND, FLAG
         JΡ
                 MULT2
         JΡ
                 LDT
MULT2:
                                ; CALCULATE WEIGHT IN POUNDS
                 B, #BUF12LO
         LD
                                ; (Multiplication of kg *2.2)
         LD
                  [B+],#22
                                                                    TL/DD/10788-14
```

```
X, #STALO
        LD
         JSR
                 MULBI168
                 B, #BUF12LO
         LD
         JSR
                 COPY
                 STAHI+1, #00
         LD
        LD
                 DIV0, #10
                 DIVBI248
         JSR
LDT:
         JSR
                 BINBCD16
                               ; CONVERT BINARY TO BCD WEIGHT
                               ; REPEAT DISPLAY LOOP 50 TIMES
                 COUNT, #50
         LD
                               ; (=1 SEC DISPLAY TIME)
                 B, #TMRLO
         LD
                  [B+], #0E8 ;LOAD TIMER WITH 1000(03E8h)
         LD
                  [B+], #003; (=50 Hz LCD REFRESH AT tc=5us)
         LD
                  [B+], #0E8 ; LOAD AUTOREG. WITH 1000
         LD
         LD
                  [B+], #003
                  [B+], #090 ; CNTRL-REG.: "TIMER WITH AUTO-
         LD
                             ;LOAD"- MODE, START TIMER
                  [B+], #010 ; PSW-REG.: RESET TPND FLAG
DISP1:
         JSR
                  SEG0
                            ;GET 7-SEGM. DATA FOR REFRESH
                             ;TIMEPHASE Ta
         JSR
                 TTPND
                            ;TEST TIMER PENDING FLAG
                             ; BACKPLANE REFRESH Ta
TP0:
         SBIT
                  #BP1,[B]
                            ; POINT TO G-CONFIG. - REG.
         LD
                 A, [B+]
         RBIT
                  #BP2,[B]
                  #BP1,[B]
         SBIT
                             ; POINT TO G-DATA REG.
         LD
                 A, [B-]
         RBIT
                  #BP2,[B]
         JSR
                  SEGOUT
                             ; SEGMENT DATA OUT
                             ;GET 7-SEG. DATA FOR Tb
                  SEG1
         JSR
         JSR
                  TTPND
TP1:
         SBIT
                  #BP2,[B]
         LD
                 A, [B+]
                            ; POINT TO G-CONF.-REG.
         RBIT
                  #BP1,[B]
         SBIT
                  #BP2,[B]
                             ; POINT TO G-DATA REG.
                 A, [B-]
         LD
                  #BP1,[B]
         RBIT
         JSR
                  SEGOUT
         JSR
                  SEG2
                             ;GET 7-SEGM. DATA FOR To
         JSR
                  TTPND
TP2:
         RBIT
                  #BP1,[B]
         LD
                 A, [B+]
                            ; POINT TO G-CONFIG.-REG.
         RBIT
                  #BP2,[B]
         SBIT
                  #BP1,[B]
         LD
                  A, [B-]
                             ; POINT TO G-DATA-REG.
                  #BP2,[B]
         RBIT
         JSR
                  SEGOUT
                                                                    TL/DD/10788-15
```

```
JSR
                 SEG3
         JSR
                 TTPND
TP3:
        RBIT
                 #BP1,[B]
        RBIT
                 #BP2,[B]
         LD
                 A, [B+]
        RBIT
                 #BP1,[B]
         SBIT
                  #BP2,[B]
                 SEGOUT
         JSR
                 COUNT
        DRSZ
         JΡ
                 DISP1
        LD
                 COUNT, #50
                             ;10SEC OVER?
        DRSZ
                 COUNT2
         JΡ
                 DISP1
                             ; NO, DISPLAY WEIGHT
         JSR
                 DISPD
                             :YES ROUTINE FINISHED
        RET
DISPD:
                             ; SWITCH DISPLAY OFF
         LD
                 B, #PORTLD
         LD
                  [B+],#000
                             ;OUTPUT 0 TO L PORT
        LD
                  [B+],#0FF
                             ;L-PORT = OUTPUT PORT
        LD
                 B, #PORTGD
                             ;OUTPUT 0 TO G OUTPUTS
        LD
                 [B+],#000
                             ;G0..G2,G4,G5=OUTPUTS
         LD
                  [B+],#037
                 PORTD, #000; OUTPUT 0 TO D-PORT
        LD
        RET
SEGOUT:
         LD
                 B, #MWBUF0
                 A, [B+]
                            ; POINT TO MWBUF1
        LD
         Х
                 A, PORTLD
                            ;OUTPUT 7 SEG. DATA IN
                            ;MWBUF0 TO L-PORT
                            ; POINT TO MWBUF2
        LD
                 A, [B+]
                            ;OUTPUT MWBUF1 TO D-PORT
                 A, PORTD
         Χ
                 X, #PORTGD
         LD
         LD
                 A, [X]
                            ; AND MWBUF2 WITH PORTGD
        AND
                 A, [B]
                            ;LEAVE BITS 2...7 UNCHANGED
         Χ
                 A, [B]
                            ;STORE RESULT (A') IN
                            ;MWBUF2,LOAD A WITH
                            ;ORIGINAL MWBUF2 VALUE
                            ; AND 007 WITH ORIGINAL
         AND
                 A,#003
                            ;MWBUF2 (A''), SET BITS 0,1 TO
                            ; CORRECT VALUE
                            ;OR A' WITH A'', RESTORE ORIGINAL
         OR
                 A, [B]
                            ;G2...G7 BITS
                            ;OUTPUT RESULT TO G-PORT
        Χ
                 A, [X]
        RET
                                                                   TL/DD/10788-16
```

