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1.0 INTRODUCTION

About This System User Guide

The purpose of this document is to provide a complete de-

scription of the Multi-Protocol Adapter II (MPAÉ-II), a hard-

ware and software design solution for emulating basic 3270

and 5250 terminal emulation products in an IBMÉ PC envi-

ronment. This document discusses the system support

hardware and complete link level firmware required to

achieve 3270/3299 CUT, DFT, and 5250 emulation with the

National Semiconductor Biphase Communications Proces-

sor, BCPÉ. The document is divided into the following chap-

ters and appendices:

1.0 Introduction: provides a summary of each chapter and

each appendix along with a checklist of items included in

the MPA-II Design/Evaluation Kit. This chapter provides an

MPA-II product description including a list of the new fea-

tures in the MPA-II that were not present in the original MPA

Evaluation Kit. Finally, a description of the DP8344 Biphase

Communications Processor, and National Semiconductor’s

VLSI Products, is provided.

2.0 Operation: describes the system requirements, installa-

tion instructions, and steps for using the MPA-II to achieve

3270/3299 and 5250 emulation.

3.0 Development Environment: describes the environ-

ment under which the MPA-II has been developed, the tools

used by the design team to characterize the products evalu-

ated, and the tools used to test the MPA-II.

4.0 System Overview: describes the 3270/3299 environ-

ment, 5250 environment, and terminal emulation. This chap-

ter also describes the DCAÉ and IBM emulator system ar-

chitectures and discusses the MPA-II system organization.

BCPÉ and TRI-STATEÉ are registered trademarks of National Semiconductor Corporation.

CrosstalkÉ and DCAÉ are registered trademarks of Digital Communication Associates, Inc.

IBMÉ, PCÉ and PS/2É are registered trademarks of International Business Machines.

MicrosoftÉ and MS-DOSÉ PS/2 are registered trademarks of Microsoft Company.

PALÉ is a registered trademark of and used under license from Monolithic Memories

abelTM is a trademark of Data I/O Corporation.

BRIEFTM and UnderWareTM are trademarks of UnderWare, Inc.

Hewlett PackardTM is a trademark of Hewlett Packard Company.

IRMATM and SMART ALECTM are trademarks of Digital Communication Associates, Inc.

MPATM is a trademark of National Semiconductor Corporation.

Micro ChannelTM is a trademark of International Business Machines.

RELAY GoldTM is a trademark of RELAY Communications, Inc.

SimPC MasterTM is a trademark of Simware Inc.

XeusTM is a trademark of Fischer Internation Systems Corporation.

C1995 National Semiconductor Corporation RRD-B30M75/Printed in U. S. A.



5.0 Hardware Architecture: discusses the MPA-II hard-

ware architecture including a description of the BCP core,

PC interface, Front-end interface, and miscellaneous sup-

port circuitry.

6.0 Software Architecture: discusses the Kernel, coax

task, twinax task, and interrupt structure.

Included in this chapter is an in depth discussion of the

IRMATM, IBM and Smart AlecTM interfaces.

7.0 Loader and MPA-II Diagnostics: discusses soft-load-

ing the BCP, configuring the MPA-II interface mode, and the

diagnostics provided for testing the MPA-II hardware.

Appendix A. Hardware Reference: provides the complete

MPA-II schematic, assembly drawing, board layout and PAL

equations.

Appendix B. Timing Analysis: discusses the timing of the

MPA-II system.

Appendix C. Filter Equations for the Combined Coax/

Twisted Pair Interface: provides the derivation of the filter

equations for the combined coax/twisted pair interface.

Appendix D. References: is a list of reference materials

and company contacts.

MPA-II Description

The Multi-Protocol Adapter II (MPA-II) is a complete design

solution for IBM 3270, 3299, and 5250 connectivity prod-

ucts. The MPA-II system is intended to be a design example

for customers to use in developing their own products using

the Biphase Communications Processor, BCP. The BCP is a

‘‘system on a chip’’ designed by National Semiconductor to

specifically address the IBM connectivity market place. Built

on the tradition of the DP8340/41 3270 receiver/transmitter

pair, the BCP takes the state of the art in IBM communica-

tions a step further. The MPA-II provides the system support

hardware and complete link level firmware to achieve 3270/

3299 CUT, DFT, and 5250 emulation with the BCP and an

appropriate PC emulator. The MPA-II Design/Evaluation Kit

does not include the PC emulation software. Thus, the end

user must purchase the PC emulation software to bring up a

live terminal emulation session using the MPA-II. PC emula-

tion software such as DCA’s E78 for MPA-II IRMA mode,

one of IBM’s PC 3270 emulation programs for MPA-II IBM

mode, DCA’s EMU for MPA-II ALEC mode, or any of the

third party vendors which support either the IRMA, IBM or

ALEC emulation card interface modes, including SIMPC

MASTERTM by SIMWARE, RELAY GoldÉ by RELAY Com-

munications, and CrossTalkTM MK.4 by Digital Communica-

tions Associates, can be used with the MPA-II.

DP8344B BCP

The DP8344B BCP is a communications processor de-

signed to efficiently process IBM 3270, 3299 and 5250 com-

munications protocols. A general purpose 8-bit protocol is

also supported.

The BCP integrates a 20 MHz, 8-bit, Harvard architecture,

RISC processor and an intelligent, software-configurable

transceiver on the same low power microCMOS chip. The

transceiver is capable of operating without significant proc-

essor interaction, releasing processor power for other tasks.

Fast, flexible interrupt and subroutine capabilities with on-

chip stacks make the power readily available.

The transceiver is mapped into the processor’s register

space, communicating with the processor via an asynchro-

nous interface which enables both sections of the chip to

run from different clock sources. The transmitter and receiv-

er run at the same basic clock frequency although the re-

ceiver extracts a clock from the incoming data stream to

ensure timing accuracy.

The BCP is designed to stand alone and is capable of imple-

menting a complete communications interface, using the

processor’s spare power to control the complete system.

Alternatively, the BCP can be interfaced to another proces-

sor with an on-chip interface controller arbitrating access to

data memory. Access to program memory is also possible,

providing the ability to softload BCP code. The MPA-II im-

plements these features.

A simple line interface connects the BCP to the communica-

tions line. The receiver includes an on-chip analog compar-

ator suitable for use in a transformer-coupled environment,

although a TTL-level serial input is also provided for applica-

tions where an external comparator is preferred.

A typical system is shown inFigure 1-1. Both coax and twin-

ax line interfaces are shown, as well as an example of the

(optional) remote processor interface.

For a detailed discussion on the BCP refer to the DP8344B

Biphase Communications Processor data sheet.
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FIGURE 1-1. Block Diagram of Typical BCP System

2.0 OPERATION

System Requirements

THE MPA-II system implements both 3270 and 5250 termi-

nal emulation using the DCA and IBM industry standard in-

terfaces. Note that the MPA-II system emulates the hard-

ware and link-level firmware portion of the DCA and IBM

interfaces. This allows the MPA-II system to run with a vari-

ety of emulators. For example, the DCA emulator system for

the 3270 environment is called IRMA. IRMA consists of a

full sized PC board along with its link-level firmware, and the

PC emulator software ‘‘E78.EXE’’. The MPA-II system re-

places the IRMA PC board and its link-level firmware.

Therefore, the MPA-II system, when configured correctly,

appears in every way to the emulator, E78, to be the actual

IRMA hardware/link-level firmware portion of the DCA emu-

lator system for the 3270 environment. Thus to operate the

MPA-II system in a live communication system, a PC emula-

tion program is required; for example DCA’s E78.EXE. In

DCA interface modes the emulators are: ‘‘E78’’, for the

3270 IRMA system; and ‘‘EMU’’, for the 5250 Smart Alec

system. In the IBM interface mode the emulators are

‘‘PC3270’’ for the 3270/3299 CUT environment and

‘‘PSCPG’’ for the 3270/3299 DFT environment. Any emula-

tor compatible with one of the emulators listed above can

be used to achieve terminal emulation using the MPA-II sys-

tem.

The system requirements for using the MPA-II are depen-

dent upon which interface the MPA-II is emulating. In DCA

interface modes, a PC interrupt is not used. However, in the

IBM interface mode, a PC interrupt is required. The PC inter-

rupt level is selected as follows: IRQ2 is selected with jump-

er JP6; IRQ3 by jumper JP4; and IRQ4 by jumper JP5. The

factory configuration selects the PC interrupt level IRQ2.

To support the IBM interface mode, the MPA-II utilizes an 8k

block of dual-port RAM. This RAM must be located some-

where in the PC’s memory space. The default location in PC

memory is CE000. This location can be relocated by writing

the upper 8k byte boundary to I/O location 2D7h or by using

the MPA-II Loader program (LD).

The I/O space requirements, for any interface mode, are

the total of the I/O space requirements for the MPA-II.

This means that the I/O locations 220h–22Fh and 2D0h–

2DFh are required for the MPA-II.

For execution space, the LD requirements are minimal (less

than 64k). The amount of free RAM available for a PC emu-

lator depends on the particular emulation package (i.e., E78,

EMU, or IBM PC 3270, etc . . . ). The MPA-II system does

not use any resident software of its own accord.

In summary, the Multi-Protocol Adapter II Design/Evaluation

Kit contains the hardware, software and the MPA-II System

User Guide and Technical Reference to aid designers in

development of peripheral devices and network interfaces

based on the DP8344. The following items are not included

in the MPA-II system and therefore MUST be provided by

the user to use the MPA-II in a live terminal emulation ses-

sion:

Ð IBM PC XT/AT or compatible

Ð PC-DOS version 3.0 or higher

Ð PC emulation software such as DCA’s E78 for MPA-II

IRMA interface mode, one of IBM’s PC 3270 emulation

programs for MPA-II IBM interface mode, DCA’s EMU

for MPA-II ALEC interface mode, or any of the third party

vendors which support either the IRMA, IBM or ALEC

emulation card interface modes, including SIMPC MAS-

TER by SIMWARE, RELAY Gold by RELAY Communi-

cations, and CrossTalk MK.4 by DCA.
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Ð Link to an IBM 370 class mainframe (for example,

through the IBM 3174/3274 controllers) for 3270/3299

connectivity; or a link to a System 3X, or AS/400 for

5250 connectivity.

Requirements for Design Development

To create the software design environment for leveraging

off the MPA-II source code, the following software must be

purchased:

Ð National Semiconductor’s DP8344 Assembler System,

DP8344ASM1.2

Ð Microsoft’s C 5.1 Optimizing Compiler for the IBM PC

Ð Microsoft’s Macro Assembler 5.1 for the IBM PC

The minimum hardware requirements to set up a hardware

evaluation and design environment for creating virtually any

end product (terminal, printer, protocol converter, multiplex-

er, gateway, etc.) are an IBM PC/XT, IBM PC/AT or com-

patible and the MPA-II PC board.

Useful Tools

The tools listed in this section will greatly assist in the de-

sign process:

Ð Azure Technologies Coax Scope (or Twinax Scope) for

monitoring and analyzing data transmitted on 3270 Coax

Type ‘‘A’’ media (or on IBM System 3X or AS400 Twinax

media).

Ð Capstone Technology CT-104 BCP Demonstration/De-

velopment Kit. This kit includes a development board

with a 22 square inch logic prototype area and a 3

square inch line interface prototype area. Additionally,

the kit supplies a Monitor/Debugger which features a

simple operator interface, single step program execution

and software break-points.

Ð CT-106 Enhanced Interactive Coax-A Controller, EICC,

(or the CT-103 Interactive Twinax Controller, ITC) by

Capstone Technology allows issuing specific 3270 (or

5250) instructions to a Device Under Test in place of the

traditional mainframe and 3X74 controller operations (or

the System 3X or AS400 controller operations).

Ð Logic Analyzer (National Semiconductor has an Inverse

Assembler for the BCP which requires one of the follow-

ing Hewlett Packard Logic Analyzer Models: HP1650A,

HP1651A or an HP16500A with an HP16510 State/Tim-

ing Card).

See Section 3.0, Development Environment for a descrip-

tion of how these tools were used in developing the MPA-II

system.

MPA-II Installation

The first step in using the MPA-II is installing the MPA-II

circuit board in an IBM PC/XT, PC/AT or compatible. The

MPA-II installs in the usual way: please be sure that the

power is OFF, that the system unit is unplugged, and that

proper grounding techniques are used.

# Remove the cover by following the directions supplied by

the manufacturer.

# Remove the end plate from the system unit in the slot

desired for the MPA-II.

# Remove the MPA-II from its anti-static bag, and hold it by

the edges.

# If the MPA-II will be used for Twinax operation, determine

if the MPA-II will operate in pass-through or terminate

mode. If it is NOT the terminator, remove jumpers JP2

and JP3. The factory default is terminate.

# Install the MPA-II in an open PC bus slot.

# Replace the screw from the end plate previously re-

moved to hold the MPA-II firmly in place. A good electri-

cal connection here is important as it provides shield

ground for the cables.

# Close the system unit and replace all screws, etc . . .

according to the manufacturers instructions.

# For 3270/3299 operation, install any 3270 coax type ‘‘A’’

port cable to the rear BNC/Twisted Pair connector.

# For 3270/3299 twisted pair operation, solder any 24

AWG unshielded twisted pair cable to the ADC Twisted

Pair Plug provided with the MPA-II kit. Then, connect the

Twisted Pair plug to the rear BNC/Twisted Pair connec-

tor on the MPA-II board. Make sure that the other end of

the 24 AWG unshielded twisted pair cable is properly

attached to the controller as a twisted pair cable.

# For twinax operation, install the Twinax Adapter cable to

the MPA-II by inserting the 9 Pin D-Sub-miniature con-

nector onto the mating connector on the rear panel, and

connect the twinax cable(s) to the Tee connector.

Running EmulationÐA Quick Start

To use the MPA-II immediately, follow these instructions.

First, select a PC/XT, PC/AT, or compatible and make sure

that the following I/O addresses, IRQ interrupt, and Memory

addresses are unused in that PC:

I/O: 0220–022F and 02D0–02DF

IRQs: IRQ2

Memory: Segment CE00

Next, install the MPA-II hardware into the PC. Then, change

the default DOS drive to A:, insert the distribution disk la-

beled DISK 1 into drive A:, and type at the DOS prompt:

SETUP C:

where c: is the target hard disk drive. This will install the

MPA-II software onto the PC’s hard disk. Next, change the

default DOS drive to the hard disk and change the default

DOS directory to TMPA. Execute the following program at

the DOS command prompt to verify correct operation of the

MPA-II hardware within the PC:

LD 1LS

If the self test passed then the MPA-II board is operational

within this PC. If it fails, check again for I/O, IRQ, or Memory

address conflicts as each MPA-II is tested before it is

shipped.

Now, install onto the hard disk the PC emulation software of

your choice, such as DCA’s E78 for MPA-II IRMA mode, one

of IBM’s PC 3270 emulation programs for MPA-II IBM mode,

DCA’s EMU for MPA-II ALEC mode, or any of the third party

vendors which support either the IRMA, IBM or ALEC emu-

lation card interface modes, such as SIMPC MASTER by

SIMWARE, RELAY Gold by RELAY Communications, and

CrossTalk MK.4 by DCA. Note that the PC emulation soft-

ware must be supplied by the end user, it is not included as

part of the MPA-II Evaluation Kit.
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Finally, load the MPA-II emulation card with the DP8344AV

microcode using the Loader and then start the PC emulation

program. To use the listed emulator, or equivalent, type at

the DOS prompt when in the TMPA directory:

LD MPA2 -M 4 IRMA ; to use the DCA IRMA

emulator ‘E78‘ or

equivalent

LD MPA2 -M 4 IBM ; to use the IBM emulator

‘PC3270‘ or equivalent

LD MPA2 -M 4 ALEC ; to use the DCA Smart

Alec emulator ‘EMU‘ or

equivalent

Then, change to the PC emulation program directory of the

separately purchased and installed PC emulation software

(see installation instructions of that PC emulation software

for the name of that directory. In this example assume the

directory name is TEMULATOR, and then type the name of

the PC emulator program:

CD TEMULATOR

E78

Your emulator should now be operational.

Invoking the Loader program with no arguments will pro-

duce a short help screen. A detailed help for the Loader can

be accessed using the -h option. Therefore, at the DOS

command line enter:

LD -H

For more information on the Loader program, refer to the

Loader documentation in Section 7.0.

3.0 DEVELOPMENT ENVIRONMENT

The environment used for development of the MPA-II con-

sists of a few readily available, relatively inexpensive tools.

The hardware was first prototyped with the Capstone Tech-

nology CT-104 BCP Demonstration/Development card. The

software was developed with the National Semiconductor

BCP Assembler. It was tested with Capstone’s EICC (En-

hanced Integrated Coax Controller), Capstone’s ITC (Inte-

gral Twinax Controller), and Azure Technologies’ Coax and

Twinax scope products. Debugging was accomplished with

BSID, Capstone’s debugger/monitor which we modified for

use with the MPA-II software model and the MPADB.EXE

debugger included with the MPA-II (see Chapter 6). For par-

ticularly difficult interrupt problems a Hewlett Packard model

16500A Logic Analysis System with a State/Timing card in-

stalled was used to monitor instruction execution and PC

accesses.

The CT-104 board was modified through the wire-wrap area

to approximate the hardware design. This wire-wrap card

allowed us to get a working version of the hardware design

very quickly, since most of the circuitry was already there. In

some development projects, it is often faster to go directly

to pcbs as a prototype run. This process has advantages in

speed when the device is large and complex, but often de-

bugging is quite messy with multi-layer pcbs, not to mention

expensive. Since the CT-104 has the major functional

blocks already and the wire wrap area is large, the wire-

wrap time was minimal, thus allowed us to easily debug the

hardware.

A majority of the logic for the DCA and IBM interfaces is

implemented in Programmable Array Logic. We used the

abel program from DATA I/O to prepare the JEDEC files for

programming the devices.

Software development was done on IBM PCs with the Na-

tional Semiconductor DP8344 Assembler. The assembler

allows relocatable code, equate files, macros, and many

other ‘‘large CPU’’ features that make using it a pleasure.

The modularity of the software design allowed us to use

multiple coders and a single ‘‘system integrator’’ who linked

the modules and handled system debugging. The assem-

bler adapts well to large projects like this because of its

relocation capability. The Microsoft MAKE utility was used

to provide the system integrator with a automated way of

keeping up with source modules’ dependencies and chang-

es. The BRIEFTM text editor from UnderWareTM was used

for editing. This editor allowed us to invoke the National

Semiconductor DP8344 Assembler from within the editor

and to locate and correct bugs quickly. Finally, an ethernet

LAN allowed the software development team to share files

and update each other quickly and efficiently. These tools

are not all necessary, but are common enough to be useful

in illustrating a typical environment.

The BCP’s sophistication and advanced development tools

made the MPA-II development project proceed at a much

greater rate than is possible with other comparable solu-

tions.

Characterization of IBM 3270 and 5250 products was per-

formed by using Capstone’s EICC/ITC to drive the coax/

twinax line and the Azure scopes to monitor the results. In

this way we could stimulate the IBM terminal under con-

trolled conditions, testing most every situation, and then

stimulate the MPA-II under the same conditions to verify

correct functionality.

The debuggers allow a developer to load and run code on

the target system, set breakpoints, examine and modify in-

struction or data memory. Early configurations were accom-

plished using the standard DOS DEBUG tool, but once the

MPA-II Loader program (LD) was operational, configuration

and loading was accomplished through it.

The HP logic analyzer was attached to the target system to

monitor the instruction accesses and data bus activity on

the target card. This information is helpful in finding interrupt

problems that the debugger cannot. Using ICLK from the

BCP to sample the BCP instruction address and data bus-

ses allows one to monitor instruction execution. Symbolic

disassembly can be done with the DP8344 BCP Inverse As-

sembler, which is a software package for use in an

HP1650A or HP1651A Logic Analyzer, or in an HP 16500A

Logic Analysis System with an HP 16510A State/Timing

Card installed. The inverse assembler was developed by

National Semiconductor to allow disassembly of the

DP8344 op-code mnemonics. The inverse assembler pro-

vides the real time sequence of events by displaying on the

HP Logic Analyzer’s screen the actual execution flow that

occurred in the system being developed with the DP8344.

4.0 SYSTEM OVERVIEW

The MPA-II addresses a systems market that is driven by

the large installed base of IBM systems throughout the
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world. The IBM plug compatible peripheral and terminal em-

ulation markets are growing along with the success of IBM

in the overall computer market place. The originally proprie-

tary architecture of the IBM peripherals and the subsequent

vague and confusing Product Attachment Information Man-

uals (PAIs) have kept the attachment technology elusive.

The IBM communications system in general is not well un-

derstood. The desire of customers and systems vendors to

achieve more attachment options, however, is significant.

IBM 3270 and 5250 Environments

The study of IBM communications fills many volumes. The

intent of this discussion is not to describe it fully, but to

highlight the areas of IBM communications that the BCP

and MPA-II address. Specifically, these areas are the con-

troller/peripheral links that use the 3270/3299 and 5250

data streams. These links are found in 370 class mainframe

networks and the smaller, mid-range systems such as the

AS/400 and System/3x lines.

The 3270 communications sub-system was developed for

370 class mainframes as demand for terminal support be-

gan to outstrip batch job entry modes. These systems had

large scale networking needs and often needed to support

thousands of terminals and printers. The original systems

were linked together through dedicated telephony lines us-

ing Binary Synchronous Communications (BSC) serial pro-

tocol. The 5250 communications system was developed

originally for the Series 3 and became widely used on the

System/34. The System/34 was a small, office environment

processor with limited networking and terminal support ca-

pabilities. Typical System/34 installations supported up to

16 terminals and printers. The System/36 replaced the Sys-

tem/34 in 1984. Next, IBM introduced the System/38, a

mid-range processor that could rival the 4300 series (small

370 class) mainframes in processing power. The System/36

and 38 machines now have greatly enhanced networking

facilities, and can support up to 256 local terminals. In 1988

IBM released a new mid-range system line called the Ad-

vanced System 400, or AS/400, to replace the aging Sys-

tem/3x line. The Advanced System 400 series is highly

modular and combines the best features of the System/36

and System/38 to produce IBM’s most popular mid-range

system to date. In addition, the AS/400 continues to expand

the role and importance of the 5250 data stream, adding it

to the definition of IBM’s SAA. The 370 class and AS/400

machines have grown closer together through the advent of

SNA (Systems Network Architecture). SNA allows both sys-

tems to function together in an integrated network.

The 3270 and 5250 communications systems evolved at a

time when hardware design constraints were very different

than today. Microprocessors and 1 Mb DRAMs were not

available. Memory in general was very expensive. Telecom-

munications channel sharing between multiple peripherals

was imperative. Even so, fast screen updates and keystroke

handling were necessary. The 3270 and 5250 data stream

architectures were developed to address specific design

goals within IBM’s overall network communications system.

The controller sub-system where they were implemented

has proved adaptable to new directions in SNA and the mi-

gration of processor power out into workstations.

The 3270 and 5250 controller sub-systems split the periph-

eral support tasks into two sections: screen with keyboard,

and host communications interface. Figure 4-1 shows the

3270 Communications System, 5250 is similar. The control-

ler architectures can be thought of as having integral screen

buffers and keyboards for each of their associated terminals

with the caveat that screens and keyboards must be ac-

cessed through a secondary, high speed serial link. Since

the controller views the terminal’s screen buffer as its own,

the controller does not maintain a copy of the information

on that screen. The processing capability of some terminals

is severely limited; the early terminals were state machines

designed to handle the specific data stream. With the ad-

vent of SNA and APPC, (Advanced Peer to Peer Communi-

cations) the intelligence in some peripherals has become

significant. The data streams have essentially remained the

same, with hierarchically structured protocols built upon

them. SNA and these higher protocols will be discussed

later.

TL/F/10488–2

FIGURE 4-1. 3270 Communications System
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Separating the screen buffer and keyboard from the intelli-

gence to handle the terminal addressed several design

goals. Since the terminal needs screen memory to regener-

ate its CRT, the ‘‘regen’’ buffer logically resides in the termi-

nal. The controller need not duplicate expensive memory by

maintaining another screen copy. The data stream architec-

tures implemented with high speed serial links between the

controller and terminal allow fast keystroke echoing. It also

allows fast, single screen updates, giving the appearnace of

good system performance. The terminal screen mainte-

nance philosophy developed with these architectures lends

itself well to the batch processing mode that traditionally

was IBM’s strong suit. The terminal system is optimized for

single screen presentation with highly structured field orient-

ed screens. Data entry applications common in business

computing are well suited to this. Essentially, the architec-

ture places field attributes and rudimentary error checking in

the controller, so that most keystrokes can pass from the

terminal to the controller and back to the screen very quick-

ly without host CPU intervention. Only when particular key-

strokes are sent (AID keys) does the controller read the

contents of the screen fields and present the host with the

screen data.

3270 Data Stream Architecture

The 3270 communications system, as discussed above, is a

single logical function separated into two physical pieces of

hardware connected by a protocol implemented on a high

speed serial link. The terminal hardware has the screen

buffers and keyboard, magnetic slot reader, light pen, etc.,

(i.e., all the user interface mechanisms). The controller has

a communications link to the host CPU or network and the

processing power to administrate the terminal functions.

Controllers typically support multiple terminals and essen-

tially concentrate the terminal traffic onto the host communi-

cations channel. The controller has a secondary commun-

cations system that implements the 3270 data stream proto-

col over coaxial cable at 2.3587 Mb/s. Each peripheral con-

nected to the controller has its own coax port. The coax

lengths may be up to 5000 feet. The protocol is controller

initiated, poll/response type.

The serial protocol organizes data into discrete groups of 12

bits, called a frame. Biphase (Manchester II) encoding is

used to impress the data frames onto the transmission me-

dium. Biphase data have embedded clock information de-

noted as mid-bit transitions. Frames may be concatenated

to form packets of commands and/or data. All transmis-

sions begin with a line quiesce sequence of five biphase

one bits followed by a three bit time line violation. The first

bit of all frames is called the sync bit and is always a logic

one. The sync bit follows the line violation and precedes all

successive frames. Each frame includes a parity bit that es-

tablishes even parity over the 12-bit frame. Each transmis-

sion from the controller elicits a response of data or status

from the device. The response time requirements are such

that a device must begin its response within 5.5 ms after

reception of the controller transmission. Simple reception of

a correct packet is acknowledged by the device with a

transmission of ‘‘TTAR’’, or transmission turn around/auto

response. The controller initiated, poll/response format pro-

tocol addresses multiple logical devices inside the peripher-

al through a three or four bit command modifier. The differ-

ent logical devices decode the remaining bits as their com-

mand sets. Commands to the base or keyboard are decod-

ed as shown in Table 4-1.

TABLE 4-1. 3270 Data Stream Command Set

Command Value Description

READ TYPE: TO BASEÐDevice Address 0 or 1

POLL 01h Respond with Status

POLL/ACK 11h Special Status Acknowledgement Poll

READ STATUS 0Dh Respond with Special Status

READ TERMINAL ID 09h Respond with Terminal Type

READ EXTENDED ID 07h Respond with 4 Byte ID (Optional)

READ ADDRESS COUNTER HI 05h Respond with Address Counter High Byte

READ ADDRESS COUNTER LO 15h Respond with Address Counter Low Byte

READ DATA 03h Respond with Data at Address Counter

READ MULTIPLE 0Bh Respond with Up to 4 or 32 Bytes

WRITE TYPE**: TO BASEÐDevice Address 0 or 1

RESET 02h POR Device

LOAD CONTROL REGISTER 0Ah Load Control Byte

LOAD SECONDARY CONTROL 1Ah Load Additional Control Byte

LOAD MASK 16h Load Mask Used in Searches, CLEAR

LOAD ADDRESS COUNTER HI 04h Load Address Counter High Byte

LOAD ADDRESS COUNTER LO 14h Load Address Counter Low Byte

WRITE DATA 0Ch Load Regen Buffer with Data

* CLEAR 06H Clear Regen Buffer to Nulls

* SEARCH FORWARD 10h Search Forward in Buffer until Match

* SEARCH BACKWARD 12h Search Back in Buffer until Match

* INSERT BYTE 0Eh Insert Byte at Address Counter

START OPERATION 08h Begin Execution of Higher Level Command

DIAGNOSTIC RESET 1Ch Special DFD Reset

*Denotes foreground task

**All WRITE type commands elicit TTAR upon clean reception.
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The 3299 variant on the 3270 data stream uses an addition-

al eight bit address field to address up to 8 more 3270 de-

vices with the same coax cable. Since coax installations are

point-to-point between controller and peripheral, cabling

costs motivated the introduction of 3299 multiplexer/demul-

tiplexers. Using the extended address field, eight devices

can be connected via one coax cable between the control-

ler and the multiplexer. (The 3299 protocol can support up

to 32 devices per line if IBM so chooses.)

Basic 3270 terminals have a structure as shown in

Figure 4-2 . The EAB (Extended Attribute Buffer) is a shadow

of the regen buffer; each location in the regen has a corre-

sponding location in the EAB. The EAB is a separately ad-

dressable device with an address modifier of 7h. The EAB

bytes are used to provide extra screen control information.

In the 3270 world, the screen and field attributes that the

controller uses to format and restrict access to fields on the

screen take up space in the screen. The attribute characters

appear as blanks and cannot be used for displayable char-

acters at the same time. Since the number of permutations

of the 8-bit character byte is limited to 256, the number of

attributes is limited by the size of the displayable character

set. The EAB provides a method to enhance screen control,

with color for instance, without losing character space. The

EAB contains both character attributes, that correspond to

characters in the regen buffer, and field attributes that cor-

respond to attributes in the regen.

Status developed in the terminal, such as keystrokes or er-

rors, are reported in the poll/response mechanism. A POLL

command to the base device with keyboard status pending

elicits a keystroke response in 5.5 ms. The controller then

sends a POLL/ACK command to acknowledge the key-

board status and thus clear it. The terminal then responds

with ‘‘clean’’ status, i.e., TTAR. Controllers poll frequently to

assure that status updates are quick. Outstanding status is

reported in the poll response and in some cases is handled

directly by command modifiers in the POLL command. Key-

strokes are the most command status and hence are ac-

knowledged by the POLL/ACK command. Status reported

in the status register can be read and acknowledged inde-

pendently of the polling mechanism, if desired.

TL/F/10488–3

FIGURE 4-2. 3270 Internal Terminal Architecture
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The SEARCH, INSERT and CLEAR commands require the

terminal to process the command in the foreground while

responding with ‘‘BUSY’’ status to the controller. (The fore-

ground refers to non-interrupt driven routines. Foreground

routines may be interrupted at any time.) Processing these

commands requires substantially more time than the others,

and hence are allowed to proceed without real-time re-

sponse restrictions.

An interesting feature found in terminals and printers is the

START OP command. Originally, this command was used

only by controllers and printers to begin print jobs. Printers

have specific areas within their buffers that are reserved for

higher level commands from the controller. These higher

level protocols started as formatting commands and extra

printer feature control. With the advent of SNA and Distrib-

uted Function Devices, this concept is now used in termi-

nals to pass SNA command blocks to multiple NAUs (Net-

work Addressable Units) within the terminal. These NAUs

are complete terminals, or peers, not just simple user inter-

face devices.

As large mainframe systems proliferated, so did the need to

off-load terminal support from the emerging 370 class main-

frame. The need to ‘‘network’’ both remotely and locally

was becoming apparent. In addition, the need to separate

display and printer interface tasks from applications was

sorely felt. The system developed by IBM eventually be-

came Systems Network Architecture (SNA). The 370 class

machines use secondary processors, or ‘‘front-ends’’ to

handle the networking aspect of large scale systems and

these ‘‘front ends’’ in turn use terminal and printer contro-

lers to interface locally with the user interface devices. The

controllers handle the device specific tasks associated with

interfacing to different printers and displays. The front-ends

handle connecting the routes from terminals or printers to

applications on the mainframe. A session is a logical entity

split into two halves; the application half and the terminal

half, and connected by a virtual circuit. Virtual circuits can

be set up and torn down by the system between applica-

tions and terminals easily, and the location of the specific

terminal or printer is not important. NAUs are merely devic-

es that can be addressed directly within the global network.

Setting up multiple NAUs within a terminal allows all sorts of

gateway opportunities, multi-display workstations, combina-

tion terminal/printers, and other things.

DFD devices can support up to five separate NAUs using a

basic 3270 port. Using 3299 addressing allows eight ses-

sions for each DFD device, or 40 possible NAUs per coax.

By layering protocols over the basic 3270/3299 data

stream, the controller can distribute more of the SNA pro-

cessing to intelligent devices that replace terminals. APPC

will allow more and more functions to be shared by NAUs

that act as ‘‘peers’’ in the network.

5250 Data Stream Architecture

The 5250 data stream architecture has many similarities to

3270, although they are different in important ways. The

primary difference is the multi-drop nature of 5250. Up to

seven devices may be ‘‘daisy chained’’ together on the

same twinax cable. Twinax is a very bulky, shielded, twisted

pair as opposed to the RG/62U coax used in 3270.

The 5250 Bit stream used between the host control units

and stations on the twinax line consists of three separate

parts; a bit synchronization pattern, a frame synchronization

pattern, and one or more command or data frames. The bit

sync pattern is typically five one bit cells. This pattern

serves to charge the distributed capacitance of the trans-

mission line in preparation for data transmission and to syn-

chronize receivers on the line to the bit stream. Following

the bit sync or line quiesce pattern is the frame sync or line

violation. This is a violation of the biphase, NRZI data mid-

bit transition rule. A positive going half bit, 1.5 times normal

duration, followed by a negative going signal, again 1.5

times normal width, allows the receiving circuitry to estab-

lish frame sync.

Frames are 16 bits in length and begin with a sync or start

bit that is always a 1. The next 8 bits comprise the com-

mand or data frame, followed by the station address field of

three bits, a parity bit establishing even parity over the start,

data and address fields, and ending with a minimum of three

fill bits (fill bits are always zero). A message consists of a bit

sync, frame sync, and any number of frames. A variable

amount of inter-frame fill bits may be used to control the

pacing of the data flow. The SET MODE command from the

host controller sets the number of bytes of zero fill sent by

attached devices between data frames.

Message routing is accomplished through the use of the

three bit address field and some basic protocol rules. There

is a maximum of eight devices on a given twinax line. One

device is designated the controller or host, the remaining

seven are slave devices. All communication on the twinax

line is host initiated and half duplex. Each of the seven de-

vices is assigned a unique station address from zero to six;

address seven is used for an End Of Message delimiter, or

EOM. The first or only frame of a message from controller to

device must contain the address of the device. Succeeding

frames do not have to contain the same address for the

original device to remain selected. The last frame must con-

tain the EOM delimiter. For responses from the device to

the controller, the responding device places its own address

in the address field in all frames but the last one. It places

the EOM delimiter in the address field of the last frame.

However, if the response to the controller is only one frame,

the EOM delimiter is used. The controller assumes that the

responding device was the one addressed in the initiating

command.

Responses to the host must begin within 60g20 ms of re-

ceiving the transmission, although some specifications state

a 45g15 ms response time. In practice, controllers do not

change their time out values per device type so that any-

where from 30 ms to 80 ms response times are appropriate.

The 5250 terminal organization is set up such that there are

multiple logical devices within the terminal as in 3270.

These devices are addressed through a command modifier

field in the command frame. The command set for the base

logical devices is shown in Table 4.2. Note that except for

POLLs and ACTIVATE commands, all commands are exe-

cuted in the foreground by the terminals, unlike the 3270

commands. In addition, 5250 terminals only respond after a

POLL or ACTIVATE READ command. The remaining com-

mands are loaded on a queue for passing to the foreground

while the terminal responds with ‘‘busy’’ status to the host

when Polled until all the commands on the queue have

been processed. SeeFigure 4-3 for the 5251 terminal archi-

tecture.
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TABLE 4-2. 5250 Command Set

Queueable Commands

Reads Writes Control Operators

Read Data (Note 1) Write Control Data EOQ Clear

Read Device ID (Note 1) Write Data and Load ADDR Counter Insert Char.

Read Immediate (Note 1) Load Cursor Load Cursor Reg. Move Data

Read Limits (Note 1) Write Immediate (Note 1) Load Ref. Counter Search

Read Registers (Note 1) Write Data (Note 1) Reset

Read Line (Notes 1, 2) Set Mode

Non-Queueable Commands

Responders Acceptors

Poll Activate Write

Activate Read

Note 1: Must be last command loaded onto queue, (EOQ may follow). When Terminal responds to POLL as not busy, then the appropriate ACTIVATE command

must be sent.

Note 2: Not a documented command in the IBM PAI. (See MPA-II code for response.)

TL/F/10488–4

FIGURE 4-3. 5251 Terminal Architecture
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TL/F/10488–5

FIGURE 4-4. MPA-II System Architecture

Terminal Emulation

Personal computers are often used to emulate 3270 and

5250 terminals, and in fact, have hastened the arrival of

APPC functions in both the 3270 and 5250 arenas. Basic

CUT (Control Unit Terminal) emulation is often accom-

plished by splitting the terminal functions into real-time

chores and presentation services. The presentation serv-

ices, such as video refresh and keyboard functions, are han-

dled by the PC, and real-time response generation, etc., by

an adapter card (see Figure 4-4 ). This is a somewhat ex-

pensive alternative to a ‘‘dumb’’ terminal. However, since

PCs are becoming more and more powerful, their use as

peers in SNA networks, as multiple NAUs, or multiple dis-

play sessions in 5250 is very promising. Although primitive

in many ways, the 3270 and 5250 communications system’s

fast response times, unique serial protocols and processing

overhead requirements have traditionally limited the confi-

dence of third party developers in designing attachments. In

addition, the high cost of many early solutions discouraged

many would-be developers.

National Semiconductor opened the 3270 attachment mar-

ket place to many third parties in 1980 with the release of

the DP8340/41 protocol translation chip set. The chip set

removed one of the major stumbling blocks to attachment

designs, although formidable design challenges remained.

Bit-slice or esoteric microcontrollers were still required to

meet the fast response times specified by IBM. The difficul-

ties and costs in designing interface circuitry for these solu-

tions remained a problem. So in 1987 National Semiconduc-

tor introduced the DP8344 Biphase Communications Proc-

essor, BCP. By tightly coupling a sophisticated

3270/3299/5250 transceiver to a high speed RISC based

CPU, National eliminated the last major stumbling block to

IBM connectivity. National also made available for the first

time a single hardware platform capable of supporting the

3270, 3299 and 5250 data streams.

The terminal emulation market opened with Technical Anal-

ysis Corporation’s IRMA product in 1982. The 3278/79 ter-

minal emulator quickly became the industry standard, even

as IBM and many others entered the market place. Techni-

cal Analysis Corporation merged with Digital Communica-

tions Associates in 1983. The 3270 emulation market is now

dominated by DCA and IBM. IBM produced the first 5250

terminal emulator in 1984, although it was a severely limited

product. The market opened up in 1985 with the release of

products by AST Research, IDE Associates, and DCA.

DCA’s Smart Alec was the first product to provide seven

session support, address bidding, and a documented open

architecture for third party interfacing. DCA’s IRMA was re-

leased with a technical reference detailing their Decision

Support Interface. This document along with the source

code to E78 (their PC emulator software) allowed many

companies to design micro to mainframe products using the

DSI as the mainframe interface. IBM provides a technical

reference for their 3278 Entry Level Emulator as well, (see

Appendix C for a complete list of references).

The proliferation of the IBM and DCA interfaces coupled

with the availability of detailed technical information about

them made these interfaces good choices for the MPA-II.

The MPA-II system was designed to do two major functions:

one is emulation of the DCA and IBM emulation products;

the second is to provide a powerful, multi-protocol interface

that will afford greater utilization of the DP8344A. Specifical-

ly, the MPA-II emulates the hardware/firmware resident in

PC add-in boards for 3270 and 5250 emulation products

from DCA and IBM. To do this, we have constructed hard-

ware and firmware that mimics the corresponding system

components of the other emulators. The MPA-II system ap-

pears in every sense to be the board it is emulating, once it

has been loaded and configured.
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The DCA and IBM system organizations are similar. Each

system is divided into two major functional groups: presen-

tation services, and terminal emulation. The terminal emula-

tion function resides entirely on the adapter hardware and

maintains the screen buffers that belong to the host control

unit. The terminal emulation function includes all real time

responses and status generation necessary to appear as a

true 5250 or 3270 device to the host controller. Presenta-

tion services carried out by the PC processor through the

emulator software include fetching screen data from the

adapter, translating it into displayable form, and providing

the data to the PC’s display adapter. In addition, the PC side

presentation services collect keystrokes from the keyboard

and present them to the adapter. The communication be-

tween the PC presentation handler and adapter emulation

function consists mainly of status updates, keystrokes, and

screen data.

DCA

The DCA products use an I/O mapped 4 byte mailbox to

pass information between the PC’s processor and the proc-

essor on the emulation card. The information is encoded in

a kcommandl, [kargumentl], [kargumentl],
[kargumentl] and kstatusl, [response], [response], [re-

sponse] format. Information flow is controlled through a

Command/Attention semaphore implemented in hardware.

Both the Smart Alec (5250) and IRMA (3270) interfaces

have command sets that include reading and writing the

screen buffers maintained on the adapter boards, sending

keystrokes, and passing display information such as cursor

position and general screen modes. The interfaces are both

used in a polled manner, although both are capable of gen-

erating interrupts to the PC processor.

Both Smart Alec and IRMA have Signetics 8X305 proces-

sors that run the terminal emulation functions and interface

to the PC presentation services. The PC function initiates

commands and status requests by writing the appropriate

value into the mailbox and setting the Command sema-

phore. The semaphore is then polled by the PC for a change

in state that signals completion of the command and signals

that valid response data is in the mailbox. The PC will poll

for a specific amount of time before assuming a hardware

malfunction has occurred. The 8X305 processors have no

interrupt capabilities and handle all terminal emulation sub-

tasks in a polled manner. The PC interface tasks are the

lowest priority of all. The 8X305 may initiate information

transfer to the PC by posting the Attention semaphore,

and/or setting a PC interrupt, although this is not generally

done. Both the Smart Alec and IRMA interfaces are imple-

mented with 74LS670 dual-ported register files so that

reads and writes from each processor are directed into sep-

arate register files.

DCA interfaces were designed for compatibility at the ex-

pense of interface through-put. The small I/O requirements

and the fact that interrupts to the PC are not necessary

allow the interfaces to install easily in most environments.

The IRMA Decision Support Interface (DSI) utilizes eight I/O

locations at 220h–227h. Smart Alec resides in I/O locations

228h–22Fh. All screen data and status information must

pass through these mailboxes with the semaphore mecha-

nism. This makes repainting the entire screen very slow.

Both IRMA and Smart Alec utilize different schemes to re-

duce the necessity of reading entire screen buffers often.

IRMA maintains a screen image in PC memory that is used

in conjunction with a complex algorithm to determine which

lines of the screen to update. Smart Alec maintains a 16

entry FIFO queue that contains screen modification informa-

tion encoded in start/end addresses. This information is

processed to decide which screen locations should be up-

dated.

IBM

The IBM system organization, in general, is very similar to

the DCA systems. The major differences lie in the interface

implementations. The IBM system utilizes RAM dual-ported

between the PC processor and the adapter board processor

to transfer screen data from the adapter. In addition, IBM

does not use an interpreted command/response I/O inter-

face. The IBM interface uses 12 I/O locations with individual

bits defined in each register for direct status availability. The

status bits consumed by the PC presentation services are

cleared through a ‘‘write under mask’’ mechanism. Consum-

able bits are read by the PC and, when written to, corre-

sponding status bits are cleared by one bits in the value

written. Reading a register of consumable bits and writing

that value back out clears the bits set in that register. The

interface can operate in a polled manner, although it typical-

ly is operated via interrupts. One register in the interface is

dedicated to interrupt status (ISRÐInterrupt Status Regis-

ter, 2D0h) and when the PC is interrupted, the particular

status change event is indicated in that register. Buffer mod-

ifications are indicated through a status change in the I/O

interface which also provides an indication of the block

modified. The actual screen data is in 8k of dual-port RAM

and may be read by the PC when the ‘‘Buffer-Being-Modi-

fied’’ flag is cleared. This type of interface affords the IBM

products great speed advantages, although limits compati-

bility with other add in PC boards.

Screen Presentation

Both the IBM and DCA systems present EBCDIC data to the

PC presentation services for display. The presentation soft-

ware must translate the EBCDIC codes into ASCII for PC

display adapters. In addition, the screen attribute schemes

for PCs and mainframe terminals differ greatly. The presen-

tation services must provide the necessary display interface

to emulate the ‘‘look’’ of the terminal that is being emulated.

The PC keyboard scan codes are incompatible with main-

frame scan codes, and must be translated for the keyboard

type of the terminal being emulated. Both systems provide

advanced PC functions such as residency, keyboard remap-

ping, and multiple display support.

MPA-II

The MPA-II implements emulation of both the DCA and IBM

interfaces. Therefore, an overall architecture similar to the

DCA and IBM systems is employed (see Figure 4-5 ). The

logical split in functionality between the PC and the adapter

board processors is roughly analogous; the PC provides

presentations services and the adapter hardware/firmware

handles the host terminal emulation tasks (see Figure 4-6 ,

4-7 and 4-8 ). The BCP on the adapter board is soft-loaded

by the PC and configured to operate in one of the protocols

and interface modes. The adapter board then assumes the

hardware emulation tasks of the physical interfaces of the

DCA or IBM products. At this time the DCA, IBM (or a

DCA/IBM compatible) emulation program is executed on

the PC. To this program the MPA-II appears to be a DCA or

IBM emulation card.
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The MPA-II hardware consists of a DP8344A running at

18.89 MHz with 8k c 16 bits zero wait state instruction

memory, 32k c 8 bits one wait state data RAM, a

coax/twisted pair 3270/3299 front end, a 5250 twinax front

end, and a BCP software controlled PC interface that en-

ables the MPA-II to appear as a variety of industry stan-

dards interfaces. The BCP Remote Interface Configuration

register (RIC) is located in PC I/O space at 2DFh (see Fig-
ure 4-9 ). This register facilitates downloading of instructions

and data memory from the PC, starting and stopping the

processor, and configuring the low level interface mode.

The MPA-II utilizes the low level fast buffered write/latched

read interface mode.

The MPA-II Configuration register (seeFigure 4-10 ) is locat-

ed at I/O location 2DCh and controls which type of high

level interface the MPA-II board is operating in (i.e., IRMA,

Smart Alec, IBM, coax, etc.). Changing the value of this reg-

ister while the MPA-II is operating will cause the MPA-II to

change mode, resetting the emulation session in progress.

In addition, a simple MPA-II command set can be issued

through the MPA-II Configuration register and the MPA-II

Parm/Response register (I/O location 2DBh) for use as a

passive debugging aid.

When either of the DCA modes are enabled, the I/O block

220h–22Fh is decoded, split into read and write banks, and

mapped into the BCP’s data memory. For the IBM mode,

the I/O block from 2D0h–2DAh is decoded and the Write-

Under-Mask function is enabled. In addition, the 8k of dual-

port RAM is defined according to the IBM interface mode.

For CUT emulation, only the lower 4k of the dual-port RAM

is used. For DFT mode, the entire 8k block may be utilized.

Neither DCA mode utilizes dual-port memory, but it is still

available to the PC so the MPA-II firmware maps screen

information there. Note that the MPA-II hardware always de-

codes I/O addresses 220h–22Fh and 2D0h–2DFh regard-

less of the PC interface selected.

The MPA-II interface mimics the DCA and IBM interfaces by

interrupting the BCP when write accesses occur to the I/O

space of interest (220h–22Fh, 2D0h–2D6h and 2D8h–

2DEh) while holding off any other PC accesses to the

MPA-II board, thus ‘‘locking out’’ the PC. The BCP monitors

these I/O accesses through the use of the ‘‘MPA-II Access’’

register contained in a PAL. This register captures the loca-

tion of the last PC I/O access. The BCP’s I/O access inter-

rupt routines then get control and emulate in software

DCA’s or IBM’s I/O hardware functions (such as IBM’s write

under mask function). At the end of interrupt processing, the

software ‘‘unlocks’’ the PC, allowing access once again to

the MPA-II’s memory and I/O registers by the PC. The ex-

treme speed of interrupt processing by the BCP makes this

feasible. Accesses of the dual-port RAM by the PC are regu-

lated by the interface only in assuring that simultaneous

accesses by the PC and BCP do not occur. The location of

the dual-port RAM in the PC memory map is determined by

a value written into the 2D7h I/O location. This ‘‘Segment’’

register is the upper 7 bits of the PC address field and is

compared with the address presented during PC memory

cycles for decoding. Writing different values to this register

moves the decoded memory block anywhere within the PC

memory space to avoid conflicts. The pacing of dual-port

accesses is handled by provisions in the emulated interface

definition.

The PC I/O map for the MPA-II adapter board is as follows:

TABLE 4-3. MPA-II PC I/O Map

220hÐ IRMA Command/Status Register

221hÐ IRMA Argument/Response

222hÐ IRMA Argument/Response

223hÐ IRMA Argument/Response

224hÐ Decoded, Unused

225hÐ Decoded, Unused

226hÐ IRMA Command/Attention

Semaphore Control

227hÐ IRMA Command/Attention Semaphore

228hÐ Smart Alec Command/Status Register

229hÐ Smart Alec Argument/Response Register

22AhÐ Smart Alec Argument/Response Register

22BhÐ Smart Alec Argument/Response Register

22ChÐ Decoded, Unused

22DhÐ Smart Alec Control Register

22EhÐ Smart Alec Control Register,

Command/Attention Semaphore

22FhÐ Smart Alec Strobe

2D0hÐ IBM Interrupt Status Register

2D1hÐ IBM Visual/Sound

2D2hÐ IBM Cursor Address Low

2D3hÐ IBM Cursor Address High

2D4hÐ IBM Connection Control

2D5hÐ IBM Scan Code

2D6hÐ IBM Terminal ID

2D7hÐ IBM/MPA-II Dual-Port Segment

Location Register

2D8hÐ IBM Page Change Low

2D9hÐ IBM Page Change High

2DAhÐ IBM 87E Status

2DBhÐ MPA-II Parm/Response Register

2DChÐ MPA-II Configuration/Command Register

2DDhÐ Decoded, Unused

2DEhÐ Decoded, Unused

2DFhÐ MPA-II RIC Register
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TL/F/10488–15

FIGURE 4-5. PC Terminal Emulation Architecture

TL/F/10488–9

FIGURE 4-6. PC Software
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TL/F/10488–10

FIGURE 4-7. PC Interface

TL/F/10488–11

FIGURE 4-8. Emulation Card
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TL/F/10488–6

FIGURE 4-9. BCP Remote Interface Configuration Register

TL/F/10488–7

FIGURE 4-10. MPA-II Configuration Register

MPA-II Firmware Organization

The BCP firmware provides true 5250, 3270, and 3299 emu-

lation support, as well as providing the intelligence behind

the PC interface. To do this, a software architecture radical-

ly different than the DCA or IBM systems was developed.

The real power of the BCP lies in its rich instruction set and

full featured CPU. Taking advantage of that power, the BCP

firmware is interrupt driven and task oriented. It is not truly

multi-tasking, although the firmware logically handles multi-

ple tasks at once. The firmware basically consists of a round

robin task scheduler (called the Kernel) with real-time inter-

rupt handlers to drive the system. Events that happen in

real-time, such as accesses by the PC or host commands,

schedule tasks to complete background processing. Real-

time status and responses are developed and presented in

real-time.

The BCP firmware uses a number of memory constructs

known as templates to handle its data structures. The pri-

mary construct is the DCP, or Device Control Page. The

DCP is a 256 byte block that contains all global system

variables. The DCP contains a map of which SCPs, or Ses-

sion Control Pages are active. Each SCP is 256 bytes and

contains all variable storage for a particular session; 3270,

5250, or 3299. Each SCP has a corresponding screen buff-

er, and optionally an EAB buffer (there is no EAB in 5250

terminals).

MPA-II Performance

The BCP is running at 18.8696 MHz with no instruction

memory wait states and one data memory wait state. This

yields an average instruction cycle time of 160 ns, a maxi-

mum instruction cycle time of 212 ns and a maximum inter-

rupt latency of 237 ns (excluding wait states due to PC ac-

cesses). Although such performance may seem excessive,

remember that the 3270 protocol requires a 5.5 ms re-

sponse time and that the newer controllers sometimes send

commands less than 10 ms apart. These commands must

be executed in real-time, so for short periods of time, ex-

tremely high performance is required. In the MPA-II, the

BCP also has other real-time demands on it. For example,

the MPA-II requires the BCP to perform DCA or IBM I/O

hardware emulation real-time in firmware. Furthermore, both

the controller and the PC are asychronous events which

can (and do) occur at the same time.

Using Hewlet Packard’s 16500A Logic Analyzer and

10390A System Performance Analysis Software, the

MPA-II’s worse case performance scenario was analyzed.

This scenario consisted of the MPA-II running 3270 with

EAB installed while performing IRMA file transfers using

DCA’s FTCMS software. A special NO-OP routine was add-

ed to the MPA-II software in order to achieve 100% utiliza-

tion of the BCP. The breakdown of relative activity is shown

in Table 4-4.

TABLE 4-4. MPA-II Performance

Coax Related Activity 9%

IRMA Related Activity 10%

Total Activity 19%

As is shown in Table 4-4, the BCP still has over 81% of its

bandwidth free to do additional tasks.

16



Advanced Product Possibilities

With over 81% of the BCP’s bandwidth unutilized, possibili-

ties for advanced 3270/3299 and 5250 devices with excep-

tional overall system performance, advanced features, and

compactness become both realizable and practical. For ex-

ample, if a more efficient PC to MPA-II (BCP) interface was

developed which eliminated the need for the BCP firmware

to emulate I/O hardware, and additional tasks were off load-

ed to the BCP, such as Regen/EAB buffer to PC Screen

buffer translation, then the overall system performance of a

full featured MPA-II CUT mode terminal could rival that of

the most advanced IBM CUT mode terminals. Yet, the PC

memory requirements of such an emulator would be less

than that of the simplest PC emulator on the market today

because the PC software would only need to process key-

strokes and copy the BCP’s translated PC screen buffer

directly into the PC’s screen buffer memory. Furthermore,

advanced features such as 3299 support could be included

without additional hardware costs. All this is possible using

the current MPA-II board without hardware modification be-

cause the MPA-II emulates DCA and IBM interface hard-

ware using BCP software. Adding this new interface into the

product requires only software changes.

5.0 HARDWARE ARCHITECTURE

This chapter focuses on the hardware employed to satisfy

the goals of the MPA-II project. Designed to support both

the coax (3270/3299) and twinax (5250) protocols, the

hardware also allows emulation of the PC interfaces out-

lined in Chapter 2. By taking advantage of the BCP’s power

and integrating the extra logic requirements into program-

mable logic devices, this level of functionality was provided

on a single half-height PC XT/AT card. In an effort to con-

vey the reasons behind specific decisions made in the hard-

ware design, the design methodology is presented from a

‘‘top-down’’ perspective.

Architectural Overview

The MPA-II hardware should be viewed as three conceptual

modules (see Figure 5-1 ), including:

1. BCP minimum system core, consisting of the BCP, in-

struction memory, data memory, clock, and reset logic.

2. PC interface including the PC and BCP memory decode

and interrupts.

3. Coax/twisted pair and twinax front-end logic and connec-

tors.

These module divisions are denoted by the dotted lines

seen in Figure 5-1 . The minimum system core is required,

with some modifications, for any design using the BCP. The

type of bus (PC, PS/2TM Micro ChannelTM, VME, etc.) and

transfer rate requirements dictate the interface logic, which,

for the MPA-II design, is optimized for the PC XT/AT I/O

channel. The front-end logic meets the physical-layer re-

quirements of the 3270 and 5250 protocols.