```
;16 BIT BINARY TO BCD CONVERSION
; THE MEMORY ASSIGNMENTS ARE AS FOLLOWS:
;BINLO: RAM ADRESS BINARY LOW BYTE
;BCDLO: RAM ADRESS BCD LOW BYTE
; COUNT: RAM ADRESS SHIFT COUNTER (0F0...0FB, 0FF)
; BCD NUMBER IN BCDLO, BCDLO+1, BCDLO+2
; MEMORY ADRESS
                       M(BINLO+1) M(BINLO)
                       BINARY HB
;DATA
                                    BINARY LOW BYTE
; MEMORY ADRESS
                       M(BCDLO+2) M(BCDLO+1) M(BCDLO)
;DATA
                        BCD HB
                                    BCD
                                                 BCD LOW BYTE
        BINLO = STALO
         .LOCAL
        \$BCDT = (BCDLO + 3) \& 0F
        \$BINT = (BINLO + 2) \& OF
BINBCD:
                 COUNT, #16 ; LOAD CONTROL REGISTER WITH
        LD
                            ; NUMBER OF LEFTSHIFTS TO
                            ; EXECUTE
        LD
                 B, #BCDLO
                           ; LOAD BCD-NUMBER LOWEST BYTE
                            ; ADRESS
                            ;CLEAR BCD RAM-REGISTERS
$CBCD:
        LD
                 [B+],#00
        IFBNE
                 #$BCDT
        JP
                 $CBCD
                            ;LEFTSHIFT BINARY NUMBER
$LSH:
                 B, #BINLO
        RC
$LSHFT:
        LD
                 A, [B]
                 A, [B]
        ADC
                            ; IF MSB IS SET, SET CARRY
        Χ
                 A, [B+]
        IFBNE
                 #$BINT
        JP
                 $LSHFT
                 B, #BCDLO
        LD
$BCDADD:
        LD
                 A, [B]
                            ;ADD CORRECTION FACTOR
                 A,#066
        ADD
        ADC
                 A, [B]
                            ;LEFTSHIFT BCD NUMBER
                            ; (BCD=2**WEIGHT OF
                            ; BINARY BIT (=CARRY BIT))
        DCOR
                            ; DECIMAL CORRECT ADDITION
                 Α
                 A, [B+]
        Χ
        IFBNE
                 #$BCDT
                                                                    TL/DD/10788-17
        JΡ
                 $BCDADD
        DRSZ
                 COUNT
                            ; DECREMENT SHIFT COUNTER
        JP
                 $LSH
        RET
        .LOCAL
                                                                  TL/DD/10788-18
```

```
;BINARY DIVIDE 24BIT BY 8BIT (Q=Y/Z)
;YL: LOW BYTE RAM ADRESS DIVIDEND
; ZL: LOW BYTE RAM ADRESS DIVISOR
; CNTR: RAM ADRESS SHIFT COUNTER (0F0...0FB, 0FF)
;QUOTIENT AT RAM LOCATIONS YL..YL+2
; REMAINDER AT YL+3
; QUOTIENT IS ALL '1's IF DIVIDE BY ZERO, REMAINDER
; THEN CONTAINS YL
; THE MEMORY ASSIGNMENTS ARE AS FOLLOWS:
        M(YH+1) M(YH)
                                 M(YL+1) M(YL)
                Y (HIGH BYTE) Y Y (LOW BYTE)
        0
        M(ZL)
; ROUTINE NEEDS 1.21ms FOR EXECUTION AT tc=1us
        ZL
               = DIV0
               = STALO
= COUNT
        YT.
        CNTR
        .LOCAL
        $YH
                = YL+2
        $BTY
               = ($YH&00F)+2 ;PARAMETER FOR "IFBNE"-INSTR.
DIVBI248:
                CNTR, #018 ; INITIALIZE SHIFT COUNTER
        LD
                B, #$YH+1 ; FOR 24 COUNTS
[B], #000 ; PUT 0 IN M(YH+1)
        LD
        LD
                X, #$YH+1
        LD
$LSHFT:
        LD
                B, #YL ; LEFT SHIFT DIVIDEND
        RC
$LUP:
        LD
                A,[B]
        ADC
                A, [B]
                A, [B+]
        Χ
        IFBNE
                 #$BTY
        JΡ
                 $LUP
        LD
                B, #ZL
        IFC
        JΡ
                $SUBT
$TSUBT:
                         ;SUBTRACT AND TEST
        SC
                         ;SUBTRACT Z FROM M(YH+1,YH+2)
        LD
                A, [X]
        SUBC
                A, [B]
        IFNC
        JΡ
                $TEST
                                                                 TL/DD/10788-19
```