Since much of the logic external to the BCP is implemented

in programmable logic devices (PALs), these conceptual

partitions overlap at the device level. Although the design

can be implemented in discrete logic, we chose to use pro-

grammable logic devices to shorten development time, de-

crease board real-estate requirements, and maintain maxi-

mum future adaptability. The schematic and the listings de-

scribing the logic embodied in the PALs are in the Hardware

Reference in Appendix A.

TL/F/10488–8

FIGURE 5-1. MPA-II Hardware Architecture
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BCP Minimum System Core

The BCP offers a high level of integration and many func-

tions are provided on-chip; there is, however, a minimal

amount of external logic required. This core is comprised of

the BCP and the external logic require to support the clock

requirements, reset control, Harvard memory architecture,

and multiplexed AD bus (see Figure 5-2 ).

Clock Source

The coax and twinax protocols operate at substantially dif-

ferent clock frequencies (2.3587 MHz and 1 MHz, respec-

tively), therefore two clock sources are required. The BCP

has the software-programmable flexibility to drive both the

CPU and transceiver in the following ways: the clock inde-

pendently divided down to either or both sections, or by two

separate asynchronous clocks (utilizing the external trans-

ceiver clock input, XTCLK). To provide sufficient waveform

resolution, the transceiver must be clocked at a frequency

equal to eight times the required serial bit rate. This means

that an 18.8696 MHz (8 x 2.3587 MHz) clock source is re-

quired when operating in the 3270 coax environment and an

8 MHz clock (8 x 1 MHz) is needed for the 5250 twinax

environment. An 18.8696 MHz clock is also a good choice

for the BCP’s CPU section.

Therefore, in the coax mode, the transceiver and the BCP’s

CPU share the same clock source. To maximize the avail-

able CPU bandwidth in the twinax mode, the 18.8696 MHz

clock source drives the CPU while a TTL clock is used to

drive the BCP’s external transceiver clock input. Therefore,

in the twinax mode, the BCP’s CPU and transceiver sections

operate completely asynchronously.

The 18.8696 MHz clock is provided by the BCP’s on-chip

clock circuitry and an external oscillator. This circuit, in con-

junction with external series load capacitors, forms a

‘‘Pierce’’ parallel resonance crystal oscillator design. The

oscillator is physically located as close as possible to the X1

and X2 pins of the BCP to minimize the effects of trace

inductances. The traces (0.05×) are wider than normal. NEL

Industries makes a crystal specifically cut for the

18.8696 MHz frequency and is the recommended source for

these devices. This crystal requires a 20 pF load capaci-

tance which can be implemented as 40 pF on each lead to

ground minus the BCP/socket capacitance and the trace

capacitance. A typical value for the BCP/socket combina-

tion capacitance is 12 pF. The wide short traces contribute

very little additional capacitance. We therefore chose a

standard value of 27 pF for the discrete ceramic capacitors

C24 and C25, placing them as close as possible to the crys-

tal. The 5.6X pull up resistor tied to X1 is designed to im-

prove oscillator start up under unusual power supply ramp

conditions. This is normally not a problem for PC power sup-

plies so that the resistor could be omitted. The twinax clock

is provided by a standard 8 MHz TTL monolithic clock oscil-

lator attached to the BCP’s external clock input, XTCLK.

The MPA-II runs the BCP at full speed, 18.8696 MHz

(ÀDCR[CCS]Ó e 0), with zero instruction (nIW) and one

data (nDW) wait states, resulting in a T-state of 53 ns. For a

system running the BCP at half speed, 9.45 MHz

(ÀDCR[CCS]Ó e 1), with zero instruction (nIW) and zero

data (nDW) wait states, the T-state would be 106 ns. The T-

state can be calculated using the following equation:

T-state e 1/(CPU Clock Frequency)

TL/F/10488–16

FIGURE 5-2. BCP Core

18



Reset Control

Power-up reset for the BCP consists of providing the de-

bounced, active low, minimum pulse width specification of

ten T-states. Since the BCP powers up in the slowest con-

figuration, a T-state is the period of the oscillator divided by

two, or 106 ns. The external logic must therefore provide a

minimum 1.06 ms reset pulse to the BCP. The MPA-II design

incorporated two reset sources in addition to power-up in-

cluding: the PC I/O channel reset control signal (active

high), and an automatic reset if the digital supply voltage

drops by more than 10%.

We chose the Texas Instruments TL7705A supply voltage

supervisor to monitor VCC and provide the minimum pulse

width requirement. This device will reset the system if the

digital 5V supply drops by more than 0.5V, and keep the

reset asserted until the voltage returns to an acceptable

level. The TL7705A will also assure that the minimum time

delay is met. The time delay is set by an external capacitor

and an internal current source. Since this time delay is not

guaranteed in the data sheet, we chose a 0.1 mF ceramic

capacitor resulting in a typical 1.3 ms reset pulse width. A

0.1 mF ceramic capacitor is connected to the REF input of

the chip to reduce the influence of fast transients in the

supply voltage. The active high PC reset signal is inverted in

the MPA-IIÐAC (MPA-II Auxiliary Control) PAL. The active

low output of the bipolar TL7705A is the MPA-II system re-

set and is pulled up by a 10k resistor for greater noise immu-

nity.

Memory Architecture

The BCP utilizes separate instruction and data memory sec-

tions to overcome the single bus bandwidth bottleneck of-

ten associated with more conventional architectures. In-

struction memory is owned exclusively by the BCP (remote

processor accesses to this memory occur through the BCP,

and only when the BCP is stopped); therefore, the entire

instruction memory/bus bandwidth is available to the BCP.

This architecture allows the BCP to simultaneously fetch

instructions and access data memory, thus load/store oper-

ations can be very quick. It is important to note, however,

that the instruction bus bandwidth does have some depen-

dency on data bus activity. If a remote processor, for in-

stance, is currently the data bus master, execution of an

instruction accessing data memory will be waited, degrading

BCP CPU performance.

The speed of both instruction and data memory accesses is

limited by memory access time. Since the BCP features pro-

grammable memory wait states, the designer has the flexi-

bility of choosing memories strictly on a cost/performance

trade-off. No external hardware is required to slow the BCP

memory access down (unless the maximum number of pro-

grammable wait states is insufficient, in which case the

WAIT input of the BCP can be utilized). Instruction memory

access time has the biggest impact on system performance

since every instruction executed involves an access of this

memory. Each added instruction wait state degrades zero-

wait state performance by approximately 40%. Load/store

operations occur less frequently in normal code execution,

therefore relatively slower data memory can often be uti-

lized. Each additional data memory wait state degrades the

performance of a zero-wait state data access by about

33%.

Instruction Memory

A design goal for the MPA-II project dictated our choice of

static RAM for instruction memory, since the ability to soft-

load code from the PC was necessary. Furthermore, to max-

imize CPU bandwidth we chose zero wait-state instruction

memory operation. When the hardware was designed, in-

struction memory requirements were estimated at 4k to 8k

words, therefore two 8k x 8-bit static RAMs were employed.

Instruction memory access time requirements can be calcu-

lated using Parameter 1, the Instruction Memory Read Time,

Table 5-5, Instruction Memory Read Timing, of the Device

Specifications section of the DP8344B Data Book.

(nIW a 1.5) T a (b19) ns

Where: nIW is the number of instruction wait-states, and

T e 53 ns. Therefore the maximum access time is (0 a 1.5)

53 b 19 e 60.5 ns. For the MPA-II system running the BCP

at half speed (T-state e 106 ns), the maximum access time

is (0 a 1.5) 106 b 19 e 140 ns. Comparing both the half

and full speed maximum instruction memory access time

requirements, it is apparent that 55 ns RAMs are appropri-

ate. A complete instruction memory timing analysis is pro-

vided in Appendix B.

Reads of instruction memory by the remote system occur

through the BCP and look identical in timing to the local

(BCP) reads on the instruction bus.

Soft-Load Operation

The BCP cannot modify instruction memory itself. Memory

is only written through the BCP (while the BCP is stopped)

from the remote system (PC), and is referred to as ‘‘soft-

load’’ operation. Since the BCP has an 8-bit data path and a

16-bit instruction bus, instructions are read or written by the

PC in two access cycles; the first cycle accessing the low

byte of the instruction, the second cycle accessing the high

byte of the instruction and automatically incrementing the

Program Counter after the instruction has been accessed.

See the Remote Interface section of the DP8344B Data

Book for a complete description of instruction memory ac-

cesses.

The critical parameter for instruction writes is the minimum

write strobe pulse width of the RAM, which is about 40 ns

for most 8k x 8 55 ns static RAMs (55 ns RAM specifica-

tions are compared to the BCP minimum requirements since

it represents the worst case). The IWR (BCP Instruction

WRite output, active low) minimum pulse width is calculated

from Parameter 20 (IWR Low Time) in Table 5-22, Fast Buff-

ered Write of IMEM, of the Device Specifications section of

the DP8344B Data Book:

(nIW a 1) T b 10 ns

For soft-loads that occur after reset, the CPU clock is in the

POR half-speed state and the number of instruction and

data memory wait states is a maximum; therefore a T-state

is 106 ns and nIW equals 3; thus, IWR minimum pulse width

is (3 a 1) 106 b 10 e 414 ns. Soft-loads that occur after

the BCP Device Control Register has been initialized to full

speed operation with no instruction wait states represent

the worst case timing of (0 a 1) 53 b 10 e 43 ns, which is

still greater than the 55 ns RAM requirement of 40 ns.
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Other parameters that must be considered are data setup

and hold times for the RAM. The BCP must provide valid

data on the Instruction bus before the minimum setup time

of the RAM and hold the valid data on the bus at least as

long as the minimum hold time. For the RAMs we consid-

ered, these times were 25 ns and 0 ns, respectively. Again,

looking at Table 5-22 (Parameter 19, I valid before IWR ris-

ing), we see that if valid data for the high byte of the instruc-

tion is present on the AD bus in time, the BCP is guaranteed

to present valid data on the Instruction bus a minimum of

(nIW a 1) T b 18 ns

before the rising edge of IWR. The BCP will hold that data

on the bus for a minimum of 22 ns afterward (see Parameter

18, IWR rising to I Disabled). To see that the minimum set

up time is met for both the half speed POR state and the full

speed operation, note that both (3 a 1) 106 b 18 ns e

406 ns (half speed) and (nIW a 1) 53 b 18 ns e 35 ns (full

speed) are greater than the minimum set up time of the

RAM which was 25 ns. Furthermore, the minimum hold time

of 22 ns, for both half speed and full speed, is greater than

the 0 ns required. Thus, successful operation is assured.

See the MPA-II timing analysis in Appendix B and the PC

interface section in this chapter for a discussion of AD bus

timing.

Data Memory

A considerable amount of data memory was required for the

MPA-II design since the system supports multiple sessions

(see Chapter Six, MPA-II Software Architecture, for more

information). For this reason we specified 32K of 8-bit data

memory).

Data Memory Timing

Data RAM can be accessed by both the BCP and the re-

mote system, part of the RAM appears to the remote sys-

tem as dual-ported RAM via the Remote Interface logic of

the BCP. This memory can be both read from and written to

during BCP code execution. Designing in the data RAM is

therefore a more complicated procedure than selecting in-

struction memory. Using 53 ns for the MPA-II T-state and

one for nDW (number of data wait-states) as defined earlier,

we can verify the critical memory parameters by comparing

the results of the calculations against the RAM require-

ments. The 32K x 8, 100 ns static CMOS RAM minimum

requirements for the critical parameters are compared

against the BCP’s minimum specifications and are listed in

Table 5-1. For a complete description of the BCP minimum

specifications, see Appendix B.

TABLE 5-1. Data Memory Timing

Parameter RAM BCP*

Address Setup 0 47.5

Chip Select to Write End 90 122.5

Access Time 100 108.5

Write Strobe Width 60 96

Data Setup 40 86

Data Hold 0 31.5

ÐAll units are in nanoseconds.

*53 ns T-state with one data wait state.

Again, the numbers reveal the validity of the hardware de-

sign for local (BCP) accesses of data memory. Please see

the PC interface section for timing related to the remote

access. Also, an MPA-II timing analysis of both 106 ns and

53 ns T-states is provided in Appendix B.

Multiplexed AD Bus

The BCP’s 8-bit data bus is multiplexed with the lower 8-bits

of the data memory address bus to lower pin count require-

ments. This necessitates de-multiplexing the Address/Data

bus externally. The timing of the ALE (Address Latch En-

able) control signal relative to the AD bus is optimized for

use with a standard octal latch, therefore a 74ALS573 is

employed to provide separate Address and Data buses for

the system. The TRI-STATE buffers of the latch are enabled

by the BCP output LCL (active low) such that if a remote

access occurs this device will TRI-STATE.

PC Interface

As mentioned earlier, the MPA-II supports the industry-stan-

dard interfaces associated with coax and twinax terminal

emulation. These include:

COAX:

IBM 3270 Emulation Adapter Interface

DCA Decision Support Interface (IRMA)

TWINAX:

DCA Smart Alec Interface

These interfaces share some common elements, but have

many differences as well. The IBM adapter employs an in-

terrupt-driven interface, IRMA’s PC interface is a polled im-

plementation, and Smart Alec, while operating in a polled

environment, has the capability of interrupting the PC as

well. The IBM Emulation Adapter’s control registers are

mapped into the PC’s I/O space; the screen buffer is

mapped into the PC’s memory space and is relocatable

(see Table 5-2). The two DCA interface occupy a contigu-

ous block of PC I/O space only; there screen buffer(s) are

not directly visible to the PC. These architectures are ex-

plored in much greater detail in Chapter 6 of this manual.

Note than the MPA-II utilizes some of the IBM reserved reg-

isters for MPA-II usage. These MPA-II registers may be easi-

ly relocated by changing the MPA-II PAL equations.

TABLE 5-2. PC Mapping of the MPA-II Board

Description
Address

I/O Memory

IBM Interface:

Remote Interface 02DF*
Control (RIC)

Decoded and Unused 02DD* b 02DE*
MPA-II Configuration 02DC*

Register

MPA-II Parm/Response 2DB*
Register

IBM Control Registers 02D0–02DA

IBM Screen Buffer CE000

(Relocatable)

DCA DSI Interface:

IRMA 0220–0227

Smart Alec 0228–022F

*Reserved IBM register spaces.
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The MPA-II design had to encompass all of these imple-

mentations. This was accomplished by taking advantage of

the underlying similarity of the interfaces as well as the

speed and flexibility of the BCP. We minimized chip count

and board space requirements through judicious partitioning

of the PC address decode while emulating in BCP software

the interface registers in data RAM. Refer to Figure 5-3 for

an overview of the hardware architecture employed in im-

plementing the BCP/PC interface.

The PC address decoding is partitioned into sections that

first check for accesses to the relocatable memory block

and accesses to the I/O register addresses of the different

interfaces. These addresses are then translated into the

proper area of the BCP data memory. The BCP data memo-

ry map is divided in half, the lower 32k is contained in the

single 32k x 8 RAM described earlier, and the upper 32k is

decoded for several functions (see Table 5-3). The decod-

ing sections feed into a control section that makes the final

decision on whether (or not) the current PC bus cycle is an

access of one of the emulated systems. It should be noted

that the type of emulation is not selectable; the MPA-II

board will respond to accesses of all of the PC addresses

detailed in Table 5-2. The MPA-II will not run concurrently

with any of the boards it emulates, or any other board that

overlaps with these same addresses.

The BCP’s RIC (Remote Interface Control) register is

mapped into the PC’s I/O space. The PC can always find

this register by reading I/O hex address 02DFh. The DCA

interfaces (IRMA and Smart Alex) occupy PC I/O addresses

220–22Fh. The IBM interface occupies PC I/O addresses

2D0–2DFh for register space, and a relocatable 8k block of

memory for the screen buffer(s).

TABLE 5-3. BCP Data Memory Map

Description BCP Address (A15–0) PC I/O Address

Auxiliary Control Register (mpaÐdata) A000–BFFF

PC Access Register (mpaÐaccess) 8000–9FFF

*IBM API Registers 7FD0–7FDF 2D0–2DF

DCA API (IRMA and Smart Alec) 220–22F

PC Writes: 7F20–7F2F

PC Reads: 7E20–7E2F

BCP-Owned Memory Area 2000–7E1F

*Screen Buffer Area 0000–1FFF Relocatable

*Dual-Ported RAM (Visible to Both BCP and PC)
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FIGURE 5-3. BCP/PC Interfaces

PC I/O and Memory Address Decode

The BCP CPU and Remote Interface units operate autono-

mously. Since the I/O registers are mapped into the BCP’s

data RAM and the CPU has to know which register was

written to by the PC, external logic is provided that latches

the low six bits of the address bus during remote accesses.

The BCP can read this external register to identify which

emulated register has been modified and take the appropri-

ate action.

The relocatable memory segment location where the

screen buffer of the IBM interface is located is decoded in

discrete hardware consisting of the following components:

U15, a 74ALS521 magnitude comparator that compares the

PC memory address accessed against the stored value of

the relocatable memory segment address and asserts the

signal MMATCH (active low) when a match occurs; the Seg-

ment Register U16, a 74ALS574 containing the stored

memory address used to identify the memory segment of

the screen buffer block. The relocatable block of data mem-

ory defaults to base address CE000 on the IBM adapter. In

the MPA-II System, the base address of the memory seg-

ment must be loaded into the segment register (PC I/O ad-

dress 2D7h) before the PC can access the IBM screen buff-

er area in dual-port RAM. This Segment Register is not ac-

cessible by the BCP. It is only accessed by a PC write to I/O

location 2D7h. A PC read of the I/O address 2D7h access-

es a corresponding RAM location which is written in the

same manner as all writes to the IBM I/O locations 2D0–

2DAh, as described next.

Accesses to the I/O locations used by the IBM Interface

(200h–2DFh) and the DCA DSI Interfaces (220–22Fh) are

decoded as follows: PC address lines A12–A4 are brought

into the MPA-IIÐPD (PC Address Decode) PAL-U9 for de-

code. PC address lines A14–A16 and A17–A19 are first

decoded with three input NOR gates, U5B and U5C, which

are in a 74ALS27. The outputs of both of these NOR gates

are then brought into the MPA-IIÐPD PAL for further de-

code. Note that PC address lines A13 and A0–A3 are not

decoded at this point. A preliminary decision is made by the

MPA-IIÐPD Pal to indicate if the IBM or DCA interfaces are

being accessed. The outputs DCAÐREG and IBMÐREG
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indicate which, if any, emulated interface is being accessed.

These signals are used in conjunction with MMATCH, the

PC address lines A13 and A0–A4, and the read and write

strobes of the PC in U7, the MPA-IIÐRD (MPA-II Register

Decode) PAL to make the final determination on the validity

of the access. If it is an emulated interface I/O register ac-

cess, IOÐACCESS will be asserted back to the MPA-IIÐPD

PAL. This PAL will in turn translate the access to the top of

the BCP data RAM where the I/O register page is located

(see Table 5-3). Note the differentiation in Table 5-3 be-

tween PC reads and writes for the DCA translation. This is

required to emulate the dual-ported register files used on

the DCA boards.

If the PC access is to the IBM screen buffer, IOÐACCESS

will not be asserted out of the MPA-IIÐPD PAL. The MPA-

IIÐPD PAL will, when LCL goes high on the remote access,

force A15 low and pass the buffered address lines A12–8

onto the data RAM. Address lines A14 and A13 are imple-

mented through U8, MPA-IIÐCT (MPA-II Control Timing)

PAL. PC address lines A7–0 are buffered by U14, a

74ALS541 and passed onto the BCP data memory address

lines AD7–0 when LCL switches high for the remote ac-

cess. The data memory RAM’s chip select, DMEMÐCS, is

asserted on any remote access. If the BCP’s LCL output

goes high, DMEMÐCS will be asserted low; on a local ac-

cess, this signal will be asserted if the BCP’s A15 signal is

low (RAM occupies the lower half of the BCP’s memory

map).

This scenario for remote accesses works because RAM is

the only element external to the BCP that is visible to the

PC. If the PC is accessing the BCP (RIC, the Program Coun-

ter, or Instruction Memory), the BCP’s READ/WRITE

strobes will not be asserted to the data RAM. On a PC ac-

cess of the BCP’s RIC register, for example, data RAM will

be selected and the CMD (CoMmanD) output of the MPA-

IIÐRD PAL will be asserted to the BCP, selecting the BCP’s

RIC. No bus collision will occur on a read or data inadver-

tently destroyed on a write because the BCP will not assert

the external strobes on an internal register access.

The MPA-IIÐRD PAL also combines the memory and I/O

read/write strobes to form the REMRD/REMWR strobes to

the rest of the MPA-II system. Since PC bus cycles can only

be validated by the assertion of one of these strobes, this

PAL makes the final decision on the validity of the bus cycle.

If the PC cycle is a valid access of the BCP system, this PAL

will assert RAE (Remote Access Enable), the BCP’s chip

select. RIC, the output CMD, and the BCP’s READ/WRITE

strobes will determine which part of the system receives or

provides data.

The PC IRQ interrupt for the IBM interface is set and

cleared by the BCP through U3, the MPA-IIÐAC (Auxiliary

Control) PAL. The interrupt is set from the BCP by pointing

data memory to an address in the range A000–BFFF (see

Table 5-3), and writing to this location with AD7 set high; it is

likewise cleared by writing with AD7 low to this location. The

interrupt powers up low (deasserted) and can be assigned

to PC interrupts IRQ2, 3, or 4 by setting the appropriate

jumper (JP4–6).

Remote accesses of the BCP are arbitrated and handled by

the Remote Interface and Arbitration System (RIAS) control

logic. The arbiter sequential state machine internal to the

BCP shares the same clock with the CPU, but otherwise

operates autonomously. This unis is very flexible and offers

a number of configurations for different external interfaces

(see the Remote Interface and Arbitration System chapter

of the BCP data book). We chose to use the Fast Buffered

Write/Latched Read interface configuration to maximize the

possible data transfer rate and minimize the BCP perform-

ance degradation by the slower PC bus cycles. Data is buff-

ered between the PC and BCP data buses with U18, a

74ALS646, giving us a monolithic, bidirectional transceiver

with latches for PC reads and buffering for PC writes.

Rest Time Circuit

To support the newer high performance PC AT compatibles

entering the market, a rest time circuit is implemented on

the MPA-II. The purpose of this circuit is to prevent two

remote accesses made by a high performance PC from be-

ing mistaken as one remote access. (For a detailed descrip-

tion of BCP remote rest time, refer to the Remote Interface

and Arbitration System section of the DP8344A data sheet).

The rest time circuit is implemented in one PAL16RA8,

MPA-IIÐRI, U4. This rest time circuit implements all modes

except Latched Write and does not take advantage of the

increase in speed possible when CMD does not change

from one access to the next.

First, how the REMÐENABLE signal controls remote ac-

cesses will be discussed. Then, a description of the opera-

tion of the rest time state machine in the PAL16RA8 will be

given.

The REMÐENABLE signal is produced in the rest time

PALRA8 and is low during rest time. After rest time is over

the REMÐENABLE signal goes high until the end of the

next access, when it once again goes low during rest time.

The signal REMÐENABLE is fed back into MPA-IIÐRD,

U7.

Through the rest time circuit, both REMRD and REMWR are

held high when REMÐENABLE e 0. This prevents all re-

mote accesses during rest time. When rest time is over

REMÐENABLE e 1 and then decodes of MEMW, MEMR,

IOW, and IOR control REMRD and REMWR respectively.

To describe the operation of the state machine, a state by

state description follows. When reading through the states

one should remember that the state machine can only

change states on the rising edge of CLK-OUT.

STATE: IDLE

This state is entered when a system reset occurs. In this

state REMÐENABLE e 1, and XACK controls the state of

PCÐRDY.

The state machine will stay in this state until a valid remote

access starts (i.e. RAE e 0). Then the state machine

moves to CYCLEÐSTART.

NOTE: The signal RAE is a full decode of a valid access by MPA-IIÐRD, U7.

If RAE is only an address decode, it alone would not indicate that a

valid access has started.

STATE: CYCLEÐSTART

In this state, REMÐENABLE e 1 and XACK controls the

state of PCÐRDY. The state machine will stay in this state

until the remote access ends, indicated by RAE e 1. Then

the state machine moves to WAIT1.

23



STATE: WAIT1

In this state, REMÐENABLE e 0 and, if a remote access

starts, the PCÐRDY is driven low whenever RAE e 0. After

one CLK-OUT cycle the state machine moves to WAIT2.

STATE: WAIT2

In this state, REMÐENABLE e 0 and PCÐRDY is driven

low whenever RAE e 0. After another CLK-OUT cycle the

state machine moves to WAIT3.

STATE: WAIT3

In this state, REMÐENABLE e 0 and PCÐRDY is driven

low whenever RAE e 0. After another CLK-OUT cycle the

state machine moves to WAIT4.

STATE: WAIT4

In this state, REMÐENABLE e 0 and PCÐRDY is driven

low whenever RAE e 0. After another CLK-OUT cycle the

state machine moves to WAIT5.

STATE: WAIT5

In this state, REMÐENABLE e 0 and PCÐRDY is driven

low whenever RAE e 0. If the BIRQ signal is still active low,

indicating that BIRQ has not been serviced yet by the BCP

interrupt software, then the state machine will continue to

loop in this state until BIRQ goes inactive high. This will

prevent the PC from gaining access to the BCP’s memory

(Dual Port or I/O), thus ‘‘locking out’’ the PC if it attempts

another access. A write to the MPA Access register, U17,

which will toggle AREGÐCLKE, will cause BIRQ to go in-

active high, thus ‘‘unlocking’’ the PC. In this way the MPA-II

hardware will lock out the PC until the BCP interface soft-

ware has time to gain control and emulate the DCA or IBM

register hardware. This feature allows the MPA-II to imple-

ment future IBM I/O register changes by simply updating

the BCP software. If BIRQ was not active low or when it

goes inactive high, the next state is WAIT6.

STATE: WAIT6

In this state, REMÐENABLE e 0 and PCÐRDY is driven

low whenever RAE e 0. If a remote access has started (i.e.,

RAE e 1) the next state will be RESUME. Otherwise, the

next state is WAIT7.

STATE: WAIT7

In this state, REMÐENABLE e 0 and PCÐRDY is driven

low whenever RAE e 0. If a remote access has started (i.e.,

RAE e 1) the next state will be RESUME. Otherwise, the

next state is WAIT8.

STATE: WAIT8

In this state, REMÐENABLE e 1 (allowing accesses) and

PCÐRDY is driven low whenever RAE e 0. This state was

included in the state machine to reduce the state machine’s

logic. Otherwise it would have been logical to return to the

IDLE state from WAIT7 if RAE e 1 (no access in progress).

If RAE e 0, then the next state will be RESUME. Otherwise,

the state machine returns to IDLE.

STATE: RESUME

In this state, REMÐENABLE e 1 and PCÐRDY is driven

low while RAE e 0. When the state machine moves to this

state, it means that a remote access took place quickly after

the previous access. The state machine allows the remote

access to proceed since the PC-bus has been waited long

enough by the previous states. However, the PC-bus must

be waited until the XACK signal can take over control of

driving PCÐRDY. For the design of the MPA-II, once

REMÐENABLE e 1, then the XACK signal would take over

control within two CLK-OUT cycles. So the state machine

will wait the PC-bus through this state and the next. On the

next rising edge of CLK-OUT the state machine will move to

the HOLD state.

STATE: HOLD

In this state, REMÐENABLE e 0, and PCÐRDY is driven

low whenever RAE e 0. Again, this state is provided to wait

the PC-bus for a second CLK-OUT cycle while still allowing

the remote access. The next state is CYCLEÐSTATE. In

CYCLEÐSTART, XACK will take over control of PCÐRDY.

The BCP BIRQ Interrupt

The BCP’s bi-directional pin, BIRQ, is configured as an inter-

rupt into the BCP, and is set on the trailing edge of a PC

write of the BCP I/O register space (excluding RIC and the

Segment Register, i.e., I/O addresses 2DFh and 2D7h, re-

spectively). The BCP can identify which I/O register has

been accessed by reading the Access Register, U17, a

74ALS574, mapped directly above the dual-ported RAM in

the BCP’s data memory map (see Table 5-3). The bits

AD5–0 are the last 6 bits of the I/O register’s address. A

BCP write to this register will clear BIRQ, and therefore, the

BCP interrupt. Timing for the clock enable of U17 is provid-

ed by the MPA-IIÐCT PAL, U8. U17 is clocked only on

remote writes to the I/O register page (denoted by

IOÐACCESS being asserted from the MPA-IIÐRD PAL)

and local BCP writes of U17. The BCP uses the BIRQ inter-

rupt in order to service the PC in a timely manner since the

PC is locked out until the BCP software unlocks the PC.

After an MPA-II reset, or when the BCP writes a zero to AD5

of the Auxiliary Control Register (address A000h), called the

BIRQÐEN line, then the BIRQ line is disabled. While

BIRQÐEN is low (inactive) the PAL MPA-IIÐRI does not

lock out the PC, nor does it assert the BIRQ line.

Front-End Interface

The line interface is divided into coax/twisted pair and twin-

ax sections, each section being comprised of an interface

connector, receiver, and driver logic. These sections are in-

dependent but are never operated concurrently. The coax

medium requires a transformer-coupled interface while the

multi-drop twinax medium is directly coupled to each device.

The transmitter interface on the DP8344A is sufficiently

general to allow use in 3270, 5250, and 8-bit transmission

systems. Because of this generality, some external hard-

ware is needed to adapt the outputs to form the signals

necessary to drive the twinax line. The chip provides three

signls. DATA-OUT, DATA-DLY, and TX-ACT. DATA-OUT is

biphase serial data (inverted). DATA-DLY is the biphase se-

rial data output (non-inverted) delayed one-quarter bit-time.

TX-ACT, or transmitter active, signals that serial data is be-

ing transmitted when asserted. TX-ACT functions as an ex-

ternal transmitter enable. The BCP can invert the sense of

the DATA-OUT and DATA-DLY signals by asserting TIN
ÀTMR[3]Ó. This feature allows both 3270 and 5250 type

biphase data to be generated, and/or utilization of inverting

or non-inverting transmitter stages.

The line drivers are software selectable from the BCP via

logic embedded in the MPA-IIÐAC and MPA-IIÐCT PALs.
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Table 5-3 reveals that the Auxiliary Control Register is

mapped into the A000–BFFF area of the BCP memory map.

The coax/twisted pair module is selected by pointing to this

address area and writing a ‘‘0’’ out on the AD6 data line.

The twinax is selected by writing a ‘‘1’’ on this signal. The

coax/twisted pair section is selected on power-up. The volt-

age supervisor described earlier in the Reset Control sec-

tion also plays a role here, deactivating the line drivers of

both sections if the a5V supply drops more than 10% at

any time. The receivers are selected on-board the BCP by

the SLR (Select Line Receiver) control in the Transceiver

Control Register. Setting ÀTCR[5]Ó to a ‘‘1’’ selects the on-

chip comparator and thus the coax input; a ‘‘0’’ on this con-

trol selects the TTL-IN receiver input for the twinax input.

Coax/Twisted Pair Interface

At this date, the largest installed base of terminals is the

3270 protocol terminal which primarily utilizes coax cabling.

Because of phone wire’s easy accessibility and lower cost,

twisted pair cabling has become popular among end users

for new terminal installations. In the past, baluns have been

used to augment existing coax interfaces, but their poor per-

formance and cost considerations leave designers seeking

new solutions. In addition, the integration of coax and twist-

ed pair on the same board has become a market require-

ment, but this is a considerable design challenge. A brief

summary of the combined coax/twisted pair interface con-

cepts, a discussion of the design, and a description of the

results follows.

The concepts which must be addressed by the combined

coax/twisted pair interface will be discussed at this time.

These concepts are important to understand why the vari-

ous design decisions are implemented in the interface.

Coax cable is normally driven on the center conductor with

the shield grounded. Conversely, unshielded twisted pair ca-

ble is driven on both lines. Because of the way that each is

driven, coax operation is often called unbalanced and twist-

ed pair operation balanced.

Transmission line characteristics of coax and twisted pair

cables can be envisioned as essentially those of a low-pass

filter with a length-dependent bandwidth. In 3270 systems,

different data combinations generate dissimilar transmission

frequencies because of the Manchester format. These two

factors combine to produce data pulse widths that vary ac-

cording to the data transmitted and the length and type of

cable used. This pulse-width variation is often described as

‘‘data jitter’’.

In addition to line filtering, noise can cause jitter. Coax cable

employs a shield to isolate the signal from external noise

Electromagnetically balanced lines minimize differential

noise in unshielded twisted pair cable. In other words, the

twisted pair wires are theoretically equidistant from any

noise source, and all noise super-imposed on the signal

should be the common-mode type. Although these methods

diminish most noise, they are not totally effective, and envi-

ronmental interference from other nearby wiring and circuit-

ry may still cause problems.

Besides the effects of jitter, reflections can produce undesir-

able signal characteristics that introduce errors. These re-

flections may be caused by cable discontinuities, connec-

tors, or improper driver and receiver matching. Signal edge

rates may aggravate reflection problems since faster edges

tend to produce reflections that may dramatically distort the

signal. Most reflection difficulties occur over short cable

(less than 150 ft.) because at these distances reflections

suffer little attenuation and can significantly distort the sig-

nal. Since the timing of the reflections is a function of cable

length, it may be possible to operate at some short distance

and not at some greater length.

An effective receiver design must address each of the

above concerns. To counteract the effects of line filtering

and noise, there must be a large amount of jitter tolerance.

Some filtering is needed to reduce the effects of environ-

mental noise caused by terminals, computers, and other

proximate circuitry. At the same time, such filtering must not

introduce transients that the receiver comparator translates

into data jitter.

Like the receiver design, a successful driver design should

compensate for the filtering effects of the cable. As cable

length is increased, higher data frequencies become attenu-

ated more than lower frequency signals, yielding greater dis-

parity in the amplitudes of these signals. This effect gener-

ates greater jitter at the receiver. The 3270 signal format

allows for a high voltage (predistorted) magnitude followed

by a low voltage (nondistorted) magnitude within each data

half-bit time. Increasing the predistorted-to-nondistorted sig-

nal level ratio counteracts the filtering phenomenon be-

cause the lower frequency signals contain less predistortion

than do higher frequency signals. Thus, the amplitude of the

higher frequency components are greater than the lower

frequency components at the transmitter. Implementation of

this compensation technique is limited because nondistort-

ed signal levels are more susceptible to reflection-induced

errors at short cable lengths. Consequently, proper imped-

ance matching and slower edge rates must be utilized to

eliminate as much reflection as possible at these lengths.

Besides improved performance, both unbalanced and bal-

anced operation must be adequately supported. Electro-

magnetic isolation for coaxial cabling can be provided by a

properly grounded shield. Electrically and geometrically

symmetric lines must be maintained for twisted pair opera-

tion. For both cable types, proper termination should be em-

ployed, although terminations slightly greater than the char-

acteristic impedance of the line may actually provide a larg-

er received signal with insignificant reflection. In the board

layout, the comparator traces should be as short as possi-

ble. Lines should be placed closely together along their en-

tire path to avoid the introduction of differential noise. These

traces should not pass near high frequency lines and should

be isolated by a ground plane.

An extensive characterization of the BCP comparator was

done to facilitate this interface design. The design enhances

some of the BCP transceiver’s characteristics and incorpo-

rates the aforementioned suggestions.

The interface design takes into account the common com-

parator attributes of power supply rejection, variable switch-

ing offset, finite voltage sensitivity, and fast edge rate sensi-

tivity. VCC noise can effect the comparator output when the

inputs are biased to the same voltage.

This particular type of biasing may render portions of the

comparator susceptible to supply noise. Variable switching

offset and finite voltage sensitivity cause the receiver de-
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coding circuitry to see a substantial amount of data jitter

when signal amplitudes approach the sensitivity limits of the

comparator. At these signal magnitudes, considerable varia-

tion in the output of the comparator is observed. Finally,

edge sensitivity may allow a fast edge to introduce errors as

charge is coupled through the inputs during a rapid predis-

torted-to-nondistorted level transition, especially as the non-

distorted level is reduced in magnitude.

The receiver interface design (Figure 5-4) addresses each

of the BCP comparator’s characteristics. A small offset

(about 17 mV) separates the inputs to eliminate VCCÐcou-

pled noise. This offset is relatively large compared to possi-

ble fabrication variations, resulting in a more consistent, de-

vice-independent operation. The offset has the added bene-

fit of making the comparator more immune to ambient noise

that may be present on the circuit board. A 2:1:1 transform-

er (arranged as a 3:1) restores any voltage sensitivity lost by

introducing the offset. A bandpass filter is employed to re-

duce the edge rate of the signal at the comparator and to

eliminate environmental noise. The bandwidth (30 kHz to

30 MHz) was chosen to provide sufficient noise attenuation

while producing minimum data jitter. Refer to Appendix C for

a derivation of the filter equations.

Like many present 3270 circuits, the driver design

(Figure 5-5) utilizes a National Semiconductor DS3487 and

a resistor network to generate the proper signal levels. The

predistorted-to-nondistorted ratio was chosen to be about 3

to 1. This ratio was observed to offer good noise immunity

at short cable lengths (less than 100 feet) and error-free

transmission to an IBM 3174 controller at long cable lengths

(greater than 5000 feet).

To allow for two interfaces in the same circuit design, the

coax/twisted pair front end (Figure 5-6) includes an ADC

Telecommunications brand TPC connector to switch be-

tween coax and twisted pair cable. This connector allows

different male connectors for coax and twisted pair cable to

switch in different interfaces for the particular cable type.

The coax interface has only the shield capacitively coupled

to ground. The 510X resistor and the filter loading produce

a termination of about 95X. The twisted pair interface bal-

ances both lines and possesses an input impedance of

about 100X. This termination is somewhat higher than the

characteristic impedance (about 96X) of twisted pair. Termi-

nations of this type produce reflections that do not tend to

generate mid-bit errors, as well as having the benefit of cre-

ating a larger voltage at the receiver over longer cable

lengths.

TL/F/10488–20

FIGURE 5-4. BCP Receiver Interface Design
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TL/F/10488–21

FIGURE 5-5. BCP Driver Design

TL/F/10488–32

FIGURE 5-6. BCP Coax/Twisted Pair Front End
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The performance of the combined coax/twisted pair inter-

face is impressive. Performance of the BCP interface typi-

cally extended over 7000 feet of RG62A/U coax and 1700

feet of AT&T DIW 4 pair/24 AWG unshielded twisted pair.

This operation met or exceeded many of the current 3270

solutions. The performance of other 3270 products was ob-

tained from production stock of competitors’ equipment and

should be taken as typical operation. Although these long

distances are possible, it is recommended that companies

specify their products to IBM’s PAI specifications of 5000

feet of coax cable. The extra long distance capability of the

new interface will assure the designer a comfortable guard-

band of performance. Similarly, 50% margin on the un-

shielded twisted pair capability will approximately match the

900 foot specification.

On the MPA-II as much attention has been paid to the lay-

out as to the interface design. The traces from the

BNC/Twisted Pair ADC connector to the BCP’s analog

comparator were made as wide as possible, placed as close

together as practical, and kept on the same side of the

board. The ground plane has been placed directly under

these traces. All digital lines have been kept as far away as

practical. Finally, the ground plane has been partially split,

keeping all the analog interface grounds on one part of the

ground plane, including the BCP ground pin 43; and all of

the digital logic ground pins on the other side. See Appendix

A for the actual layout of the MPA-II.

Twinax (5250) Interface

The 5250 transmission system is implemented in a bal-

anced current mode; every receiver/transmitter pair is di-

rectly coupled to the twinax at all times. Data is impressed

on the transmission line by unbalancing the line voltage with

the driver current. The system requires passive termination

at both ends of the transmission line. The termination resist-

ance value is given by:

Rt: e Z0/2; where

Rt: e Termination Resistance

Z0: e Characteristic Impedance

In practice, termination is accomplished by connecting both

conductors to the shield via 54.9X, 1% resistors; hence the

characteristic impedance of the twinax cable of 107X g5%

at 1.0 MHz. Intermediate stations must not terminate the

line; each is configured for ‘‘pass-through’’ instead of ‘‘ter-

minate’’ mode. Stations do not have to be powered on to

pass twinax signals on to other stations; all of the receiv-

er/transmitter pairs are DC coupled. Consequently, devices

must never output any signals on the twinax line during pow-

er-up or down that could be construed as data, or interfere

with valid data transmission between other devices. The

MPA-II board is factory set to ‘‘terminate’’ mode. To effect

‘‘pass-through’’ mode, jumpers JP2 and JP3 must be re-

moved.

The bit rate utilized in the 5250 protocol is 1 MHz g2% for

most terminals, printers and controllers. The IBM 3196 dis-

play station has a bit rate of 1.0368 MHz g0.01%. The data

are encoded in biphase, NRZI (non-return to zero inverted)

manner; a ‘‘1’’ bit is represented by a positive to negative

transition, a ‘‘0’’ is a negative to positive transition in the

center of a bit cell. This is opposite from the somewhat

more familiar 3270 coax method. The biphase NRZI data is

encoded in a pseudo-differential manner; i.e., the signal on

the ‘‘A’’ conductor is subtracted from the signal on ‘‘B’’ to

form the waveform shown inFigure 5-7 . Signals A and B are

not differentially driven; one phase lags the other in time by

180 degrees. Figures 5-8 and5-9 show actual signals taken

at the driver and receiver after 5000 ft. of twinax, respective-

ly.

TL/F/10488–12

Note 1: The signal on phase A is shown at the initiation of the line quiesce/line violation sequence.

Note 2: Phase B is shown for that sequence, delay in time by 500 ns.

Note 3: The NRZI data recovered from the transmission.

FIGURE 5-7. Twinax Waveforms

28



TL/F/10488–13

The signal shown was taken with channel 1 of an oscilloscope connected to

phase B, channel 2 connected to A, and then channel 2 inverted and added

to channel 1.

FIGURE 5-8. Signal at the Driver

TL/F/10488–14

The signal shown was viewed in the same manner asFigure 5-8 . The severe

attenuation is due to the filtering affect of 5000 ft. of twinax cable.

FIGURE 5-9. Signal at the Receiver

The signal on either the A or B phase is a negative going

pulse with an amplitude of b0.32V g20% and duration of

500 g20 ns. During the first 250 g20 ns, a pre-distortion or

pre-emphasis pulse is added to the waveform yielding an

amplitude of b1.6V g20%. When a signal on the A phase

is considered together with its’ B phase counterpart, the

resultant waveform represents a bit cell or bit time, com-

prised of two half-bit times. A bit cell is 1 ms g20 ns in

duraction and must have a mid bit transition. The mid bit

transition is the synchronizing element of the waveform and

is key to maintaining transmission integrity throughout the

system. The maximum length of a twinax line is 5000 ft. and

the maximum number of splices in the line is eleven. Devic-

es count as splices, so that with eight devices on line, there

can be three other splices. The signal 5000 ft. and eleven

splices from the controller has a minimum amplitude of

100 mV and a slower edge rate. The bit cell transitions have

a period of 1 ms g30 ns.

The current mode drive method used by native twinax devic-

es has both distinct advantages and disadvantages. Current

mode drivers require less power to drive properly terminat-

ed, low-impedance lines than voltage mode drivers. Large

output current surges associated with voltage mode drivers

during pulse transition are also avoided. Unwanted current

surges can contribute to both crosstalk and radiated emis-

sion problems. When data rate is increased, the surge time

(representing the energy required to charge the distributed

capacitance of the transmission line) represents a larger

percentage of the driver’s duty cycle and results in in-

creased total power dissipation and performance degrada-

tion.

A disadvantage of current mode drive is that DC coupling is

required. This implies that system grounds are tied together

from station to station. Ground potential differences result in

ground currents that can be significant. AC coupling re-

moves the DC component and allows stations to float with

respect to the host ground potential. AC coupling can also

be more expensive to implement.

Twinax signals can be viewed as consisting of two distinct

phases, phase A and phase B, each with three levels: off,

high, and low. The off level corresponds with 0 mA current

being driven, the high level is nominally 62.5 mA, a20% b

30%, and the low level is nominally 12.5 mA, a20% b

30%. When these currents are applied to a properly termi-

nated transmission line the resultant voltages impressed at

the driver are: off level is 0V, low level is 0.32V g20%, high

level is 1.6V g20%. The interface must provide for switch-

ing of the A and B phases and the three levels. A bi-modal

constant current source for each phase can be built that has

a TTL level interface for the BCP.

The MPA-II’s twinax line drivers are current mode driver

parts available from National Semiconductor and Texas In-

struments. The 75110A and 75112 can be combined to pro-

vide both the A and B phases and the bi-modal current drive

required. The MPA-IIÐAC PAL adapts the BCP outputs to

the twinax interface circuit and prevents spurious transmis-

sions during power-up or down. The serial NRZ data is in-

verted prior to being output by the BCP by setting TIN,
ÀTMR[3]Ó.
The pseudo-differential mode of the twinax signals make

receiver design requirements somewhat different than that

of the coax circuit. Hence, the analog receiver on the BCP is

not used. The BCP provides both analog inputs to an on-

board comparator circuit as well as a TTL level serial data

input, TTL-IN. The sense of this serial data can be inverted

in software by asserting RIN, ÀTMR[4]Ó.
The external receiver circuit must be designed with care to

assure reliable decoding of the bit-stream in the worst envi-

ronments. Signals as small as 100 mV must be detected. In

order to receive the worst case signals, the input level

switching threshold or hysteresis for the receiver should be

nominally 29 mV g20%. This value allows the steady state,

worst case signal level of 100 mV, 66% of its amplitude

before transitioning.

To achieve this, the National Semiconductor LM361 was

chosen, a differential comparator with complementary out-

puts. The complementary outputs are useful in setting the

hysteresis or switching threshold to the appropriate levels.

The LM361 also provides excellent common mode noise

rejection and a low input offset voltage. Low input leakage

current allows the design of an extremely sensitive receiver

without loading the transmission line excessively. In addition

to good analog design techniques, a passive, single-pole,

low pass filter with a roll-off of approximately 1 MHz was

applied to both the A and B phases. This filter essentially

conducts high frequency noise to the opposite phase, effec-

tively making the noise common mode and easily rejectable.

Design equations for the LM361 in a 5250 application are

shown here for example. The hysteresis voltage, Vh, can be

expressed the following way:

VH e VRIO a ((RIN / (RIN a Rf) * VOH)

b (RIN / (RIN a Rf) * VOL))
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where:

VH Ð Hysteresis Voltage, Volts

RIN Ð Series Input Resistance, Ohms

RF Ð Feedback Resistance, Ohms

CIN Ð Input Capacitance, Farads

VRIO Receiver Input Offset Voltage, Volts

VOH Ð Output Voltage High, Volts

VOL Ð Output Voltage Low, Volts

The input filter values can be found through this relation-

ship:

VCIN e VIN1 b VIN2/1 a jwCIN (RIN1 a RIN2)

where RIN1 e RIN2 e RIN:

Fro e w/2c

Fro e 1/(2c * RIN * CIN)

CIN e 1/(2c * RIN * Fro)

where

VIN1, VIN2 ÐPhase A and B Signal Voltages,

Volts

VCIN ÐVoltage Across CIN, or the Output

of the Filter, Volts

RIN1, RIN2 ÐInput Resistor Values,

RIN1 e RIN2, Ohms

Fro ÐRoll-Off Frequency, Hz

w ÐFrequency, Radians

The roll-off frequency, Fro, should be set nominally to 1 MHz

to allow for transitions at the transmission bit rate. The tran-

sition rate when both phases are taken together is 2 MHz,

but then both RIN1 and RIN2 must be considered, so:

Fro2 e 1/(2c * (RIN1 a RIN2) * CIN)

or,

Fro2 e 1/(2c * 2 * RIN * CIN)

where Fro2 e 2 * Fro, yielding the same results.

Table 5-4 shows the range of values expected.

Advanced Features of the BCP

The BCP has a number of advanced features that give de-

signers flexibility to adapt products to a wide range of IBM

environments. Besides the basic multi-protocol capability of

the BCP, the designer may select the inbound and outbound

serial data polarity, the number of received and transmitted

line quiesces, and in 5250 modes, a programmable exten-

sion of the TX-ACT signal after transmission.

The polarity selection on the serial data stream is useful in

building single products that handle both 3270 and 5250

protocols. The 3270 biphase data is inverted with respect to

5250.

Selecting the number of line quiesces on the inbound serial

data changes the number of line quiesce bits that the re-

ceiver requires before a line violation to form a valid start

sequence. This flexibility allows the BCP to operate in ex-

tremely noisy environments, allowing more time for the

transmission line to charge at the beginning of a transmis-

sion. The selection of the transmitted line quiesce pattern is

not generally used in the 5250 arena, but has applications in

3270. Changing the number of line quiesces at the start of a

line quiesce pattern may be used by some equipment to

implement additional repeater functions, or for certain inflex-

ible receivers to sync up.

TABLE 5-4. Twinax Receiver Design Values

Value Maximum Minimum Nominal Units Tolerance

RIN 4.935Ea03 4.465Ea03 4.700Ea03 Ohms 0.5

RF 8.295Ea05 7.505Ea05 7.900Ea05 Ohms 0.5

CIN 4.4556Eb11 2.6875Eb11 3.3863Eb11 Farads

VOH 5.250Ea00 4.750Ea00 5.000Ea00 Volts

VOL 4.000Eb01 2.000Eb01 3.000Eb01 Volts

VIN a1.920Ea00 1.000Eb01 Volts

VIN b1.920Ea00 1.000Eb01 Volts

VRIO 5.000Eb03 0.000Ea00 1.000Eb03 Volts

R 6.533Eb03 5.354Eb03 5.914Eb03 Ohms

Fro 1.200Ea06 8.000Ea05 1.000Ea06 Hz 0.2

VH 3.368Eb02 2.691Eb02 2.880Eb02 Volts

Xc 7.4025Ea03 2.9767Ea03 4.7000Ea03 Ohms
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The most important advanced feature of the BCP for 5250

applications is the programmable TX-ACT extension. This

feature allows the designer to vary the length of time that

the TX-ACT signal from the BCP is active after the end of a

transmission. This can be used to drive one phase of the

twinax line in the low state for up to 15.5 ms. Holding the line

low is useful in certain environments where ringing and re-

flections are a problem, such as twisted pair applications.

Driving the line after transmitting assures that receivers see

no transitions on the twinax line for the specified duration.

The transmitter circuit can be used to hold either the A or B

phase by using the serial inversion capability of the BCP in

addition to swapping the A and B phases. Choosing which

phase to hold active is up to the designer, 5250 devices use

both. Some products hold the A phase, which means that

another transition is added after the last half bit time includ-

ing the high and low states, with the low state held for the

duration. Alternatively, some products hold the B phase.

Holding the B phase does not require an extra transition and

hence is inherently quieter.

To set the TX-ACT hold feature, the upper five bits of the

Auxiliary Transceiver Register, ÀATR[3–7]Ó, are loaded with

one of thirty two possible values. The values loaded select a

TX-ACT hold time between 0 ms and 15.5 ms in 500 ns

increments.

The connectors called out in the IBM specifications for the

twinax medium are too bulky to mount directly to a PC

board, therefore a 9-pin D subminiature connector is provid-

ed. This connector is then attached to a cable assembly

consisting of a 1 foot section of twin-axial cable with the

opposite gender 9-pin on one end and a twinax ‘‘T’’ connec-

tor on the other. This is then spliced into the twinax multi-

drop trunk.

Miscellaneous Support

The remaining components of the MPA-II will be covered in

the following section, including the board itself and decou-

pling capacitors.

The system is implemented on a four-layer substrate, using

minimum 8 mil trace widths/spacing for all signals except

the analog traces in the front-end. Here we specified mini-

mal trace lengths and 55–80 mil trace widths. The traces

from the BNC/Twisted Pair ADC to the BCP’s analog com-

parator were made as wide as possible, placed as close

together as practical, and kept on the same side of the

board. The ground plane has been placed directly under

these traces. All digital lines have been kept as far away as

practical. Finally, the ground plane has been partially split,

keeping all the analog interface grounds on one part of the

ground plane, including the BCP ground pin 43; and all of

the digital logic ground pins on the other side. See Appendix

A for the actual layout of the MPA-II. These fairly common

analog layout techniques are justified due to the complexity

and power level of the analog waveforms present in the line

interface.

Each device has one 0.1 mF decoupling capacitor located

as close as possible to the chip. These are chip capacitors

(0.3 spacing, DIP configuration) to minimize lead length in-

ductance and facilitate placement. The a5V supply line has

two 22 mF electrolytic capacitors, one at each end of the

board. The other three supply lines (b5V, a12V, b12V)

drive only the twinax analog circuitry, and are bypassed with

10 mF electrolytics where they come on to the board and

0.1 mF chip caps at the device(s). The BCP requires addi-

tional decoupling due to the large number of outputs, high

frequency operation, and CMOS switching characteristics.

We used a capacitor near each ground of the BCP. These

decoupling capacitors, together with the ground and power

planes of the multi-layer board, provide effective supply iso-

lation from the switching noise of the circuitry.

6.0 MPA-II SOFTWARE ARCHITECTURE

The primary goal of the MPA-II design was to accommodate

multiple industry standard interfaces and protocol modes

within a single, integrated structure (see Figure 6-1 ). The

MPA-II software supports 3270, 3299, 5250, and all the PC

interfaces in its 8k instruction memory bank, The system is

configured at load time for the different options, and may be

reconfigured ‘‘on the fly’’ by simply writing the new configu-

ration byte into the MPA-II configuration I/O register (2DCh).

New tasks may be added to and old tasks removed from the

MPA-II system easily. The modular organization of the sys-

tem allows for simple maintenance and enhancement.

The basic concepts employed in the software design are:

modularity, comprehensive data structures, and round-robin

task scheduling. The system has been designed to allow

modules to be written and integrated into the system by

different groups. In the case of the National Semiconductor

team developing the MPA-II, different groups developed the

3270 and 5250 software modules. Some modules were set

up in advance of any protocol development and have been

the basis of the software development. The KERNEL.BCP

module contains the task switching and scheduling routines.

The header files MPA.HDR and DATARAM.HDR contain

the basic global symbolic equates and data structures.

DATARAM.HDR is organized such that the BCP’s data RAM

may be viewed through a number of templates, or maps. In

other words, except for specific hardware devices mapped

into memory, there are no hard coded RAM addresses. The

8k dual-port block is fixed at the top of RAM, and the PC I/O

space is mapped into the upper page of installed RAM, but

the locations of screen buffers and variable storage are all

determined through the set of templates used. The tem-

plates serve only to cause the assembler to produce relative

offsets. The software developer chooses which base physi-

cal address to reference the offset to in order to address

RAM. Usually, a pointer to RAM is set up in the IZ register

pair, and the data are referenced by the assembler mne-

monics. For example:

MOVE[IZacontrolÐreg], rd

where: controlÐreg is a symbolic template offset.

rd is a destination register
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FIGURE 6-1. MPA-II Software Architecture

This scheme allows the actual locations of data structures

to move based on the system mode and current addressed

device. This also allows the use of the dual-port RAM to

change with the interface mode or protocol mode.

The MPA.HDR module is included (via the .INPUT assem-

bler directive) in every module for use in the MPA-II system,

regardless of protocol or interface mode. MPA. HDR defines

specific hardware related constants such as RAM size,

hardware I/O locations, etc . . . MPA.HDR in turn includes:

MACRO.HDR, which contains commonly used macros;

BCP.HDR, which defines specific bits and bit fields for BCP

registers; STDEQU.HDR, which contains BCP and assem-

bler specific declarations (it is included with the BCP As-

sembler System); and DATARAM.HDR, which contains the

general RAM templates. Equate files for specific functions

such as twinax, coax, and the different interfaces are includ-

ed where needed. The Kernel module contains the basic

software structures which support all system activities. Sys-

tem initialization, scheduling tasks, re-configuration and

halting the system all fall under its jurisdiction. All tasks are

called from the Kernel and return to it.