```
$SUBT:
                        ;SUBTRACT Z FROM M(YH+1, YH+2)
        LD
               A, [X]
        SUBC
                A,[B]
        Χ
                A, [X]
        LD
                B,#YL
        SBIT
                #0,[B]
$TEST:
                CNTR ;24 SHIFTS EXECUTED?
$LSHFT ;NO, LEFT SHIFT DIVIDEND
        DRSZ
                CNTR
        JΡ
        RET
        .LOCAL
; BINARY MULTIPLIES A 16BIT VALUE (X1)
; WITH A 8BIT VALUE (X2): M = X1 * X2
;X1L: RAM ADRESS X1 LOW BYTE
;X2L: RAM ADRESS X2
; COUNT RAM ADRESS SHIFT COUNTER
;M IS STORED AT RAM ADRESSES X2L...X2L+2
;THE MEMORY ASSIGNMENTS ARE AS FOLLOWS:
;MEMORY M(X2L+2) M(X2L+1) M(X2L)
;DATA
             0
                       0
                                       X2
;-----
; MEMORY M(X1L+1) M(X1L)
                        X1 (LOW BYTE)
              X1(H.B.)
;THE EXECUTION TIME FOR THE ROUTINE AT tc=1us IS 240us
;
        .LOCAL
MULBI168:
                COUNT, #9 ; PRESET SHIFT COUNTER
        LD
                [B+], #00 ; PRESET X2L+1, X2L+2 WITH '0'
        LD
                [B],#00
        LD
        RC
$LOOP:
                A, [B] ; RIGHT SHIFT
        LD
        RRCA
        Χ
                A, [B-]
                A, [B]
        LD
        RRCA
        Χ
                A, [B-]
        LD
                A, [B]
        RRCA
                A, [B+]
                                                              TL/DD/10788-20
```

```
A, [B+] ; INCREMENT B POINTER
        IFNC
                          ; MOST SIGN. BIT OF X2 SET?
        JΡ
                 $TEST
                          ; NO, TEST SHIFT COUNTER
                          ; YES, RESET CARRY
        RC
                 A, [B-] ; POINT TO 2nd HIGHEST BYTE
        LD
                          ;OF RESULT
                          ;DO WEIGHTED ADD
        LD
                 A, [X+]
                 A, [B]
A, [B+]
        ADC
        Χ
        LD
                 A, [X-]
                 A, [B]
        ADC
        Χ
                 A, [B]
$TEST:
                 COUNT
                           ;8 RIGHT SHIFTS EXECUTED?
        DRSZ
        JΡ
                 $LOOP
                           ;NO,SHIFT
        RET
                           ; YES, MULIPLICATION FINISHED
         .LOCAL
         .END
                                                                     TL/DD/10788-21
```

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor

National Semiconductor Corporation 2900 Semiconductor Drive P.O. Box 58090 Santa Clara, CA 95052-8090 Tel: 1(800) 272-9959 TWX: (910) 339-9240

National Semiconductor GmbH GmbH Livry-Gargan-Str. 10 D-82256 Fürstenfeldbruck Germany Tel: (81-41) 35-0 Telex: 527649

Fax: (81-41) 35-1

National Semiconductor Japan Ltd. Sumitomo Chemical Engineering Center Bldg. 7F 1-7-1, Nakase, Mihama-Ku Chiba-City, Ciba Prefecture 261

Tel: (043) 299-2300 Fax: (043) 299-2500

National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tei: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductores Do Brazil Ltda. Do Brazil Ltda. Rue Deputado Lacorda Franco 120-3A Sao Paulo-SP Brazil 05418-000 Tel: (55-11) 212-5066 Telex: 391-1131931 NSBR BR Fax: (55-11) 212-1181 National Semiconductor (Australia) Pty, Ltd. Building 16 Business Park Drive Monash Business Park Nottinghill, Melbourne Victoria 3168 Australia Tel: (3) 558-9999 Fax: (3) 558-9998