A number of rules have been adhered to during the MPA-II

software development. These can best be discussed by re-

ferring to the BCP register allocation shown in Figure 6-2 .

The interrupt handlers are all considered background tasks.

All 3270 ‘‘busy’’ type processing, 5250 command process-

ing, and system functions are foreground tasks. The Main

and Alternate banks are reserved for foreground and back-

ground functions, respectively. In addition, the index regis-

ters IW and IX are reserved for the background functions.

The index registers IY and IZ are reserved for the fore-

ground functions. ‘‘Reserved’’ means that the background

routines promise to save and restore registers reserved for

the foreground routines and that the foreground routines

promise not to modify or rely upon registers reserved for the

background routines. This system of reserving registers al-

lows for extremely fast context switching since interrupt

(background) routines only need to save and restore certain

registers, (usually only IZ). The IZ pointer is generally used

as the base pointer for all templates used by the tasks and

interrupts. All foreground tasks are restricted to six levels of

nesting to prevent the address stack from overflowing. Inter-

rupt handlers are limited to three levels. Interrupts are gen-

erally not interruptable. Some special cases exist, and they

are detailed later in this document.

The R20 and R21 registers are permanently reserved for

the system. R20 is used as the RÐCONFIG storage, or the

current configuration state of the MPA-II (e.g., Coax/IRMA).

R21 is the RÐTASK register as defined by the Kernel. The

Kernel uses this register as its task list, with scheduled

tasks signified by their corresponding bits set and un-sched-

uled tasks’ bits cleared.

Kernel

The major part of the Kernel module is a global routine

called tasker. Tasker is a round robin task scheduler. Each

major functional group in the MPA-II system has a corre-

sponding task that is invoked in this way. All tasks run to

completion, meaning that once a task is given control, the

task must return to the tasker in order to relinquish control.

Interrupt handlers are initialized and masked on and off by

their corresponding tasks, although the tasker maintains ul-

timate control over all activity.

The Kernel consists of tasker, scheduleÐtask, and deschÐ
task routines. These three combine to allow tasks to be

added or removed from the active task list, providing orderly

execution of tasks. All tasks are scheduled by calling sched-

uleÐtask with the task’s identification byte in the selected

accumulator. ScheduleÐtask then adds the task to the ac-

tive task list. The task list is implemented in RÐTask (R21)

as discussed above. The list of tasks in the MPA-II system is

shown in Table 6-1.
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TABLE 6-1. MPA Tasks

Task ID
Task

Description
Name

0 cxÐtask Coax Session Processor

1 twÐtask Twinax Session Processor

2 ibmÐtask IBM Interface Emulation

3 irmaÐtask IRMA Interface Emulation

4 saÐtask Smart Alec Interface Emulation

7 houseÐtask System Initialization and Control

System Initialization

The file MPA2.BCX contains the microcode for the MPA-II

system operation. The Loader (LD) softloads the BCP, sin-

gle steps the BCPÐwhich allows the BCP to disable GIE if

any interrupts are pending from previously executing code,

starts the BCP executing from address zero (0000h), and

then writes the MPA-II Configuration register (2DCh) to es-

tablish the desired mode of operation, e.g., Coax-IRMA,

Coax-IBM, etc. Note that the MPA-II Configuration register

is written after the BCP is started. As discussed in the hard-

ware section, the MPA-II is capable of performing a hard-

ware ‘‘lock out’’ of the PC after the PC writes to the I/O

locations 220h–22Fh, 2D0h–2D6h, and 2D8h–2DEh, if this

feature has been enabled by the BCP microcode. This

means that the next access (reading/writing dual-port mem-

ory as well as I/O memory) by the PC to the MPA-II board

will be held off until the BCP’s microcode signals the MPA-II

hardware that the next PC access may complete. If the BCP

is not running, its microcode cannot signal the hardware to

unlock the PC and, therefore, the PC will stop processing.

The user will then have to reset the PC in order for the PC’s

processor to regain control. When the MPA-II is reset (via

the PC’s reset bus line) this lock out capability is automati-

cally disabled and the PC hs unlimited access to the MPA-II

board. But, after the MPA-II has been running, and it is then

arbitrarily stopped, the PC lock out capability may still be

enabled. Therefore, never perform I/O writes to the above

mentioned registers unless the MPA-II board has been re-

set, or until after starting the BCP with microcode that either

disables the lock out capability or unlocks the PC after an

access occurs.
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FIGURE 6-3. MPA-II Configuration Register

After the Loader has started the BCP executing MPA2.BCX

microcode, the microcode proceeds by disabling interrupts

and initializing certain BCP registers to set CPU speed,

memory access wait states, BIRQ direction, etc. The IRQ

PC interrupt line is deasserted, PC I/O write generated

BIRQ interrupts are disabled, the PC lock out capability is

disabled, and BCP data memory is cleared. Finally, initializa-

tions for the HOUSEKEEP task are performed and then

control is permanently passed to the Tasker, which will re-

tain control until the MPA-II is reset.

After the Tasker performs its own initialization, it begins call-

ing any scheduled tasks. At this point, only the HOUSE-

KEEP task is scheduled. When HOUSEKEEP runs, the

MPAÐCONFIG register (I/O location 2DCh) is written into

R20, the RÐCONFIG register, and then its contents are

used to call the appropriate task initialization routines, refer

to Figure 6-3 . These routines set up any variables needed

for the task, initialize interrupt handlers associated with

them, and schedule their tasks. For instance, if the MPAÐ
CONFIG register has been loaded with 49h, the routine

would call cxÐinit to initialize the 3270 coax task, set up the

appropriate interrupt handlers, and schedule cxÐtask. Then

the irmaÐinit routine would be called which sets up the in-

terface registers, the BIRQ interrupt, etc . . . Since the PC

writes the MPAÐCONFIG register, HOUSEKEEP must in-

terpret the configuration value based on what it knows are

valid configurations. In order to provide feedback to the PC,

HOUSEKEEP builds a valid configuration value based on its

interpretation. After all the initialization routines have com-

pleted execution and returned control to HOUSEKEEP,

HOUSEKEEP places its value for the configuration back

into the MPAÐCONFIG register with the PORÐSYSTEM

bit of the configuration clear, thus signaling the PC that ini-

tialization has completed and has been interpreted as the

HOUSEKEEP configuration value shows. The Loader polls

the MPAÐCONFIG register after writing it, waiting for the

PORÐSYSTEM bit to clear. When the Loader detects that

the HOUSEKEEP mode initialization has completed, it com-

pares its value for the configuration with that returned by

HOUSEKEEP. The Loader then issues warning messages

to the user if any mismatches are found. When HOUSE-

KEEP passes control back to the tasker, all applicable tasks

are scheduled and interrupts have been unmasked.

HOUSEKEEP remains scheduled so that upon subsequent

executions the RAM value for MAPÐCONFIG can be com-

pared with RÐCONFIG. If a difference is found or the

PORÐSYSTEM bit is set, then the initialization process

takes place again. If no difference is detected, then

HOUSEKEEP returns directly to the tasker.

Coax Task

Basic 3270 emulation is handled by the cxÐtask and its

associated routines independent of the interface mode con-

figured. The coax routines are set up to exploit the extreme-

ly quick interrupt latency of the BCP. Even so, the coax

routines are fairly time critical. The basic structure used is

divided into two distinct parts: the interrupt handler executes

all real time tasks in the background and the cxÐtask rou-

tine handles the four ‘‘busy’’ type commands of the 3270

protocol. The vast majority of decisions and command exe-

cutions must be carried out ‘‘on the fly’’, or under the aus-

pices of the interrupt handlers. Primarily, the interrupt han-

dlers do the bulk of command execution. See Table 4-1 in

Chapter 4 for a list of some of the 3270 commands support-

ed.

The scpÐcoax template, contained in CXÐDATAR.HDR, is

a reference to the RAM array that locates all the coax termi-

nal variables, including relative pointers into the screen buff-

ers. Both a Regen buffer and EAB is supported if the

MPAÐCONFIG register is set for EAB.

The cxÐtask module, CXÐTASK.BCP, contains the task

initialization routine as well as the task itself. CxÐinit sets

up the RA and LTA interrupts and initializes all scpÐcoax

variables and inter-task communications, and initializes the

transceiver. CXÐTASK’s functions are: processing inter-

task mail, updating poll status, processing foreground com-

mands, and resetting the coax terminal. The foreground

commands include SEARCH forward, SEARCH backward,

INSERT, and CLEAR.

The Session Control Page, SCP, for coax defines registers

for each of the 3278 terminal registers, as well as additional

ones for control of internal functions. Refer to Figure 4-2 in

Chapter 4 for the internal structure of a 3270 terminal. Ini-

tially, the primary and secondary control registers are

cleared, [STATÐAVAIL] is loaded into statusÐreg, and the

poll response is set to POR (Power On Reset). GP6 on Al-

ternate Bank B is dedicated as the CoaxÐstate register. It is

used to provide fast access to protocol state information

such as 3299 address, cursor change, and write in progress.

The MPA-II system uses a number of variables to maintain

the coax session, including:

coaxÐstat ÐEmulation Mode

mpaÐmainstat ÐMain Interface Control Bits, such as

Clicker and Alarm Status

35



mpaÐauxstat ÐAuxiliary Interface Control, such as

Buffer being Modified and On-Line/Off-

Line Control

mpaÐcontrol ÐPoll Status Control, such as POR, Key

Pending, FERR, Operation Complete

mpaÐauxcontrol ÐAdditional Poll Status, such as EAB

Status

The initial state of the mpaÐmainstat register sets up flags

to signal that a new cursor position is available and that the

key buffer is empty. mpaÐcontrol is set up with POR state

and the statusÐpending flag set. StatusÐpending signals

the poll response routine that POR status is available. In

addition to flags and registers, there are two mailboxes that

are used: the sub-task mailbox, and syncÐmailbox. The RA,

or receiver active, interrupt uses the sub-task mailbox to

communicate to cxÐtask which, if any, foreground coax

command needs to be procesed. Initially this is cleared. The

syncÐmailbox is the PC interface routines’ communication

mechanism. Keystroke passing, alarm acknowledgement

and resetting of the terminal by the PC are communicated

via syncÐmailbox.

In normal operation, the cxÐtask routine remains sched-

uled and the normal execution proceeds in the manner sug-

gested in Figure 6-1 . The updateÐpoll response routine

uses the values in mpaÐcontrol and mpaÐauxcontrol to

determine if the session should adjust its poll status to the

controller. The newÐstatus routine maintains the syncÐ
mailbox and, therefore, communication with the various PC

interface tasks. If there is mail, newÐstatus reads and exe-

cutes the PC interfaces’ commands. Of chief importance,

the state of the keystroke buffer is checked here. It is the

mechanism through which keystrokes may be passed from

the PC interfaces to the poll response for transmission to

the host controller. A high MPAÐMSÐKEYEMPTY bit in

mpaÐmainstat signals that the interface may supply a key-

stroke. If MPAÐMSÐKEYEMPTY is low, the PC interface

must wait. MPAÐMSÐKEYEMPTY is cleared by newÐ
status when it infers from mpaÐcontrol that the previous

key has been acknowledged by the coax controller.

The sub-task communication mailbox is checked by cxÐ
task next. If the receiver interrupt handler has decoded a

foreground coax command request from the host controller,

the mailbox will be non-zero. The value in the mailbox indi-

cates that either a forward or backward SEARCH, an

INSERT, or CLEAR command, and its associated parame-

ters are ready for execution. The appropriate foreground

coax command routine is then run to completion. The

statusÐreg is now updated, since completion of a fore-

ground coax command requires an Operation Complete

status to be returned to the host controller. The poll re-

sponse is updated again, if necessary, and then the cxÐ
task routine relinquishes control to the tasker.

Coax Interrupt Handlers

The coax mode uses two interrupts to support coax activity:

Receiver Active, RA, and Line Turn Around, LTA. There are

two possible receiver interrupt handlers which can get con-

trol from the RA interrupt depending on whether 3270 or

3299 support has been selected in the MPAÐCONFIG reg-

ister. Two Interrupt Vector tables are used to determine

which receiver interrupt handler will get control. One inter-

rupt vector table, INTÐPAGE, supports 3270 and 5250. The

other interrupt vector table supports 3299. The active inter-

rupt vector table is determined by the contents of the ÀIBRÓ

register. The ÀIBRÓ register is set during configuration initial-

ization by a coax initialization routine. HOUSEKEEP deter-

mines which coax initialization routine gets executed based

on the MPAÐCONFIG register, cxÐinit for 3270 and cxÐ
3299init for 3299. cxÐ3299init actually calls on cxÐinit to

perform most of the initialization, with cxÐ3299init perform-

ing only 3299 specific initializations.

The flow of the 3270 receiver interrupt handler is shown in

Figure 6-4 . The only difference between the 3270 and 3299

receiver interrupt handler is at the start. The 3299 receiver

interrupt handler checks the first frame of the 3299 trans-

mission for the terminal address. If the address does not

match the user specified terminal address (usually specified

via the Loader), the receiver is reset and that transmission is

ignored. If the terminal address of the 3299 address frame

does match, then control is passed to the 3270 interrupt

handler for command processing and response transmis-

sion back to the coax controller.

The receiver interrupt handlers are background tasks to the

Kernel and have been written to conform with the rules for

all background tasks. These rules include the saving and

restoring of any register used except those on the alternate

B bank, IW and IX. Within the receiver interrupt handler, only

the dedicated background register pair IX is used, IW is free

for user enhancements. IX is used as the screen and EAB

buffer pointer, and its is also used as the receiver software

state machine variable DATAÐVECTOR. More about the

DATAÐVECTOR will be discussed later.

When the 3270 receiver interrupt gets control, either directly

from the RA interrupt vector or indirectly from the 3299 re-

ceiver interrupt handler, it retains control until all the frames

sent from the controller have been processed by the inter-

rupt handler or a transmission error is detected. We chose

the Receiver Active interrupt and allowed the receiver inter-

rupt routine to retain control until the transmission is com-

plete because the MPA-II must support two asynchronous

communications interfaces, the coax line and the PC inter-

face. By using the RA interrupt the receiver interrupt handler

has more time with which to get control before it must re-

spond to the transmission sent. This extra time is needed

when the receiver interrupt is held off while other interrupts

are being processed or while the foreground routines have

disabled interrupts. Note that care should be taken to insure

that the receiver interrupt is never held off for more than

4.5 ms or the MPA-II may not be able to respond to coax

commands with 5.5 ms.
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FIGURE 6-4. 3270 Coax Receiver Handler
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Once the receiver interrupt handler gets control, it will check

for Data AVailable, DAV, and receiver errors, handling them

immediately. If neither condition mentioned above is true,

which is the case unless the receiver interrupt has been

held off, the receiver interrupt handler will check for PC in-

terface activity and allow it to be serviced via one of the fast

BIRQ routines, (i.e., either the IRMA or IBM PC interface

fast BIRQ routine). As the coax transmission is processed,

the receiver interrupt handler will check for PC interface ac-

tivity in between the processing of coax data frames, when

the receiver interrupt handler is idle anyway. Holding off the

PC and its interface programs (i.e., IRMA’s E78, IBM’s

PC3270, etc . . . ) is possible because they are not as time

critical as a coax controller in expecting responses from the

MPA-II.

When data becomes available the receiver interrupt handler

checks to see if the terminal is currently processing a coax

foreground command and therefore ‘‘busy’’. If it is busy,

then all data and commands are ignored, and the receiver

interrupt handler enables just the LTA interrupt, allowing it

to respond with TT/AR as soon as the coax line drops. Note

that the LTA interrupt may now interrupt the receiver inter-

rupt handler. If the terminal is not busy, then a quick check

to see if the current data frame is either the POLL or PACK

command is performed. If this is true, the POLL or PACK

command is handled immediately. Otherwise, bit 10 of the

coax data frame is checked. If it is high, the data frame is a

command from the controller. First the terminal internal de-

vice address is decoded to determine which internal device

the command is addressed to, for example EAB. Next, the

command is decoded, its processing routine is called, and

the command is processed. If it is a Read type command

then the appropriate response is immediately sent. If the

coax command processed is a Write type command that

expects data frames to follow, either immediately or upon

the next transmission, the DATAÐVECTOR is loaded with

the address of the part of the receiver interrupt handler rou-

tine which is responsible for processing the expected data

frame(s). Next, the LTA interrupt is enabled to allow it to

respond with TT/AR when the line drops. Again, note that

the LTA interrupt handler may interrupt the receiver interrupt

handler from this point on. Finally, control passes to the

receiver interrupt handler exit routine which terminates write

mode, if it has been active, checks for PC activity and, if any

occurred, handles it, and then checks for receiver activity. If

the receiver is still active or data is available, the receiver

interrupt handler loops back to process the next data frame,

else the interrupted foreground routine’s state is restored

and the receiver interrupt handler then exits.

If bit 10 of the coax data frame is low then the data frame

contains data for a previously executed command. The

DATAÐVECTOR is used to pass control to the appropriate

section of code which processes that data. After the expect-

ed data is processed, or a command is executed which

does not require following data, or an error is detected, then

the DATAÐVECTOR is set to a receiver interrupt handler

routine which accepts and trashes unexpected data frames.

As with commands, after the data is processed, the LTA

interrupt is enabled to allow it to respond with TT/AR when

the line drops. Finally, control returns to the receiver inter-

rupt handler exit routine, but note that write mode is not

terminated, in most cases.

The other interrupt used by the coax mode, LTA, requires a

very simple interrupt handler since its only task is to re-

spond with TT/AR (seeFigure 6-5 ). This is because all oth-

er responses are handled by the receiver interrupt handler,

as stated above. Thanks to the dedicated registers of the

BCP and the tight coupling of the CPU to the Transceiver,

the LTA interrupt handler does not have to save or restore

any registers. This feature allows it to easily interrupt both

foreground and background tasks, as well as perform in a

timely manner.

TL/F/10488–43

FIGURE 6-5. 3270 Coax LTA Handler

Due to the nature of the coax mode, most of the coax com-

mands must be processed during the receiver interrupt. The

commands can be broken up into three basic groups: Read

type commands which respond with information requested

by the controller. Write type commands which write follow-

ing data frames into particular registers or screen buffers,

and foreground commands which perform various time con-

suming tasks such as clearing screen buffer memory. Of the

Read type commands there is a special case called the

POLL command. This command will be discussed first.

Poll/Response Mechanism

The Poll and POLL/ACK commands are handled in the

CXÐBASRD.BCP module in routines cxÐpoll and

cxÐpack, respectively. The basic functions of the czÐpoll

routine are to decide if TT/AR or special status should be

returned to the coax controller and to handle the POLL

modifiers in the upper bits of the POLL command. These

modifiers include the terminal alarm and key click control.

The determination of which status to send is made after

checking mpaÐcontrol for the MPAÐSTATÐPEND bit. If

MPAÐSTATÐPEND is asserted, the poll response vari-

ables have new status to send. If no status is pending,

TT/ARissent.Next, thePOLLcommandmodifiersareapplied

to the alarm and clicker status bits in mpaÐmainstat.

The POLL/ACK routine always responds with TT/AR. Next,

mpaÐcontrol is checked to see if the pending status has

been polled by the coax controller. If not, the POLL/ACK

routine exits. Otherwise the pending status is cleared and

both mpaÐcontrol and mpaÐauxcontrol are updated. Then

the poll response bytes, pollrespÐlo and pollrespÐhi, are

cleared.

UpdateÐpoll in the CXÐTASK.BCP module handles updat-

ing mpaÐcontrol and mpaÐauxcontrol to reflect new status

conditions. This routine updates the pollrespÐlo and hi

bytes based on the priority of the status in mpaÐcontrol

and mpaÐauxcontrol. POR is the highest priority condition

and outstanding status from EAB is the lowest.
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Read Commands

All read type commands to the base are found in the

CXÐBASRD.BCP module. Each read type command is de-

coded by the receiver interrupt handler and vectored to the

appropriate cxÐroutine. The most basic read type com-

mand is cxÐreadata. This is invoked upon decoding the

READ DATA data stream command. The character pointed

to by the address counter is sent immediately. The ad-

drcounter variable is incremented after the character is

sent.

The cxÐreadmul routine is also found in the

CXÐBASRD.BCP module and is vectored to when a READ

MULTIPLE command is decoded. READ MULTIPLE ex-

pects multiple bytes of screen data to be sent within 5.5 ms.

The response is initiated inside cxÐrdmul. The routine has

two modes: 4 byte and 32 byte. The default mode is 4 byte

and is determined by the state of the LSB in the secondary

control register. Both modes use the variable addrcounter

on the SCP to determine both where to find the data to send

and how many bytes to send, up to the 4 or 32 byte limit. In

other words, 4 and 32 bytes are the maximum that will be

sent to the coax controller. The addrcounter is incremented

after sending each byte and terminates the response when

the two or five low order bits roll to zero. The transmit FIFO

on the BCP will hold up to three bytes. The Transmitter

FIFO Full flag, TFF, indicates when the transmitter’s FIFO

has been loaded with those three bytes. Using this flag, the

read multiple routine begins by loading the transmitters

FIFO. Once TFF is true, the read multiple routine then alter-

nates between checking the TFF flag and checking for PC

activity via the BIRQ flag. If PC activity is detected, then the

appropriate fast BIRQ routine is called to handle the PC

access. When all the requested bytes have been sent, the

read multiple routine passes control to the receiver interrupt

handler exit routine. The remaining read type commands

are all handled similarly. CxÐrach and cxÐracl respond

with the high and low bytes of the addrcounter variable,

respectively. CxÐrdid responds with the terminal ID byte.

CxÐrxid responds with TT/AR since it is not implemented.

CxÐrdstat responds with the statÐreg variable. All these

commands check for LTA prior to responding. If LTA has

not occurred, then a protocol error is posted since read type

commands are required to be the last frame in a message

from a coax controller. The cxÐrdid routine does additional

processing, however. The status conditions OPERATION

COMPLETE and FEATURE ERROR are cleared by recep-

tion of the READ ID command.

Write Commands

All write type commands to the base are found in the

CXÐBASWR.BCP module. Commands are decoded by the

receiver interrupt handler and vectored to this module at the

cxÐaddresses. Each write command has an associated

dvÐstub for handling incoming data. The routines load the

DATAÐVECTOR with the appropriate stub before exiting.

CxÐwrite and its data vector stub dvÐwrite are responsible

for writing data into the screen buffer, setting the MPA-II’s

Buffer Being Modified semaphore and indicating the screen

buffer update in the MPA page change word. When the next

command is decoded, write mode will be terminated, the

Buffer Being Modified bit will be cleared, and the Buffer

Modified bit will be set. The dvÐwrite stub is very critical in

that very large blocks of data may be sent to the device

through the routine and cumulative interrupt latency effects

may become significant. To address this, the dvÐwrite rou-

tine always empties the receiver FIFO.

Other write type commands found in the CWÐBASWR.BCP

module include the initial stubs for the foreground com-

mands; SEARCH FORWARD, SEARCH BACKWARD, IN-

SERT, and CLEAR. All these commands are initially decod-

ed and vectored here in real-time. When their associated

parameters are received, the foreground commands are

scheduled through the sub-task communcation mailbox. All

the foreground commands cause the terminal to set

NOTÐAVAIL status (busy) in the status register. All four

respond with TT/AR to acknowledge reception of the com-

mand and parameters cleanly.

All the other write commands load variables on the SCP

corresponding to registers in the emulated terminal, or

cause some controlling action in the terminal. These include

the low and high bytes of the address counter, the mask

value for CLEAR and INSERT, the control registers and re-

setting the terminal. CxÐreset calls the hostÐreset routine

that re-initializes the SCP variables to the POR state. The

screen buffers are not cleared. The START OPERATION

command causes a vector to the cxÐstart routine and re-

turns TT/AR.

Foreground Commands

The foreground routines are all executed by cxÐtask when

the sub-task communication mailbox is filled with the appro-

priate value. These are tkÐinsert, tkÐclear, tkÐsforward

and tkÐsback. The routines are found in the

CXÐCOM.BCP module along with other local support rou-

tines.

EAB Commands

The EAB commands are found in the CXÐEAB.BCP mod-

ule. Read and write type commands addressed to the EAB

feature are included here. The number of commands for the

EAB feature are small enough that they are logically

grouped together in one module, as opposed to the base

commands. Some of the more complex commands from a

performance standpoint are addressed to the EAB feature.

WRITE ALTERNATE, WRITE UNDER MASK, and READ

MULTIPLE EAB require the most real-time bandwidth of any

coax function.

The READ MULTIPLE EAB command is the same as its

base counterpart except for two features: it functions with

the EAB exclusively and, if the Inhibit Feature I/O step bit in

the Control register is set, then this command is ignored.

WRITE ALTERNATE receives a variable length stream of

data that is written with screen and EAB data alternately.

The WRITE UNDER MASK command uses data associated

with the command, the EAB byte pointed to by the cursor

register, and the EAB mask to modify the contents of the

EAB. The algorithm is quite strange and is best described by

the code. Please refer to eabÐwum and dvÐwum for spe-

cifics on the command implementation.

IRMA Interface Overview

IRMA is a member of a family of micro-to-mainframe links

produced by Digital Communications Associates. It provides

the IBM PC, PC XT, or PC AT with a direct link to IBM 3270

networks via a coaxial cable connection to an IBM3174,

3274, or integral terminal controllers with type ‘‘A’’ adapters.
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The IRMA product includes a printed circuit board that fits

into any available slot in IBM PCs and a software package

that consists of a 3278/79 Terminal Emulator program,

called E78, and two file transfer utilities for TSO and CMS

environments. Also included in the software are BASICA

subroutines useful in developing other application programs

for automatic data transfer.

The 3278/79 Terminal Emulator provides the user with all

the features of a 3278 monochrome or 3279 color terminal.

The IRMA file transfer program provides all the information

required for the successful transfer of files under the TSO or

CMS IBM mainframe software packages. Also included in

the IRMA software package are many other features such

as program customization, keyboard reconfiguration, inde-

pendent and concurrent operation, ASYNC Character Sup-

port, and PC clone support.

As discussed in the introduction, the IRMA product was a

forerunner in the 3270 emulation marketplace and quickly

gained wide acceptance. DCA made a considerable effort in

documenting the interface between IRMA and its PC host.

As a result this interface has become one of the industry

standards used today. So it is only natural that this interface

be used on the DP8344 Multi-Protocol Adapter-II to highlight

the power and versatility of the DP8344A. Biphase Commu-

nications Processor. The MPA-II hardware with the MPA-II

soft-loadable DP8344A microcode is equivalent in function

to the DCA IRMA board with its associated microcode. Both

directly interface with the IRMA software that runs on the

PC (E78, file transfer utilities, etc.) providing all functions

and features of the IRMA product. The following sections

describe the hardware interface and the BCP software in

the Multi-Protocol Adapter II Design/Evaluation kit that is

used to implement the IRMA interface. All of the following

information corresponds to Rev 1.42 of the IRMA Applica-

tion software. Later versions of the IRMA PC Application

Software are downward compatible.

Hardware Considerations

The IRMA printed circuit board plugs into any normal expan-

sion slot in the IBM PC System Unit. It provides a back-pan-

el BNC connector for attachment by coaxial cable to a

3174, 3274, or integral controller. IRMA operates in a stand-

alone mode, using an on-board microprocessor (the Signet-

ics 8X305) to handle the 3270 protocol and screen buffer.

Because of the timing requirements of the 3270 protocol,

the on-board 8X305 operates independently of the PC mi-

croprocessor. The 8X305 provides the intelligence required

for decoding the 3270 protocol, managing the coax inter-

face, maintaining the screen buffer, and handling the data

transfer and handshaking to the System Unit (PC microproc-

essor).

The IRMA card uses National Semiconductor’s DP8340 and

DP8341 3270 coax transmitter and receiver (respectively) to

interface the 8X305 to the coaxial cable. The DP8340 takes

data in a parallel format and converts it to a serial form while

adding all the necessary 3270 protocol information. It then

transmits the converted data over the coax in a biphase en-

coded format. The DP8341 receives the biphase transmis-

sions from the control unit via the coaxial cable. It extracts

the 3270 protocol specific information and converts the seri-

al data to a parallel format for the 8X305 to read.

The IRMA card contains 8K of RAM memory for the screen

buffers and temporary storage. The screen and extended

attribute buffers use approximately 6K of this memory. The

remaining memory space is used by the 8X305 for local

storage. A block diagram of the IRMA hardware is shown in

Figure 6-6 .

The hardware used in enabling the 8X305 to communicate

with the PC’s 8088 processor is a dual four byte register

array. The 8X305 writes data into one of the four byte regis-

ter arrays which is read by the 8088. The 8088 writes data

into the other four byte register array which is in turn read by

the 8X305. The dual register array is mapped into the PC’s

I/O space at locations (addresses) 220h–223h.

A handshaking process is used between the two processors

when transferring data. After the 8088 writes data into the

array for the 8X305, it sets the ‘‘Command Request’’ flag by

writing to I/O location 226h. The write to this location is

decoded in hardware and sets a flip-flop whose output is

read as bit 6 at location 227h. When the 8X305 has read the

registers and responded with appropriate data for the 8088,

it clears this flag by resetting the flip-flop. A similar function

is provided in the same manner for transfers initiated by the

8X305. Here the flag is called the ‘‘Attention Request’’ flag

and can be read as bit 7 at location 227h. This flag is

cleared when the 8088 writes to I/O location 227h.

The Multi-Protocol Adapter-II printed circuit board also plugs

into any expansion slot in the IBM PC System Unit. Like the

IRMA card, it provides a back panel BNC/Twisted Pair con-

nector for attachment by coaxial cable or unshielded twisted

pair cable to a 3174, 3274, or integral controller. The MPA-II

operates in a stand-alone mode, using the DP8344A Bi-

phase Communications Processor to handle the 3270 pro-

tocol and screen buffer. Again, because of the timing re-

quirements of the 3270 protocol, the BCP operates inde-

pendently of the 8088 microprocessor of the System Unit.

As with the 8X305, the BCP provides the intelligence re-

quired for decoding the 3270 protocol, managing the coax

interface, maintaining the screen buffer, and handling the

data transfer and handshaking to the System Unit. Howev-

er, with the BCP’s higher level of integration, it also directly

interfaces with the coaxial cable. The BCP has an internal

biphase transmitter and receiver that provides all the func-

tions of the DP8340 and DP8341. However, unlike the

8X305, the DP8344’s CPU can handle the 3270 communi-

cations interface very efficiently.

The MPA-II card contains a single 32K x 8 RAM memory

device for the screen buffers and temporary storage. This

memory size was chosen for the 5250 environment, where

the BCP can handle up to seven sessions. In the IRMA

mode, only a little over 4K of memory is required. The

MPA-II hardware block is shown in Figure 6-7 .
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FIGURE 6-6. IRMA Hardware Block Diagram
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FIGURE 6-7. MPA-II Hardware Block Diagram

The hardware used to enable the BCP to communicate with

the PC’s 8088 processor is steering logic (contained in

PALs) and the BCP’s data memory. In a typical application,

the BCP communicates with a remote processor by sharing

its data memory. This is true with the MPA-II, but because

the MPA-II must run with the IRMA software, steering logic

has been used to direct the 8088’s I/O reads and writes of

the IRMA dual register array locations (220h–227h) into the

data memory on the MPA-II card. By using data memory

instead of a discrete register file the component count has

been reduced. The IRMA software requires that a ‘‘dual’’

register file be used (or in this case emulated). Therefore,

the writes from the 8088 are directed to memory locations

7F20h–7F23h and the reads from the 8088 are sourced

from memory locations 7E20h–7E23h. The MPA-II Register

Array Implementation is shown in Figure 6-8 .
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FIGURE 6-8. MPA-II Register Array Implementation
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The handshaking process is still used when the BCP and

the 8088 are transferring data. When the 8088 goes to set

the command flag by writing to I/O location 226h, it actually

does a write to 7F26h in the MPA-II’s data memory via the

steering logic. The steering logic locks out future accesses

by the PC to the MPA-II and interrupts the BCP telling it that

a write access has been made to the IRMA I/O space. This

interrupt is signaled through the BIRQ I/O pin of the

BCP, which is configured as an input interrupt. The

MPAÐCONFIG register determines which BIRQ interrupt

handler will be called. In this case, assume that the DCA

interface option is selected. Then the dcaÐint BIRQ inter-

rupt handler located in the module DCAÐINT.BCP is given

control. The dcaÐint BIRQ interrupt handler determines if

the PC wrote to 226h by reading the ‘‘MPA-II Access’’ regis-

ter located in a PAL. This access register is located at BCP

data memory address 8000h and it holds the lower 6 bits of

the last I/O location written to on the MPA-II. If a write oc-

curs to I/O location 226h, the BCP sets bit 6 in the MPA-II

memory location that the PC’s 8088 will read as its I/O loca-

tion 227h. The BIRQ Interrupt handler will then write (any

value) to the MPA-II Access register to unlock the PC. In the

case of the ‘‘Attention Request’’ flag, the BCP will set this

flag by simply setting bit 7 in the memory location which the

8088 reads as I/O 227h. The clearing of this flag by the

8088 is done in a similar fashion as the setting of the ‘‘Com-

mand Request’’ flag. Note that each time the 8088 writes to

an I/O location between 220h and 22Fh the BCP is inter-

rupted. However, specific action is taken only on writes to

226h or 227h. With all other locations the BCP simply re-

turns from the interrupt service routine once it has deter-

mined the 8088 did not write to I/O 226h or 227h. This

approach to the hardware has been chosen to minimize the

discrete logic on the MPA-II card by taking advantage of the

power of the BCP’s CPU to handle some tasks in software

that were typically done with hardware in the past. Another

benefit of this ‘‘soft’’ approach is that changes to the IRMA

interface definition by DCA will most likely only require a

software change for the MPA-II board, thus protecting your

hardware investment.

IRMA Microcode

The IRMA application software written for the personal

computer (E78, file transfers, etc.) is designed around a de-

fined interface between IRMA and the System Unit (the

8088 and its peripheral devices). The hardware portion of

this interface is discussed above. The software portion of

this interface is the microcode written for the 8X305 proces-

sor. When the software and hardware are viewed as one

function, it is referred to as the Decision Support Interface

(DSI). All of the IRMA application software has been written

around this interface. When configured in the IRMA mode

the MPA-II becomes the DSI. The method of communica-

tion between the DSI and the System Unit will be discussed

briefly in the next section. A more exhaustive discussion on

this interface is given in the IRMA Technical Reference.

The DSI and the System Unit communicate through the dual

four byte register array just discussed. The System Unit is-

sues commands to the DSI by writing to this array. This

register array is viewed by the System Unit as four I/O loca-

tions (220h–223h). Each I/O location corresponds to one

eight bit word. When the System Unit issues a command,

the first byte, word 0, is defined as the command number.

The next three bytes, word 1 through word 3, are defined as

arguments for the command. The number of arguments as-

sociated with an individual command varies from zero to

three. Sixteen commands have been defined for the DSI.

These commands allow the System Unit program to read

and write bytes in the screen buffer, send keystrokes, and

access special features available on the DSI. To begin a

command the System Unit program sets byte 0 equal to the

command number and provides any necessary arguments

in byte 1 through byte 3. It then sets the Command request

flag. The Command Request flag is continually polled by the

8X305 processor when it is not busy managing the higher

priority 3270 communications interface. When it detects the

setting of this flag by the System Unit, it reads the data from

the register array and executes the command. Once the

command has been executed, the 8X305 will place the re-

sulting data into the other side of the register array and clear

the Command Request Flag (see Figure 6-9 ). The System

Unit program has been continually polling this flag and after

seeing it cleared reads the result from the register array.

The Command Request flag can only be set by the System

Unit. This is done by a write to I/O location 226h. The Com-

mand Request Flag can only be cleared by the DSI’s 8X305.
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FIGURE 6-9. Command and Response

Locations in the IRMA Register Array

The DSI can not issue commands to the System Unit but it

can inform the System Unit of a status change. If a status

change occurs in a status bit location when the correspond-

ing attention mask bit is set, the 8X305 will set the Attention

Request flag. This flag can be polled by the System Unit

and is viewed as bit 7 in the I/O register at address 227h.

The System Unit can clear this flag by executing a write to

I/O location 227h. As is the case with both flags, the action

of writing to the specific I/O location clears or sets the flags,

the data written during the write have no affect. In typical

operation the Attention Request flag is not used; however, it

is implemented on the MPA-II. The current status of both

flags can be read by both processors. The System Unit

does this by reading I/O location 227h. The resulting eight

bit number has the Attention flag as bit 7, the MSB, and the

Command flag as bit 6. The other bits are not used.

MPA-II Implementation

The IRMA interface on the MPA-II board operates essential-

ly in the same manner as described above. The System Unit

I/O accesses to the IRMA register array space are trans-

ferred to two areas in the BCP’s data memory (see

Figure 6-10 ). One location is for System Unit reads of the
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array (7E20h–7E23h), the other is for System Unit writes to

the array (7F20h–7F23h). Different BCP memory locations

are used because the register array on the IRMA card actu-

ally contains eight byte wide registers (four for System Unit

reads and four for System Unit writes) in hardware. E78 was

written to make the best use of this hardware design and in

doing so it may write a new command and/or arguments

before it reads the results of the old command. Therefore if

just four memory locations were used, E78 would read back

part of a new command it had just written and interpret this

as data from the DSI from the previous command.
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FIGURE 6-10. Command and Response

Locations in the MPA-II Register Array

The Command Request and Attention Request flags are im-

plemented using 74LS74’s on the IRMA card, hence the

setting and clearing by writing to 226h and 227h (this clocks

or clears the associated flip-flop). This function is imple-

mented on the MPA-II using an external PAL and the bi-di-

rectional interrupt pin, BIRQ. If there is a write to the IRMA

I/O space 220h–227h, a PAL issues an interrupt to the BCP

via the BIRQ input. The BCP reads the outputs of another

PAL to determine which location has been written to. If the

write is to I/O locations 226h or 227h then the appropriate

bits are set or cleared in the ‘‘IRMA read location’’ (7E27h)

in the BCP data memory. The BIRQ interrupt is generated

only on System Unit I/O writes to 220h–22Fh but this also

includes writes to the dual register array. If a write to 220h–

223h occurred, the BCP irma BIRQ interrupt routine simply

clears the interrupt and takes no further action.

The commands from the System Unit are executed in the

irma task routine. This routine is a foreground, scheduled

task in the MPA-II Kernel. The irma task routine first updates

both the main and auxiliary status registers as defined by

the DSI. Next the irma task sets the attention flag, if re-

quired. It then looks at the state of the command request

flag in memory to determine if there is a command pending

from the System Unit. If so, it reads the command number

and the arguments from the BCP’s data memory and exe-

cutes the command. The task then places the results back

in the data memory in the appropriate location (7E20h–

7E23h). After this is complete the task clears the command

request flag and returns program control to the Kernel.

There are three separate code modules used to allow the

MPA-II to emulate the DSI.

1. Power-Up Initialization Routine

2. BIRQ Interrupt Routine

3. irma Task Routine

These three routines will be discussed in the following sec-

tion. For clarity, the term ‘‘irma’’ is capitalized when referring

to DCA products and lower case when referring to the

MPA-II software that was written to emulate the IRMA DSI.

Figure 6-11 gives a graphical representation of where these

routines fit into the software architecture of the MPA-II.
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FIGURE 6-11. MPA-II Software Block Diagram in IRMA DSI Emulation Mode
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MPA-II Power-Up Initialization Routine

The irma power up initialization routine is called by the

housekeeping task if it detects that the DCA irma bit has just

been set in the MPA-II configuration register (along with the

5252/3270 bit clear). The irma initialization routine is titled

irmaÐpor in the MPA-II source code. This routine initializes

the memory locations and BCP internal registers that are

used by the irma emulation code. It also unmasks the BIRQ

interrupt and schedules the irmaÐtask in the MPA-II Kernel.

The first memory location initialized is the Command Re-

quest and Attention Request flag byte, which is location

7E27h in the BCP’s data memory. The data at location

7E27h is passed to the System Unit by the steering logic

when the System Unit reads I/O location 227h. This byte is

set to zero by the irmaÐpor routine even though only bits 6

and 7, the command and attention request flags respective-

ly, are used. The irmaÐpor routine also initializes the mem-

ory locations that the irmaÐtask routine uses to store the

trigger variables and the attention mask.

The irmaÐpor routine also initializes internal BCP registers.

It does this because other routines, such as the dcaÐint

interrupt routine, must access certain stored values very

quickly to keep execution time short. The execution time in

these routines is decreased if data needed in the routine are

kept in internal registers rather than in data memory. For

example, the value of the high byte of the address page of

the ‘‘IRMA read registers’’ is stored in register GP14. In the

BIRQ interrupt routine, the IZ index register needs to point

to that address page. This is done in the routine with a sin-

gle 2 T-state instruction which moves the contents of GP14

to the high byte of the IZ index register. If the value of the

high byte of the address page was in memory, it would take

a 4 T-state move to an immediate addressable register fol-

lowed by a 2 T-state move to the IZ index register. The

irmaÐpor routine initializes the registers GP14 and GP12

with the ‘‘IRMAÐread register’’ page memory address. The

irmaÐpor routine then signals the coax task, via

syncÐmailbox, to bring the MPA-II on line as a live terminal.

The final function of the irmaÐpor routine is to schedule the

irmaÐtask routine. This is done by loading the task number

into the accumulator and calling the scheduleÐtask routine.

After this, program control is returned to the tasker.

DCAÐINT BIRQ Interrupt Routine

The second code module required to emulate the IRMA DSI

is the dcaÐint BIRQ routine. On the IRMA card, the Com-

mand Request and Attention Request flags are implement-

ed in hardware. This implemention requires a number of dis-

crete components to decode the System Unit I/O address-

es 226h and 227h and to provide the set and clear function

of these flags. The MPA-II board, on the other hand, uses

extra CPU bandwidth to reduce the discrete components

needed to provide the Command Request and Attention Re-

quest flag function. It does this by letting the CPU decode

part of the System Unit I/O access address and provide the

set and clear function of these flags. The BCP code neces-

sary for this is the BIRQ interrupt routine whose source

module is labeled DCAÐINT.BCP. The BIRQ interrupt is

generated when the System Unit writes to any I/O locations

from 220h to 22Fh. It would have been more expedient in

this case to only have interrupts generated on writes to I/O

locations 226h and 227h. However, the MPA-II hardware

also supports the DCA Smart Alec emulation program and

the IBM emulation programs. The MPA-II implementation for

the DCA Smart Alec and the IBM interfaces require inter-

rupts to be generated from more System Unit I/O access

locations, so to reduce external hardware, interrupts are

generated for a sixteen byte I/O block. This flexibility of

hardware design further illustrates the usefulness of the ex-

tra CPU bandwidth of the DP8344A.

When the BCP detects the BIRQ interrupt, it transfers pro-

gram control to the dcaÐint routine. The function of this

routine is to set the Command Request flag if the System

Unit wrote to I/O location 226h or clear the Attention Re-

quest flag if the system unit wrote to I/O location 227h. The

3270 protocol timing requirements place another time con-

straint on this routine. Becuase this is an interrupt service

routine, all other BCP interrupts are disabled upon entering.

This means the coax interrupts will not be acknowledged

until they are re-enabled by the program. To meet this crit-

ical timing constraint, the dcaÐint routine execution time

must be as short as possible. The routine reads the MPA

Access Register PAL to acquire the information needed to

determine which register the System Unit actually wrote to.

Keep in mind that at this point the PC is ‘‘locked out’’ from

making any further accesses to the MPA-II. It then deter-

mines which I/O locations the System Unit wrote to by using

the JRMK instruction and a jump table. If the write was to

226h then the Command Request flag is set. Next, the rou-

tine must ‘‘unlock’’ the PC by writing to the MPA Access

Register. Now the routine only has to restore the environ-

ment (foreground registers used in interrupt routines are

pushed on the data stack and must be restored before leav-

ing the interrupt service routine) and return to the fore-

ground program. If the write was to I/O location 227h, the

routine clears the Attention Request flag. It then unlocks the

PC, restores the environment and returns program control

to the foreground program. If the write was to any other of

the sixteen locations, the PC is unlocked, the environment is

restored, and program control is returned to the foreground

task.

There is a section of code in the dcaÐint routine that does

the same function as that described above, but is called

from the coax receiver interrupt routine and not by the exter-

nal BIRQ interrupt. To increase performance, the transceiv-

er interrupt handlers check the BIRQ flag in the CCR regis-

ter before they return to the background task. If the flag is

asserted (active low), they call the dcaÐfastÐbirq section

of the dcaÐint routine. Here the same operations as de-

scribed earlier are performed except for the saving and re-

storing of the environment. The dcaÐfastÐbirq routine

does not have to provide this function because the coax

receiver interrupt routine does it. This decreases the num-

ber of instructions executed, and therefore, improves the

overall performance.

MPA-II Irma Task Routine

The majority of the DSI emulation takes place in the

irmaÐtask routine. This routine is run in the foreground as a

scheduled task. Therefore the decision to execute this rou-

tine is dependent only on the MPA-II’s task scheduler and is

not impacted by the System Unit. In reality the task is run

many times between System Unit accesses because the

code execution speed of the BCP is greater than that of the

PC. Therefore, the most current information and status is

always available to the System Unit. The irma task routine,
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appropriately labeled in the source code as ‘‘irmaÐtask’’,

contains two sections. These sections are the irma status

update and the command execution routines.

The irma status update routine, called irmaÐstatusÐupdate

in the source code, gathers and formats the information re-

quired to produce the auxiliary status byte and main status

byte as defined by the DSI (see Table 6-2). This routine is

implemented in the irmaÐtask routine as a subroutine. It

gets the necessary status for the auxiliary status information

from two predefined memory locations which contain gener-

al coax information placed there by the coax routine. These

memory locations are labeled MPAÐMAINSTAT and

CONTÐREG in the source code. The auxiliary status rou-

tine first moves the MPAÐMAINSTAT byte from data mem-

ory into an internal register. It masks off the unwanted bits

and combines the register with the contents of the

CONTÐREG memory location, which is also loaded into an

internal register from data memory. The routine then loads

the previous value of the auxiliary status byte from data

memory. This value was saved from the previous time the

task was executed and is required when determining the

main status byte. The routine then stores the new value of

the auxiliary status register in that same data memory loca-

tion. The new auxiliary status byte is maintained in register

GP6 for the remainder of the irma task.

The information required to determine the main status is

gained partly from the pre-defined MPAÐMAINSTAT byte,

however, two of the status bits must be generated by this

routine. These are the ‘‘Aux (auxiliary) Status change has

occurred’’ bit and the ‘‘trigger occurred’’ bit. The ‘‘Aux

Status change has occurred’’ bit is generated by comparing

the old and new auxiliary status bytes from the calculation of

the auxiliary status. If the values are different the bit is set. If

the values are identical, the bit is left in its previous state. It

is not cleared because this bit can only be cleared by a DSI

command from the System Unit. The ‘‘trigger occurred’’ bit

is set if a trigger data match occurs. The System Unit pro-

gram can define an address location in the screen buffer

and a corresponding data byte. If the data byte is found at

that location in the actual screen buffer, the trigger occurs.

The System Unit program can look for any number of bits in

the data byte to match by applying a mask value. It can look

for a change of state in the data byte by specifying a mask

value of all zeroes. The trigger mask, address location and

data byte values are stored in the BCP’s data memory and

are set by two of the defined DSI commands. The main

status routine gets these values from memory and checks

the screen buffer to see if the trigger bit should be set. Actu-

ally, this function is not used in the IRMA System Unit soft-

ware. The remaining bits are generated by checking the

MPA-II’s main status byte for its status. As with the ‘‘Aux

status change has occurred’’ bit, the ‘‘key buffer empty’’,

‘‘Unit reset by controller’’, and ‘‘buffer modified’’ bits in the

main status register must be reset by the System Unit pro-

gram. Therefore, the main status subroutine logically ‘‘ORs’’

these bits with their previous value. Two bits defined by the

DSI in the main status register are always left cleared by the

main status routine. These are the Fatal IRMA hardware

error and the command interrupt request bits. After the main

status byte has been generated, it is kept in register GP5 for

the remainder of the irma task. The main status routine also

loads the previous value of the main status from data mem-

ory and stores the new value in that same location.

The Attention Request flag section of the irmaÐstatusÐup-

date routine determines if the Attention Request flag should

be set as defined by the DSI. This section compares the old

main status value with the new main status value. If it de-

tects that a bit in the old register was a zero and the corre-

sponding bit in the new main status register is a one, it will

compare this bit position to the attention mask. If the atten-

tion mask also has a ‘‘1’’ in that bit position the Attention

Request flag will be set in the appropriate location in data

memory. The attention mask is loaded from the BCP’s data

memory and its value is set by one of the sixteen defined

DSI commands.

TABLE 6-2. IRMA Main and Auxiliary Status Byte Definition

Main Status Byte Auxiliary Status Byte

Bit Meaning Bit Meaning

(MSB) 7 Aux Status Change has Occurred(*) (MSB) 7 Unused

6 Trigger Occurred(*) 6 Unit Polled Since Last Status Read

5 Key Buffer Empty 5 Sound Alarm

4 Fatal IRMA Hardware Error(a) 4 Display Inhibited

3 Unit Reset by Controller 3 Cursor Inhibited

2 Command Interrupt Request(a) 2 Reverse Cursor Enabled

1 Buffer Modified(*) 1 Cursor Blink Enabled

0 Cursor Position Set(*) 0 Keyboard Click Enabled

(*) Bits which must be cleared by user program.

(a) Bits which will never be set in MPA implementation.
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The final section of the irma task is the command execution

routine which is called ‘‘irmaÐcommandÐdecode’’ with the

source code located in module IRMAÐCOM.BCP. This rou-

tine, like the others, is implemented as a subroutine to the

irma task routine. However, unlike the other routines, it is

not executed every time the irma task is run. The System

Unit program must have requested that a command be exe-

cuted or the irma task will skip the command execution rou-

tine and return program control to the task scheduler. The

irma task determines this by checking the Command Re-

quest flag in the IRMA status flag register at memory ad-

dress 7E27h. If this bit is set the irma task calls the com-

mand execution routine.

The command execution routine begins by determining

which of the sixteen commands is to be executed. This is

done by moving the command number data byte at memory

address 7F20h into an internal register. It then uses the

JRMK instruction and a jump table to transfer program con-

trol to the specific routine that corresponds to that com-

mand number. The individual command routine then loads

any required command arguments from data memory loca-

tions 7F21h–7F23h and executes the command. The re-

sulting data is placed in the data memory locations 7E20h–

7E23h with the IRMA main status byte always in the first

location (7E20h). The command execution routine then

clears the Command Request flag in data memory. After

this, it returns to the main body of the irma task routine.

The sixteen commands defined by the DSI are thoroughly

decumented in the IRMA Technical Reference. The imple-

mentation of each command in the command execution

routine is well documented in the corresponding section of

BCP source code. For reference, the commands and the

associated source code routine labels are given in Table

6-3.

As mentioned earlier, the MPA-II software uses a synchro-

nous method of passing some status information between

tasks. This is necessary because the status information can

be updated on both foreground and interrupt routines. In

this case the updating of such status information must be

synchronized between the routines or the data could be cor-

rupted. The synchronizing method is a ‘‘mailbox’’ in memory

where the location of the status information and the change

required is placed. The irma task uses the syncÐmailbox to

tell the coax task when to reset the ‘‘cursor change’’, ‘‘key

buffer empty’’, ‘‘unit polled since last status read’’, and ‘‘unit

reset by controller’’ status bits. The irma task also uses the

mailbox to tell the coax routine that the System Unit has

instructed the MPA-II to execute a Power On Reset se-

quence on the coax. The irma task accumulates the status

change information in register GP2 throughout the routine

(more specifically the cursor change reset from the main

status routine and the others from the command execution

routine). It then loads the mailbox just before returning to

the task scheduler.

TABLE 6-3. IRMA DSI Commands and the Corresponding MPA-II Source Code Labels

IRMA DSI Commands
MAP-II IRMA Command

Source Labels

Code Command Definition Source Code Label

0 Read Buffer Data irmaÐcomÐreadÐbuffer

1 Write Buffer Data irmaÐcomÐwriteÐbuffer

2 Read Status/Cursor Position irmaÐcomÐstatusÐcursor

3 Clear Main Status Bits irmaÐcomÐclrÐmstatus

4 Send Keystroke irmaÐcomÐsendÐkeystroke

5 Light Pen Transmit irmaÐcomÐlpenÐtransmit

6 Execute Power-On-Reset irmaÐcomÐpor

7 Load Trigger Data and Mask irmaÐcomÐtrigÐdataÐmask

8 Load Trigger Address irmaÐcomÐtrigÐaddr

9 Load Attention Mask irmaÐcomÐattnÐmask

10 Set Terminal Type irmaÐcomÐsetÐterm

11 Enable Auxiliary Relay irmaÐcomÐauxÐrelay

12 Read Terminal Information irmaÐcomÐreadÐterm

13 Noop irmaÐcomÐnoop

14 Return Revision ID and OEM Number irmaÐcomÐrevÐoem

15 Reserved-Do Not Use irmaÐcomÐreserved

46



TL/F/10488–28

FIGURE 6-12. IBM Hardware Implementation

IBM Interface Overview

The IBM Personal Computer 3270 Emulation Adapter Ver-

sion A uses sixteen I/O mapped locations, PC interrupt level

2, and 8K of re-mappable shared RAM to provide the nec-

essary hooks to do 3278/79 terminal emulation, 3287 print-

er, and DFT emulation. The PC emulation software reads

and writes to the I/O locations to determine session status

and reads the screen buffer maintained in the shared RAM

when screen updates are made by the coax controller. The

shared RAM concept and use of a PC interrupt make the

speed of the terminal emulator very fast and efficient.

The IBM Adapter card uses a gate array, PALs and various

logic chips to manage the interface and coax sessions. A

block diagram of the IBM adapter hardware is shown in Fig-
ure 6-12. The sixteen I/O locations reserved for the inter-

face are physically resident in the gate array located on the

IBM Emulation Adapter card. The addresses of the sixteen

I/O locations are 2D0h–2DFh. PC register addresses along

with their corresponding read and write capabilities are de-

fined in Table 6-4. The PC accesses the registers in four

different modes of operation which are: 1) read only, 2) write

only, 3) read/write, and 4) read/write with reset mask. The

first three modes are self explanatory. The read/write with

reset mask mode, also knows as ‘‘Write Under Mask’’ or

WUM mode, means that the PC reads the value of the regis-

ter as a normal I/O read to acquire the information. After

reading the byte, the PC will write a mask with ones in the

bit positions that the PC wishes to clear. This ‘‘write with

reset mask’’ is usually used as an acknowledgement that

the byte has been read by an earlier read. The resulting

contents of the register will be cleared in bit positions that

were written with corresponding ones. A brief description of

each register and its function follows. For a detailed discus-

sion on each register, refer to the IBM 3270 Connection
Technical Reference (see References in Appendix D).

TABLE 6-4. IBM Emulation PC Register Address Locations and Read/Write Functionality

Address PC Register PC Read PC Write

02D0 PC Adapter Interrupt Status Data Reset Mask

02D1 Visual Sound Data Reset Alarm

02D2 Cursor Address Lo Data Ð

02D3 Cursor Address Hi Data Ð

02D4 PC-Adapter Control Data Data

02D5 Scan Code Ð Data

02D6 Terminal ID Ð Data

02D7 Segment Ð Data

02D8 Page Change LO Data Reset Mask

02D9 Page Change HI Data Reset Mask

02DA 87E Status Data Reset Mask

02DB–02DF Reserved
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PC Adapter Interrupt Status Register (2D0h)

The Interrupt Status register contains six interrupt flags and

two status bits. The interrupts are set based on events oc-

curring on the coax. If the interrupts are enabled in the

Adapter Control register (2D4h), the PC interrupt level 2

(IRQ2) is set when one of the six interrupt conditions occur.

The buffer-being modified status flag is set when the screen

buffer is being modified by a WRITE DATA, a CLEAR, or

INSERT command. The interrupt status flag is set whenever

any interrupt has been set. The register is read/write with

reset mask by the PC as defined above. To acknowledge an

interrupt, the PC will write back to the register with a one in

the corresponding bit location of that interrupt. That clears

the interrupt. The wum scheme provides a clear handshake

between the two asynchronous systems. This register is

used by all three emulation modes (i.e., CUT, DFT and Print-

er mode). The definitions of some of the bits change de-

pending on the currently active mode.

Visual/Sound Register (2D1h)

The Visual/Sound register contains control settings for the

terminal that are affected by the load control register com-

mand, clicker status, and alarm status. This register is a PC

wum with a different twist. Any value written to this register

results in the clearing of the alarm bit only. Other bits are not

affected by the PC write. This register is only used in CUT

mode.

Cursor Address Low and High

Registers (2D2h and 2D3h)

The Cursor Address registers contain the sixteen bit cursor

value owned by the coax controller. These registers are

read only by the PC and provide the location of the current

cursor position. These registers are used in all three modes.

PC Adapter Control Register (2D4h)

The Adapter Control register determines the mode of opera-

tion of the adapter (i.e., 3278 terminal, 3287 printer, or DFT

emulation), controls keystroke passing with a bit used as a

handshake, and controls the masking of interrupts. The re-

maining bits control various operation situations (i.e., en-

abling/disabling the coax session, keystroke wrap testing

etc.). This register is read/write by both the PC and the

adapter. This function makes synchronization of reads and

writes critical to ensure no data is lost. This register is used

in all three modes. Some of the bit definitions change de-

pending on the active emulation mode.

Scan Code Register (2D5h)

The Scan Code register, as the name implies, is where key-

board scan codes are written by the PC corresponding to

the keystrokes struck on the keyboard. This register is PC

write only and the byte written is the one’s complement of

the scan code to be sent to the host. This register is used in

CUT mode only.

Terminal ID Register (2D6h)

The Terminal ID register is write only by the PC and should

not be changed once the terminal has gone on line. The

value written is the one’s complement of the keyboard ID

and model number of the terminal that will be requested by

the coax controller when initializing the session. This regis-

ter is used by all three modes.

Segment Register (2D7h)

The Segment register is used for relocation of the dual port

memory segment at which the adapter recognizes a memo-

ry read or write from the PC. The default value is CE. This

register is write only by the PC.

Page Change Low and High Registers

(2D8h and 2D9H)

The Page Change registers are used to communicate a

change in the screen buffer. Each bit corresponds to a 256

byte block of the 4K screen buffer and is set by the adapter

hardware when any screen modification occurs. The regis-

ter is read/write with reset mask by the PC as described

earlier. These registers are active for all three modes.

87E Status Register (2DAh)

The 87E status register contains status flags relevant to

3287 printer emulation. Included is a flag for the alarm and

operation condition of the printer. The register is read/write

with reset mask by the PC as described earlier.
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FIGURE 6-13. MPA-II Implementation of IBM Emulation Card

The Multi-Protocol Adapter Solution

The Multi-Protocol Adapter (MPA-II) card has the ability to

emulate the IBM Personal Computer 3270 Emulation Adapt-

er allowing the IBM PC emulation programs to run using the

MPA-II hardware in place of the adapter card while main-

taining the same functionality. To emulate the adapter, the

MPA-II utilizes the power of the DP8344A BCP to handle the

coax session and interface maintenance in software.

Figure 6-13 gives a block diagram of the MPA-II hardware.

The I/O registers described above are maintained in a

shared RAM located on the MPA-II board and the BCP soft-

ware must ‘‘fake out’’ the PC software when any register

update is made, leaving the correct value in the RAM for the

next access. To emulate the function of the I/O registers,

the MPA-II hardware sets the bi-directional interrupt pin

(BIRQ) low on any PC write to the IBM I/O locations 2D0h–

2D6h and 2D8h–2DEh. The write to the I/O location is rout-

ed into locations in the shared RAM. The mapping of the

I/O registers in the shared RAM is shown in Figure 6-14.
The BCP Code Variable Address column in Figure 6-14
shows the variables used in the MPA-II source code to form

the absolute RAM address of the I/O register contents. The

PCIO value is a sixteen bit value and is the base pointer into

the page of memory where the I/O registers reside. The

variables listed are added to the PCIO base to form the

absolute address pointer to the specified register in data

memory. All registers that are cleared by the write under

mask scheme have duplicate copies that are maintained

solely under BCP control to allow software implementation

of the write under mask handshake.

The BCP software, to handle the interface and coax routine,

contains interrupt driven routines as well as foreground rou-

tines. A block diagram showing the code arrangement used

to handle the IBM interface and coax session is shown in

Figure 6-15. Four blocks run as tasks while the interrupt

sources are used where immediate attention is required

(i.e., the communication with the controller [receiver inter-

rupt] and the PC interface maintenance [BIRQ interrupt]).
The three sections of code that will be discussed below are

responsible for initializing the I/O registers at power up,

maintaining the I/O registers, and setting/clearing the PC

level 2 interrupt. Each routine is described in the paragraphs

that follow.
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FIGURE 6-14. IBM I/O Register Mapping

TL/F/10488–31

FIGURE 6-15. IBM Interface Code Block Diagram
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IBMÐInitialization

The ibmÐinit routine initializes the I/O registers to the ex-

pected state at power up and initializes internal BCP vari-

ables in preparation for a new session. After clearing the

screen buffer, the program schedules the ibmÐtask routine

as a task to the Kernel routine and unmasks the BIRQ inter-

rupt to enable the ibmÐbirqÐint routine to run when the PC

writes to the IBM I/O registers. This code is only executed

when the card initially runs at power on time or when chang-

ing MPA-II modes via the MPAÐCONFIG register. Upon

completion of this and other initialization routines, the PC

emulation software can be started to bring the PC emulator

resident.

IBMÐBIRQ Interrupt Routine

The BIRQ routine is unmasked by the ibmÐinit routine as

mentioned above. The BIRQ input goes low (asserted)

when the PC writes to the IBM I/O locations 2D0h–2D6h

and 2D8h–2DEh. BIRQ is unaffected by PC reads of the

I/O locations since no action is required by the MPA-II

board. At the same time BIRQ is asserted, the MPA-II hard-

ware ‘‘locks out’’ the PC from performing any further memo-

ry or I/O accesses to the MPA-II board until the BCP soft-

ware ‘‘unlocks’’ the PC. When the BIRQ interrupt handler,

ibmÐbirqÐint, gets control, it first reads the Access register

(mpaÐaccess) to determine which IBM I/O register has

been written to. If the I/O register written to is a read only or

write only register then no action is required by the interrupt

routine so the routine unlocks the PC by writing any value to

the Access register, and then exits. If the I/O register writ-

ten to is a WUM type register then the BIRQ interrupt rou-

tine complements the value currently in the I/O register lo-

cation (for it is the mask value written by the PC) and ANDs

it to the local copy of that I/O register. The result is then

placed into the I/O register location as well as into the local

copy memory location. The PC is then unlocked by the inter-

rupt routine and the routine exits. A write to the Visu-

al/Sound IBM register of any value causes the local copy to

be retrieved, its alarm bit cleared, and both the I/O register

and its local copy to be updated. The Interrupt Status IBM

register will not only have the WUM performed, the interrupt

routine will also de-assert the IRQ PC interrupt line by writ-

ing a zero in bit position 7 to the Data register (mpaÐdata).

Bit 7 of the Data register controls the state of the PC’s IRQ

interrupt line. The PC interrupt is set in the ibmÐtask routine

(IBMÐTASK.BCP) if interrupts are pending and not dis-

abled.

There is a simplified version of the ibmÐbirqÐint BIRQ in-

terrupt handler called ibmÐfastÐbirq. The ibmÐfastÐbirq

routine is directly called by the receiver interrupt handler in

between the processing of coax data frames in order to

handle PC activity without impacting the coax command

5.5 ms response timing, which is so critical. The ibmÐfastÐ
birq routine is identical to the ibmÐbirqÐint routine except

that it does not perform any saving or restoring of BCP reg-

isters since this is handled by the receiver interrupt handler.

IBMÐTASK Foreground Routine

The ibmÐtask routine runs in the foreground and is called

by the Kernel. The ibmÐtask is enabled to run by the

ibmÐinit routine. Once it has been scheduled by the initiali-

zation routine, the ibmÐtask runs any time it is called by the

Kernel.

The primary purpose of the ibmÐtask routine is to keep the

I/O registers current as to the state of the emulated terminal

session so that the PC software can update the screen in a

timely manner. The ibmÐtask routine maintains communi-

cation with the coax task routine via a two byte mailbox in

data memory. The ibmÐtask routine monitors coax activity

through bit settings in the MPA-II status variables

(mpaÐmainstat and mpaÐauxstat) and updates the I/O In-

terrupt Status register, Visual Sound register, PC Adapter

Control register, and PC interrupt level, IRQ2, accordingly.

The task is non-interrupt driven and uses both main banks

of the CPU for processing.

The ibmÐtask routine first checks the MPA-II status vari-

ables, mpaÐmainstat and mpaÐauxstat, clearing certain

status bits (such as Buffer Modified) to acknowledge receipt

of that status. Next, the ibmÐtask updates the IBM Page

Change registers and the IBM Cursor registers since they

are common to all three interface modes, (CUT, DFT, and

Printer). The ibmÐtask routine then determines the current

interface mode and calls that interface mode’s routine to

update the remaining IBM register specific to that mode.

For CUT mode, ibmÐtask calls the ibmÐ3278 routine. This

routine updates the Visual/Sound register (2D1h), the

Adapter Control register (2D4h), and the Interrupt Status

register (2D0h). The ibmÐ3278 routine will also interrupt

the PC via its IRQ interrupt line if PC interrupts have not

been suppressed by the Adapter Control register.

For DFT mode, ibmÐtask calls the ibmÐdft routine. This

routine updates the Adapter Control register (2D4h) and the

Interrupt Status register (2D0h). As with the ibmÐ3278 rou-

tine, this routine will also interrupt the PC via its IRQ inter-

rupt line if PC interrupts have not been suppressed by the

Adapter Control register.

The 3287 Printer mode is not supported in this version of

the MPA-II microcode, but may easily be added. In fact, Re-

vision B of the IBM Emulation Adapter can also be support-

ed through simple microcode enhancements if the

MPAÐCONFIG register (2DCh), MPAÐPARM register

(2DBh), and BCP RIC register (2DFh) are relocated. (Relo-

cating these registers only requires some simple PAL equa-

tion changes for the existing hardware.) That is one of the

advantages of the soft architecture concept that the BCP

allows. Not only is your product protected against changes

on the Coax side of the interface, but your product is also

protected against changes on the PC side of the interface!

After the above routines return to the ibmÐtask routine, the

ibmÐtask routine sends mail via syncÐmailbox back to the

cxÐtask routine, if anything needs to be communicated to

the coax side, such as keystrokes. Then ibmÐtask returns

to the kernel.

Twinax Task

The twinax task twÐtask (located in module

TWÐTASK.BCP) is responsible for directing twinax terminal

emulation. It monitors all seven internal twinax sessions for

current polling status, for 2 second Auto-POR time-outs,

and for 5 second POR OFFLINE timeouts. In addition, twÐ
task invokes the twinax command processor, twÐsession

(located in module TWÐSESS.BCP), for each twinax ses-

sion that requires attention.
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When the MPAÐCONFIG register is set (or changed) to

select twinax emulation, the task housekeep calls twÐinit

(located in module TWÐTASK.BCP) to initialize the twinax

routines, and then calls twÐsaÐinit (located in module

SAÐINIT.BCP) to initialize the smart alec interface routines.

The routine twÐinit initializes the hardware interface for

twinax, initializes and unmasks the twinax receiver interrupt,

initializes and unmasks the transmitter interrupt, initializes

and unmasks the timer interrupt, initializes the twinax de-

pendent Device Control Page (DCP) variables, and initializ-

es all seven Session Control Pages (SCPs) for twinax emu-

lation. The initialization of everything except the SCPs is

straight forward; the appropriate bits and bytes are simply

set to their required values. The initialization of the SCPs are

a bit more complicated, however, with the following steps

performed for each SCP. First, the SCP is filled with ‘‘55’’

hex (as a debugging aid). Second, twÐpor (located in mod-

ule TWÐCNTL.BCP) is called, which initializes the twinax

dependent SCP variables, except for these set by the Smart

Alec interface routines (i.e., Model ID, Keyboard ID,

etc . . . ). Third, twÐinit takes each session out of POR

since a true POR has not been requested yet. (A true POR

can only be performed on an active session). After the

SCPs are initialized, twÐinit schedules the twinax task

twÐtask to run under the Kernel. It is twÐtask’s job to di-

rect twinax emulation in the foreground. TwÐinit then re-

turns control to house-keep, which in turn calls twÐsaÐinit.

The twÐsaÐinit routine initializes the memory locations

and internal registers that are used by the Smart Alec emu-

lation code. This is discussed in detail in the Smart Alec

Interface Overview section later in this chapter. House-keep

then enables interrupts and returns control to the Kernel’s

tasker with the twinax emulation and interface tasks now

scheduled to execute.

The monitoring functions performed by twÐtask break

down into two groups: ONLINE sessions, those sessions

which are configured by the Smart Alec emulator (attached)

and seen by the host 3x or AS/400 system; and OFFLINE

sessions, whose sessions are not configured by the Smart

Alec emulator (unattached) and therefore not seen by the

host 3x or AS/400 system. ONLINE (configured) sessions

are monitored for current polling status, Auto-POR time-

outs, and POR OFFLINE time-outs. Current polling status

simply indicates whether the physical address for a session

is being polled at least once every 2 seconds. When this is

false, twÐtask clears the line active indicator for that ses-

sion. (The System Available indicator status is monitored by

the smart alec interface task). An Auto-POR time-out occurs

when twÐtask determines that 2 seconds have elapsed

since the last poll to a physical address. The task twÐtask

request that the session attached to that physical address

perform a POR. It then schedules the session in question so

that the request will be processed. (Scheduling sessions is

discussed in the following paragraph.) POR OFFLINE time-

outs occur when twÐtask determines that 5 seconds have

elapsed since a given session initiated a POR. It is twÐ
task’s responsibility to bring the session ONLINE by signal-

ing the receiver interrupt handler to start responding to and

accepting commands from the host 3x or AS/400 system.

OFFLINE (non-configured) sessions are only monitored for

current polling status.

After every internal session has been checked by the moni-

tor, twÐtask invokes the twinax session command proces-

sor, twÐsession for each scheduled session. (This action is

similar to the Kernel’s tasker.) Both background and fore-

ground tasks schedule sessions when they require a ses-

sion to perform some sort of action. For example, a session

is scheduled when a new command is placed onto the inter-

nal command queue, or when another task, such as the

smart alec interface task, requires a session to POR. The

task twÐtask calls the twinax command processor, twÐ
session, and passes a pointer to the SCP of the scheduled

session.

The command processor then performs the requested ac-

tion and/or executes the command(s) in the internal com-

mand queue.

When all the sessions have been checked and all the

scheduled sessions have been processed by the command

processor once, twÐtask returns control to the Kernel’s

tasker.

Twinax Interrupt Handlers

The twinax mode uses four interrupts: DAV, Data Available,

for handling receiver data; TFE, Transmitter FIFO Empty, for

all responses; TIMER for handling response window timing

and as a real time clock for 5250 protocol requirements; and

BIRQ for host interface accesses. All interrupts except

BIRQ are unmasked in the twÐinit routine after initialization

requirements for each have been executed. The BIRQ inter-

rupt is unmasked in the saÐinit routine. As with the coax

interrupt routines, the twinax interrupt routines can use the

alternate B bank registers without having to save and re-

store them. The twinax DAV and TFE interrupt routines are

set up as state machines whose current state is stored in

the ‘‘DATAÐVECTOR’’ and ‘‘TXÐVECTOR’’ memory loca-

tions. IW and IX are reserved for the TXÐVECTOR and

DATAÐVECTOR addresses that point to the appropriate

state in the TFE interrupt and DAV interrupt routines, re-

spectively. The TFE routine always expects TXÐVECTOR

to be set appropriately upon entry. DAV loads the DATAÐ
VECTOR from memory upon reception of the first frame of a

message and uses IX directly for frames 2-n. Also, GP5 on

alternate B bank has been reserved for DAV, TFE, and TIM-

ER interrupt routine usage. The name of this register is ‘‘RÐ
STATE’’ since it is used primarily by the receiver for station

address information and protocol control.

Twinax Receiver Interrupt Routine

The DAV interrupt routine is responsible for decoding the

commands sent by the controller, loading commands on the

internal processing queue, stuffing data in to the regen buff-

er, ‘‘OFFLINE’’ address activity determination, maintaining

protocol related real time status bits, and supporting all sev-

en station addresses if necessary. A flow diagram of the

DAV interrupt routine is shown in Figure 6-16.
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FIGURE 6-16.Twinax DAV Interrupt Routine
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Initialization requirements of the DAV interrupt are:

1. RÐSTATE (GP5 on alternate B) set to TWÐRSTATEÐ
INIT;

2. twÐlevelÐcnt set to TWÐLEVELÐINIT;

3. twÐbusyÐcnt set to TWÐBUSYÐMAX.

The Main A Alternate B bank of registers are first selected

and IZ is saved so that it can be restored upon exiting the

interrupt. Since the DAV interrupt source is an ‘‘OR’’ of both

the reception of a valid data frame and the flagging of an

error by the receiver, a check for an error is done first to

make this destination. (Error handling will be discussed later

in this section.)

A key pivotal point in the routine is controlled by a flag set in

RÐSTATE called RXÐMULTI which is set after processing

the first frame of a multiframe message. The purpose of

RXÐMULTI is to ensure that the received station address is

only sampled on the first frame of each message from the

controller and causes the DAV interrupt routine to search

for the ‘‘111’’ end of message delimiter on all subsequent

frames received. The station address saved in RÐ
STATE[2–0] will be used by the receiver for setting the SCP

pointer on all subsequent frames for setting the SCP pointer

on all subsequent frames of the multiframe message. When

the end of message is detected, the flag RXÐEOM is set in

RÐSTATE. If RXÐEOM is set at exit time, then RXÐMUL-

TI and RXÐEOM will be reset along with the transceiver to

ensure that any errors flagged by the receiver logic of the

BCP resulting from a noisy line after the transmission of the

fill bits will be ignored. If RXÐMULTI is not set, the data

received is either the first frame of a multi-frame message or

a single frame command. In this condition, the station ad-

dress is placed in RÐSTATE[2–0] and IZ is set to point to

the SCP page of memory corresponding to the station ad-

dress. RXÐEOM will get set here only if the data is a single

frame command, which is determined by the state of

RTR[0] (bit 14, see 5250 PAI). The station address received

is the ‘‘physical station address’’ and should not be con-

fused with the ‘‘logical station address’’ which is used solely

by Smart Alec for aesthetics. The physical station address is

loaded into bit 8–10 of the sixteen bit SCP pointer. This

scheme provides 256 bytes of data memory for emulating

each station address.

Once the SCP pointer has been established, the receiver

interrupt must know if the station address of the data re-

ceived is currently being emulated (‘‘ONLINE’’) or is not be-

ing emulated (‘‘OFFLINE’’). Addresses that are offline have

to be monitored for activity to inform Smart Alec whether or

not the address can be attached as an online session in the

future (see OFFLINE section for line activity determination).

When the session in ONLINE, checks are made upon re-

ception of the first frame of the message to see if the ses-

sion is currently in a reset state or if a line parity error is

pending. For subsequent frames of the mesasge, no checks

are made for reset or pending line parity errors, although

each frame is still parity checked. The reset state is deter-

mined by the RXÐRESET flag stored in twÐrxtxÐstatus on

each SCP page. When the reset flag is set, all data is ig-

nored. The line parity error state is needed since once a line

parity error is detected, only POLL commands are process-

ed by the terminal until the error condition is cleared. The

error is cleared when a POLL is received with the Reset

Line Parity Error bit set in conjunction with the terminal be-

ing in the non-busy state. (See POLL discussion in 5250

PAI).

If the terminal is not in a reset condition and no line parity

error is pending, the DATAÐVECTOR is loaded to deter-

mine what state to branch to. The DATAÐVECTOR must

be stored on the SCP page due to the multi-session nature

of twinax. When the first frame of a message is received,

the IX index register is loaded from the SCP twÐdataÐvec-

torhi and twÐdataÐvectorlo locations prior to the indexed

jump to the appropriate processing state. For frames 2-n of

a message, IX is used in its current state for processing

speed since it is reserved for the interrupt and is already set

accordingly.

Command/Data Processing Routines

There are basically four states used in the DAV interrupt

routine: 1) command decode, 2) writes, 3) busyÐwait, and

4) activate wait. Each state is vectored to via an indexed

jump using the DATAÐVECTOR as discussed above. How-

ever, when exceptions are detected by the foreground com-

mand processing routines, the DATAÐVECTOR is modi-

fied.

The command decode state, as the name implies, is where

the received byte is decoded and pushed onto the 16 byte

internal processing queue as specified in the 5250 protocol.

Commands are decoded first by checking to see if the com-

mand is a POLL. Next, two jump tables are used to further

decode the command. One table is used for commands ad-

dressed to features (i.e., RTR[7] e 1) and only the lower

four bits of the command are decoded. The other jump table

processes all commands in base format so the lower five

bits of the command are decoded. No destinction is made

as to what internal device is addressed since this is done by

the foreground twÐsession routine when the command is

unloaded from the queue. The only commands that can

have duplicate meanings in this scenerio are the END OF

QUEUE and RESET BASE since they are identical in the

lower five bits of the commands. They are further processed

before being loaded onto the queue to handle this overlap.

Once the command is decoded, it is loaded onto the queue

by the QUEÐLOADER routine which will be discussed later.

Since commands may or may not have associated oper-

ands with them, the DAV interrupt modifies DATAÐVECTOR

appropriately for the command just decoded. Single frame

commands do not change the DATAÐVECTOR from com-

mand decode since there are no operands associated with

them. This is not true for the end of queue command as it

results in the DAV routine moving into the busyÐwait state

which will be discussed later. Commands that have associ-

ated operands with them, for example LOAD

ADDRESS COUNTER, set the DATAÐVECTOR to the

rxÐoperands routine and a frame count value is maintained

on the SCP (twÐframeÐcnt) to control how many addition-

al frames stay in the rxÐoperands state for processing the

entire command packet. Some commands require special

routines to process them. The READ and WRITE IMMEDI-

ATE commands set DATAÐVECTOR to rxÐimmÐoperands

so that it will be set to activateÐwait upon completion of the

commands operands. WRITE CONTROL DATA requires a

special stub since it can be a a2 operand command or a3

for the 3180 emulation (see 5250 PAI). WRITE DATA AND

LOAD CURSOR also requires a special routine since the

number of associated operands expected is embedded in

the first operand of the command.
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After a complete command packet (i.e., the command plus

any associated operands) has been loaded into the queue,

the DAV interrupt schedules the twinax command proces-

sor, twÐsession, to process the command. The appropriate

session task is scheduled by moving TWÐSESSÐSCHED

into twÐsessÐstate on the SCP corresponding to this com-

mand’s physical address. This scheme provides the com-

munication to the foreground task to tell it which of the sev-

en sessions to process.

The QUEÐLOADER routine is called upon reception of all

commands and operands that are queable and handles

stuffing the command in the queue with some exception

detection. (Commands that are not queable are POLLS and

ACTIVATES.) The QUEÐLOADER maintains the position of

commands on the queue and status of the queue with a

byte on the SCP called twÐqueÐptr. The lower five bits of

the byte form a pointer to the next available position to stuff

a byte on the queue. Each time a byte is loaded, the pointer

is incremented making bit 5 correspond to the queue being

full (TWÐQUEÐFULL) since it will be set upon loading the

sixteenth entry into the queue. Another flag, TWÐQUEÐ
NOTÐRDY, in twÐqueÐptr is used to tell twÐsession if a

complete command packet (i.e., a command and associat-

ed operands) is ready for processing. This flag uses twÐ
frameÐcnt to determine packet boundaries and allows twÐ
session to process packets as soon as they are available,

instead of waiting for a complete queue load before pro-

cessing the queue. If QUEÐLOADER detects that the

queue is full, flag TWÐQUEÐCOMPLETE in twÐqueÐptr

is set and DATAÐVECTOR is set to busyÐwait for handling

busy. TWÐQUEÐCOMPLETE is used as a handshake be-

tween the background DAV interupt and foreground com-

mand processor to communicate when the terminal can go

unbusy. Exceptions that are set by QUEÐLOADER are in-

valid command and queue overrun exceptions. When an

exception is deteted, it will not be set if there is already a

pending exception. Also, when the exception is detected,

the DATAÐVECTOR is set to busyÐwait to ensure that the

terminal will go unbusy to allow the controller to handle the

posted exception. The invalid command exception is posted

by the queue loader and the twÐsession command proces-

sor. QUEÐLOADER will post an invalid command when a

command with associated operands is loaded in the last

queue position but operands are still expected. The queue

overrun exception is posted when the sixteenth frame re-

ceived completes a queue load but the RXÐEOM flag is still

set meaning more frames are still being received.

The busyÐwait state of the DAV interrupt has a number of

functions. The DATAÐVECTOR is set to busyÐwait when

exceptions are detected in both foreground and background

routines. Also, DATAÐVECTOR is set to busyÐwait upon

receiving a complete queue load of sixteen frames or the

reception of an End Of Queue command. The major role of

the busyÐwait state is to handle the transition of busy (i.e.,

having commands on the queue) to unbusy (queue empty

waiting for more commands). To go unbusy the foreground

command processor must have finished processing all the

commands from the prior queue load. Once the last com-

mand of the queue load is received, TWÐQUEÐ
COMPLETE is set by DAV in twÐqueÐptr to mark the com-

pletion of the queue load. Then, in busyÐwait, the DAV

routine uses the clearing of TWÐQUEÐCOMPLETE

as an indication to clear the POLL response busy bit. In

conjunction with TWÐQUEÐCOMPLETE, the DAV inter-

rupt maintains a POLL counter called twÐbusyÐcnt to pro-

vide maximum flexibility in going unbusy. In has been ob-

served that some IBM controllers require that after a com-

plete queue load is received, the terminal must be busy for

some finite amount of time before being unbusy. To accom-

plish this task, the value of twÐbusyÐcnt is decremented

with each POLL received while in the busyÐwait state.

Upon reaching a count of zero with TWÐQUEÐ
COMPLETE low, busy will go low in twÐprespÐstat and

twÐbusyÐcnt will be reinitialized to TWÐBUSYÐMAX in

preparation for the next queue load. The TWÐBUSYÐMAX

equate is set up in TWINAX.HDR and should be set accord-

ingly. We recommend that TWÐBUSYÐMAX be set to one

since older versions of the 5294 remote controller require at

least one ‘‘busy’’ POLL response after a queue load. If a

command other than a POLL is received prior to signaling

unbusy, the DAV will process the command and set

DATAÐVECTOR to command decode if TWÐQUEÐ
COMPLETE is low. In this case, the twÐbusyÐcnt value is

ignored to ensure that commands are not discarded.

When a preactivate READ or WRITE command packet is

completely received, the DATAÐVECTOR is set to the acti-

vateÐwait state. The role of activateÐwait is to handle the

transition of busy to unbusy (as with busyÐwait), to flag an

invalid ACTIVATE exception if the controller sends the

ACTIVATE before the terminal is unbusy, set up the writeÐ
both state for reception of ACTIVATE WRITEs, and sched-

ule the response for an ACTIVATE READ reception. As with

busyÐwait, TWÐQUEÐCOMPLETE hass been set high

before entering this state and the interrupt routine uses both

TWÐQUEÐCOMPLETE low and twÐbusyÐcnt equal to

zero as criteria for going unbusy. Once the terminal is unbu-

sy, a flag stored in twÐrxÐactÐflags called RXÐPREACÐ
WR determines whether or not to look for an ACTIVATE

WRITE or an ACTIVATE READ command. When an ACTI-

VATE WRITE is received and expected, the busy flag is set

in twÐprespÐstat to ensure that the terminal is busy upon

completion of the write and the DATAÐVECTOR is set to

writeÐboth since the WRITE IMMEDIATE command and

WRITE DATA command are similar enough to be handled

by one state. When an ACTIVATE READ is received or ex-

pected, a response is scheduled by loading a timeout into

the timer and setting TWÐTIMERÐRESP in RÐSTATE.

Also, busy is set so that at the end of the read the terminal

is busy, and DATAÐVECTOR is set to command decode in

preparation for the next queue load. Commands other than

ACTIVATEs are simply discarded in this state. An invalid

ACTIVATE exception is posted if the expected ACTIVATE

arrives before the terminal is unbusy. TWÐQUEÐCOM-

PLETE is set in conjunction with TWÐQUEÐCORRUPT to

tell twÐsession to flush the queue. DATAÐVECTOR is set

to busy wait to handle going unbusy. As with QUEÐLOAD-

ER, the exception is only posted if there is no pending ex-

ception.

As mentioned above, DATAÐVECTOR is set to the

writeÐboth state to handle stuffing data in the regen buffer

following reception of the ACTIVATE WRITE command. The

data is always concatenated with the ACTIVATE WRITE

command. The writeÐboth state is responsible for detect-
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ing the storage overrun exception when the controller at-

tempts to send data beyond the size of the regen buffer.

The only difference at this point between the WRITE IMME-

DIATE and WRITE DATA commands is that the address

counter remains unchanged with the WRITE DATA com-

mand while the address counter is set to one greater than

the address of the last byte stuffed in the WRITE IMMEDI-

ATE comand. To determine whether a WRITE IMMEDIATE

or WRITE DATA command is being processed, a flag in

twÐrxÐactÐflags called RXÐWRÐDATA is set upon re-

ception of the WRITE DATA command. To minimize time on

the DAV interrupt, the WRITE DATA or WRITE IMMEDIATE

command routines set up the starting location of the write in

twÐactÐbeginhi/lo on the appropriate SCP. TwÐactÐbe-

ginhi/lo are then used as a pseudo address counter as each

byte is received, incrementing upon stuffing the byte in the

regen buffer. Upon completion of the write, which is deter-

mined by reception of an end of message indicator (RXÐ
EOM set), the pseudo address counter is placed into twÐ
actÐendhi and lo locations with the most significant bit of

twÐactÐendhi set to inform twÐsession that the write is

complete. twÐsession can then make an action stack entry

for Smart Alec screen updates.

POLL

POLL commands are processed completely by the back-

ground interrupt routines. The POLL command is decoded

in several states since polls play a part in all states men-

tioned above. The key decisions that are made in the DAV

interrupt when a POLL is received and the associated sta-

tion address is configured by Smart Alec are, what is the

state of level and what ‘‘type’’ of POLL response to make.

The 5250 PAI states that after a Power On Reset, the 5251-

11 will respond with a single frame POLL response that is

simply a status byte. After the SET MODE command is re-

ceived, the next reception of a POLL/ACK command caus-

es the terminal to respond with a two frame poll response;

the first frame being the former mentioned status byte and

the second a keystroke. Also, the PAI states that the first

two frame response after receiving the SET MODE will be

from level 1. To function in this manner, a flag called TWÐ
PACKÐSM is maintained by the DAV interrupt in location

twÐlevelÐcnt on the SCP. This bit is set when TXÐSETÐ
MODEÐRCVD (a SET MODE command has been process-

ed) located in twÐrxtxÐstatus is set and a POLL/ACK is

received. Level is used to indicate to the controller that new

status is available from the terminal and toggles each time a

new keystroke is presented. The reception of a POLL/ACK

after the terminal has been put in the two byte response

mode results in the POLL response with level toggle from its

prior state. Each toggle of level also contains a new key-

stroke, if available. The section of code in the DAV routine

that handles level transition is rxÐlevelÐhndlr.

POLLs to nonconfigured station addresses do not result in a

response but are used in monitoring activity on station ad-

dresses for Smart Alec address bidding purposes. When a

frame to an OFFLINE address (i.e., not configured by Smart

Alec) is received, the OFFLINE activity monitoring routine is

responsible for setting or clearing bits corresponding to

each OFFLINE address in twÐlineÐact on the DCP. Each

bit in this location corresponds to a physical address on the

network (therefore bit7 is unused), and is set when another

terminal or printer is active on that particular address. If the

address is available for attachment, the corresponding bit is

cleared. Smart Alec monitors this status regularly to com-

municate to the user whether or not he can attach to ad-

dresses via seven locations on the screen. To determine if

the address is active, the DAV interrupt looks for POLLS on

all OFFLINE addresses. Once a POLL is received, RXÐRE-

SPONSEÐWAIT and TWÐTIMERÐRESP flags are set in

RÐCOUNT into the timer to set a time limit for a response

to be received. Also, RÐSTATE is saved at twÐoffÐsave

addr on the DCP to store the address and response flag.

The next time the DAV interrupt hits with a frame to this

address, twÐoffÐsaveÐaddr is fetched to see whether we

are waiting for a response or not. If we are waiting for a

response, RXÐRESPONSEÐWAIT is checked. If the timer

interrupt routine has already run, RXÐRESPONSEÐWAIT

will be cleared which means that a response was not re-

ceived and the saved address is marked inactive. If RXÐ
RESPONSEÐWAIT is still set, this means that the frame

just received was a response and the saved address is

marked active. When an address is marked active, the save

address and response flag are cleared in preparation for the

next OFFLINE reception. When an address is marked inac-

tive, the saved address and response flag are cleared only if

the frame received is not a POLL. A reception of a POLL

results in the new address being saved with a timeout

scheduled just as before mentioned.

Errors detected by the receiver are handled on the DAV

interrupt and can result in two different actions. All error

types flagged by the receiver are treated as equal impor-

tance and are logged by maintaining error counters on the

DCP for each error type. The appropriate error counter is

fetched and incremented upon reception of an error. Once

the error is handled, a check to see if the error occurred in

the frist frame of a message or frames 2bn is checked.

First frame errors result in the setting of the line parity error

detected bit, TWÐLP, and TWÐBUSY in twÐprespÐstat

on each of the current ONLINE sessions. Also, the TWÐ
QUEÐCOMPLETE flag is set in twÐqueÐptr marking the

End of Queue load to ensure we can eventually go unbusy.

The 5250 PAI states that all active addresses will report line

errors on the first frame since the error could have occurred

in the address portion of the frame. If the error is encoun-

tered in frames 2bn of a message, the station’s address is

known so only that station sets TWÐLP in twÐprespÐstat.

Also, TWÐQUEÐCOMPLETE and TWÐQUEÐCORRUPT

are set since the validity of the queue load is in question.

The task twÐsession will flush the queue in this case, allow-

ing the terminal to go unbusy. This allows the controller to

handle the line error.

56



All receiver states exit through a common exit point. Upon

exit, if RXÐEOM has not been set, RXÐMULTI is set to

indicate that a multi-frame is in progress. If RXÐEOM is set,

this means that no more frames are expected and results in

the transceiver being reset with RXÐEOM and RXÐMULTI

being cleared. Many subroutines in the DAV interrupt

branch directly to rxÐeomÐrcvd which results in the reset

just mentioned. Using the transceiver reset capability of the

BCP avoids spending unnecessary time on the DAV inter-

rupt processing information of no concern. For example, the

OFFLINE activity monitoring routine only looks for POLLS

and flushes any other frames. What this means is that the

DAV interrupt has to process the first frame of each mes-

sage but by issuing a reset, subsequent frames of a multi-

frame message can be entirely ignored for they will not be

recognized by the BCP. After the reset, the receiver hard-

ware looks for a starting sequence and will not extract data

until seeing it. Therefore, the remainder of the message is

ignored and the next message will be recognized. Before

returning, the state of BIRQ is checked to see if a PC I/O

access needs service. If BIRQ is low, a call to dcaÐfastÐ
birq handles the access and returns control back to the

DAV interrupt routine. At this point, a check to see if more

data is ready for processing is done to avoid unnecessary

overhead of exiting the DAV interrupt only to be interrupted

again. If no more data is available, IZ, banks and flags are

restored on the return back to the foreground routine.

Twinax Transmitter Interrupt Routine

The TFE interrupt routine is responsible for loading the

transmit FIFO and making the correct response to the con-

troller. The TFE interrupt is normally masked and is un-

masked by the timer interrupt when a response timeout

count is encountered. A flow diagram of the TFE interrupt

routine is shown in Figure 6-17.
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FIGURE 6-17. Twinax TFE Interrupt

Upon entering the TFE interrupt, the contents of the IZ

pointer are saved and the pointer is loaded with the appro-

priate SCP address. The appropriate SCP address corre-

sponds to the physical address of the session that is re-

sponding to the controller. The address is stored in

RÐSTATE bits 2-0 and these bits are loaded into IZHI bits

2-0 with IZLO cleared forming the pointer to the first location

of the appropriate SCP. Finally, (FBR) is loaded with the

value at the twÐmode offset on the SCP to determine the

number of fill bits to insert between frames.

Commands that require a response back to the controller

are POLLs and ACTIVATE READs. All PREACTIVATE

READ commands are processed in the foreground by vari-

ous command processing routines branched to from twÐ
session. The various routines do exception checking and

are responsible for setting up TXÐVECTOR to the correct

address corresponding to the command type decoded.

When the ACTIVATE READ is received in the DAV interrupt,

a response is scheduled by setting the TWÐTIMERÐRESP

flag in RÐSTATE and loading a response timeout value into

the timer. When the TIMER interrupt hits and it determines

that this is a response timeout by checking for

TWÐ TIMERÐRESP set, TWÐTIMERÐRESP is cleared

and the TFE interrupt routine is called to make the re-

sponse.

POLL commands are handled entirely on the background

interrupts due to the real time nature of the status response

associated with the command. The DAV interrupt schedules

the response just as described above for ACTIVATE

READS and sets TXÐVECTOR to one of three addresses

to cover the various POLL responses that can be made.

The first frame of all responses must be sent to the control-

ler in a 45 g15 ms window as defined in the 5250 product

attachment information. The response timing is controlled

by loading a timeout value (TWÐRESPONSEÐCNT) into

the timer when reception of a POLL or PREACTIVATE

READ command is processed in the DAV interrupt routine.

For responses that are less than or equal to four bytes, only

one entry into the TFE interrupt is required to send the en-

tire frame back to the controller. To load the fourth byte

successfully, a test of TFF is made prior to loading the

fourth byte to ensure that the first byte has propagated

through the transmit FIFO and is being transmitted out the

serial shift register. When responses are greater than four

bytes in length, the TXÐVECTOR is modified prior to exiting

so that the next time TFE hits, the correct state will gain

control to continue or complete the remainder of the mes-

sage. Upon determining that the last frame of the response

is ready for load, [TCR2-0] are set to 111 for the end of

message delimiter as required by the protocol.

Keystroke passing in the 5250 protocol is different than in

3270. After a POR, 5250 terminals respond with a single

status response. For the 5251-11, a SET MODE followed by

a POLL/ACK causes the terminal to go into a two byte poll

response mode where the second byte is a keystroke. If no

keystroke is pending, the keystroke value is a null (00h).

New keystrokes can only be presented following a POLL/

ACK from the controller. When a new keystroke is made

available to the controller, the LEVEL bit in the first frame

status byte of the response toggles from the prior value to

inform the controller that new status is now available. The

DAV routine controls the poll responses by setting the TXÐ
VECTOR to one of three possible locations for POLL or
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POLL/ACK responses. For single frame status responses

to polls, TXÐVECTOR is set to txÐprespÐone. As soon as

the criteria to go into two frame poll response mode is met,

the DAV interrupt sets TXÐVECTOR to either txÐprespÐ
crnt or txÐprespÐnew. In txÐprespÐcrnt, the keystroke

sent back to the controller is the value stored in twÐ
prespÐkeyÐcrnt and LEVEL remains unchanged. In twÐ
prespÐkeyÐnew, LEVEL is toggled in the first frame status

byte response, and twÐprespÐkeyÐnew is cleared after

moving its value to twÐprespÐkeyÐcrnt. With this ap-

proach, keystroke passing with the terminal emulation is

simple since by simply checking to see if twÐprespÐkeyÐ
new e 00h determines whether a new keystroke can be

loaded for passing back to the controller. In other words, if

twÐprespÐkeyÐnew is nonzero, a keystroke is pending

and the emulation program must wait before loading a new

keystroke into twÐprespÐkeyÐnew.

All TFE ‘‘states’’ exit through a common exit point that han-

dles masking the TFE interrupt if no more frames are to be

sent, checking to see if a pending BIRQ interrupt is present,

restoring foreground registers and restoring banks and flags

upon returning. If a BIRQ interrupt is pending, DCAÐ
FASTÐBIRQ is called to handle the remote access (see

Smart Alec Interface discussion). When more frames need

to be sent, all of the above occur except masking the TFE

interrupt. Also, TXÐVECTOR may be modified to ensure

that the correct state is entered upon re-entering TFE when

it hits again.

TW-TIMER

The timer the BCP serves dual purposes in the twinax emu-

lation program: as a real time clock counter and as an inter-

val timer.

A 5251 terminal will turn off the System Available flag if no

POLL is received for more than 200 ms. It will initiate an

automatic power on reset if no POLL is received for more

than 2 seconds. Furthermore, the terminal will return to ON-

LINE from reset mode in approximately 5 seconds. The em-

ulation program uses seven 8-bit counters (twÐsysaÐ
porÐcntX, where X is from 0 to 6) to keep track of these

real time events (one for each session). These counters are

incremented by one every 21 ms. This 21 ms clock tick is

generated by the TIMER interrupt. The value of 21 ms gives

a maximum counting time (around 5.4 second) and a rea-

sonable counting resolution (g10% for a count of 200 ms).

The timer of the BCP is configured to use 1/16 CPU clock

as input clock.

In addition, the DAV and TFE interrupts utilize the timer to

provide a 45 ms time-out signal. When the receiver routine

receives a POLL or ACTIVATE READ command and de-

cides to respond to the host, as per IBM’s requirement, it

has to do it in 45 ms g15 ms after the reception of the

command. The receiver interrupt will setup the timer to gen-

erate a 45 ms time-out signal which in turn activates the

transmitter routine. The receiver interrupt first stops the 21

ms counting of the timer, it saves the current counting value,

it loads the timer to a count of 45 ms (minus some offset to

compensate for program execution time), it then starts the

timer and reloads the previous counting value to the timer

registers. When time-out occurs, the previous counting val-

ue will be loaded into the timer automatically to resume the

21 ms counting. In addition, the program will set a flag to

indicate that the timer has counted 45 ms. In this way, the

timer is occasionally interrupted from the normal 21 ms

counting and ‘‘borrowed’’ to provide a 45 ms time-out. Since

45 ms is much shorter than 21 ms and the interruption is not

too frequent, the error introduced is negligible.

When either the 21 ms or 45 ms time-out occurs, program

execution will be transferred to the timer interrupt service

routine (twÐtimerÐint). At the beginning of the routine, the

timer routine checks the source of the interrupt. If it is due to

the 45 ms time-out, the program reloads the 21 ms count

value into the timer registers and calls the TFE interrupt.

The TFE interrupt will return to the timer routine after the

response has been started. If the interrupt is due to the

21 ms time-out, the program increments all real time clock

counters by one unless the counter has already reached

‘‘FF’’. It is necessary to keep these counters from overflow-

ing because the foreground program has no way to distin-

guish counter overflow. In order to keep the execution time

of the interrupt service routine as short as possible, the tim-

er routine does not perform any other checking to these

counters. However, the routine still has to check pending

host accesses and call dcaÐfastÐbirq if needed. The fore-

ground program (twÐsession) is responsible for checking

these counters and invoking real time events at the right

moment.

The Command Stubs

The twinax part of the MPA-II program emulates the IBM’s

5251 model 11 display terminal. The following discussion

will be based on the commands for 5251 model 11. The

command set of 5251 model 11 is shown in Table 4-2, 5250

Command Set, located in Chapter 4. The commands are

divided into two main groups: the queueable commands and

non-queueable commands. The three non-queueable com-

mands POLL, ACTIVATE READ, and ACTIVATE WRITE are

not handled by the foreground programs as they are not

queueable. Instead they are handled in real time by the

background interrupt service routines as discussed above.

All other commands are queueable, namely, they are

pushed into the command queue when received by the re-

ceiver interrupt routine. They are processed by the fore-

ground task, twÐtask, when it is invoked by the Kernel. In

order to divide the program into properly grouped modules

and make documentation easier, the queueable commands

are further divided into four groups according to their func-

tions: Reads, Writes, Control and Operators. This grouping

is not a definition by IBM’s PAI document. The commands

shall be discussed according to this grouping.

One may observe that in addition to the 5251 model 11

command set documented in the IBM’s PAI, there is an ex-

tra command in Table 4-2 of Chapter 4. The READ LINE

command is an undocumented read command that is rec-

ognizable by the IBM 5251 emulation card. In addition, the

READ DATA command has some undocumented varia-

tions. To allow the MPA-II board to work with IBM’s System

Units properly, the BCP program must be able to handle

these commands. Responses to these commands will be

discussed under the READS section.

Commands to the display terminal can be addressed to dif-

ferent logical devices and feature devices. This is specified

in the modifier/device address field of the command. The

device address or feature address should not be confused

with the station address. Station address appears in another
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field and is handled by the receiver and transmitter interrupt

routines. In the MPA-II twinax emulation program, Base and

regeneration buffer, Keyboard, Indicators and Model ID are

implemented. The Magnetic Stripe Reader feature is not im-

plemented and commands to this feature will return a ‘‘not

installed’’ response.

As described earlier, twÐsession is responsible for decod-

ing the commands and directing the execution of the pro-

gram to the proper command processing routines. There

are some common practices or ‘‘rules’’ in coding command

processing routines so that they can interface with the ses-

sion task properly. On entering a command routine, GP0

contains the command word and IZ contains the current

SCP pointer, plus Main Bank A & B are selected. On leaving

from a command routine, IZ and GP7 must not be trashed

and register bank selection should not be changed. The

common point of exit is to LJMP to twÐcmdÐret (twinax

command return). For most commands, all 8 bits of the de-

vice address and command fields have been fully decoded

upon entry and, therefore, require no additional decode in

the command routine. However, for the RESET, READ

DEVICE ID and READ DATA commands, the device/fea-

ture address field must be decoded in the command rou-

tines. This is because these three commands can be ad-

dressed to a number of device/features or can be ad-

dressed to uninstalled device/features. A number of com-

mands are associated with one or more data frames. There-

fore, the command routines must pop those frames off the

command queue with LCALL(s) to twÐqueÐpopper. The

command routines should check the queue empty flag to

prevent catastrophic errors when popping frames off the

command queue. In normal operation, the queue will never

be empty when it is popped by the command routines.

Should the empty flag be true after a call to the twÐqueÐ
popper, it suggests that a programming error has been en-

countered. At this time a LCALL to twÐbugs is performed

followed by a graceful error recovery (The twÐbugs routine

is discussed in the Software Debugging Aid section). Most

commands require the command routines to check for the

validity of the operands which are held by the address coun-

ter, reference counter or cursor register prior to, or in the

course of the operation of the command. If any invalid oper-

and is detected, it must be reported back to the System Unit

through the exception status. The command processing

routines should set the exception type, LCALL to twÐ
postÐexception and then pass control back to twÐsession

via twÐcmdÐret if an exception is detected. The

twÐclearÐexception routine should be called if a command

is going to clear exception status. In addition, command rou-

tines should never flush the command queue directly.

The 5250-11 regeneration buffer size is 2000 bytes. The

valid values of the address counter, reference counter and

cursor register ranges from 0 to 1999. However, within the

BCP twinax emulation program, these counters contain an

offset which corresponds to their starting address within the

BCP’s data memory. For example, if the address counter

sent by the System Unit is 20h and the regen buffer of that

session starts at the BCP’s data memory address of 2048h,

then the address counter value stored in the SCP is 2068h.

We refer to the original values of the counters as relative

addresses and the stored values as absolute addresses.

The reason for storing these counters in absolute address

form is that the command processing routines can use them

directly as data pointers without adding an offset value. This

can speed up the time-critical interrupt service routines.

However, whenever these counter values are passed to or

from the System Unit via the Smart Alec interface, a conver-

sion procedure is needed. Furthermore, as these values no

longer start from zero, one has to check whether they are

less than the lower boundry of the regen buffer address

when performing the validity check. Another point is that for

some commands, the final values of the counters may be

rolled to 2000 if the last affected location is 1999 (in forward

operation) or 65535 if the last affected location is 0 (in back-

ward operation). Exception status should not be reported in

these cases.

As mentioned in Chapter 4, Smart Alec utilizes a 31 entry

FIFO queue that contains screen modification information.

The FIFO queue contains starting and ending addresses of

the screen area that has been modified. In the Smart Alec

documentation this queue is referred to as the action stack.

In order to emulate the Smart Alec interface, an action stack

was implemented on the MPA-II. Every command process-

ing routine that will modify the screen is therefore responsi-

ble for loading the action stack with the proper address val-

ues. In the twÐutil module, there is an action stack loader,

twÐactÐldr, and an action stack popper, twÐactÐpopper,

dedicated to maintaining the action stack. The action stack

is actually a circular FIFO queue with a length of 124 bytes

located in the SCP of every session. It can hold up to 31

entries as defined by the Smart Alec document. To load the

action stack, the command processing routines must first

load the appropriate memory locations and registers with

the starting and ending address of the modified buffer area.

Second, they must determine the type of modification as

defined by the Smart Alec interface. Finally, the routines

should call the action stack loader.

READ C

All read type commands are grouped in the

TWÐREAD.BCP module. The entry names of the command

routines are shown in Table 6-5. The read command rou-

tines are in general, quite straightforward. This is because

the actual response of all read commands is controlled by

the transmitter interrupt routine. The foreground read com-

mand routines are only responsible for setting up the proper

response routine addresses for the transmitter interrupt and

for performing some regen buffer address checking, if need-

ed.

TABLE 6-5. Entry Names of Module twÐread

Command Name
Command Routine

Entry Name

READ REGISTER twÐreadÐregsÐcmd

READ LINE twÐreadÐlineÐcmd

READ DEVICE ID twÐreadÐdevÐidÐcmd

READ DATA twÐreadÐdataÐcmd

READ LIMITS teÐreadÐlimitsÐcmd

READ IMMEDIATE DATA twÐreadÐimmÐcmd

The twÐreadÐregsÐcmd command routine sets up the

READ REGISTERS routine txÐreadÐregisters for the

transmitter and then jumps back to twÐcmdÐret. The

transmitter will in turn respond to the System Unit with six

bytes containing the values of the address counter, cursor

register, and reference counter.

The READ LINE command is an undocumented command

the IBM 5250 terminal emulation card responds to. The

READ LINE command reads the screen buffer starting at
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the address counter until it comes to the end of the current

screen line. The twÐreadÐlineÐcmd routine first checks

whether the address counter value lies within the visual

screen buffer range. Note that this range is different from

the other reads. If it does not, then an invalid register value

exception is posted and the twÐreadÐlineÐcmd routine

returns to twÐsession. Otherwise, the starting address of

the response is placed into twÐactÐbeginhi/lo, the ad-

dress counter is modified to point to the end of the screen

line, and then the txÐreadÐline vector is set up for the

transmitter interrupt. The transmitter will in turn respond to

the System Unit with the contents of the regen buffer line.

The twÐreadÐdevÐidÐcmd command routine first de-

codes the device/feature address by comparing the field to

all defined logical devices and feature addresses. If there is

a match, it will jump to the appropriate command routine to

set up routines to respond with the device or feature ID.

Otherwise it will jump to the twÐreadÐfidÐnotÐinstall rou-

tine which will direct the transmitter to respond with zero

data.

There are three different flavors of the READ DATA com-

mand. The READ DATA command addressed to the Mag-

netic Strip Reader is documented in the 5250 PAI. Since the

MSR is not installed, the twÐreadÐdataÐcmd command

routine sets up the txÐreadÐdata routine address for the

transmitter interrupt and them jumps back to twÐcmdÐret.

The transmitter will in turn respond to the System Unit with

sixteen bytes of zero data, per the 5250 PAI. The other two

flavors of the READ DATA command are undocumented,

but supported by the IBM 5250 terminal emulation card. The

READ DATA command 08h directed to the Base device

simply returns the regen buffer byte that the address coun-

ter currently points to. An invalid register exception is post-

ed if the address counter value lies outside the regen buffer

area. Then the txÐdataÐvector is set to the txÐrdÐdataÐ
base 08 routine address for the transmitter interrupt by the

twÐrdÐdataÐbase08Ðcmd command routine. The READ

DATA command 18h is the other undocumented read com-

mand. It is very similar to the read immediate command

discussed below except that the address counter points to

the start of the response, the address counter is set to the

last byte of the response plus one, and that if no attribute is

found when the end of the regen buffer is reached, then an

attribute exception is posted. The twÐrdÐdataÐbase18Ð
cmd sets up the txÐrdÐdataÐbase18 routine address for

the transmitter interrupt, as well as the starting address for

the response. Note that the twÐrdÐdataÐbase18Ðcmd

command routine actually determines the ending address

and then simply passes a count to the transmitter interrupt

as to how many bytes of the regen buffer to return. This

keeps the transmitter interrupt very simple.

The twÐreadÐlimitsÐcmd transfers a display field of data

to the controller. The area of transfer is delimited by the

address counter and reference counter; therefore, twÐ
readÐlimitsÐcmd first checks whether they lie within the

regen buffer and whether the reference counter is greater

than or equal to the address counter. If any one of these

tests fail, the program will post an invalid register value ex-

ception and return to the session task. Otherwise, it will

pass the address counter and the byte count (reference mi-

nus address) to the transmitter interrrupt through four mem-

ory storage locations: twÐactÐbeginlo, twÐactÐbeginhi,

twÐactÐendlo and twÐactÐendhi, and then set up the

READ LIMITS routine. The transmitter will then fetch the

data from the regen buffer and send it to the System Unit.

Before returning to session task, this command routine will

update the address counter to the value of reference coun-

ter plus one so that the transmitter interrupt will not have to.

The twÐreadÐimmÐcmd command pops out the starting

address from the command queue and determines whether

it is valid. If it is valid, it will be converted into an absolute

address, as we discussed in the introduction, and passed it

to the transmitter. The twÐreadÐimm command will then

determine the ending point of the read and pass a count of

the number of regen bytes to send to the transmitter. Final-

ly, the twÐreadÐimm stub will be set up for the transmitter

interrupt.

WRITE Commands

All write type commands are grouped in the TWÐWRI-

TE.BCP module. The entry names of the command routines

are shown in Table 6-6. The PREACTIVATE WRITE com-

mand routines, twÐwriteÐimmÐcmd and twÐwriteÐ
dataÐcmd, are relatively simple. They just set the beginning

address of the operation to twÐactÐbeginhi and twÐactÐ
beginlo. When the receiver interrupt gets an ACTIVATE

WRITE command, the receiver interrupt will put the data

into the regen buffer and determine the end of operation.

Processing of other write commands is done completely in

the foreground. We shall discuss each command in more

detail.

TABLE 6-6. Entry Names of Module twÐwrite

Command Name
Command Routine

Entry Name

WRITE CONTROL DATA twÐwriteÐcntlÐcmd

WRITE DATA and

LOAD CURSORÐbase twÐwriteÐdataÐldÐcurÐcmd

WRITE DATA and

LOAD CURSORÐindicate twÐwriteÐdataÐloÐindÐcmd

WRITE IMMEDIATE DATA twÐwriteÐimmÐcmd

WRITE DATA twÐwriteÐdataÐcmd

The twÐwriteÐcntlÐcmd command pops the data byte fol-

lowing the command from the queue and puts it into the

control register location (twÐctrl1) in the SCP. It also

checks the Reset Exception Status bit (bit 12) of the data

word. If the bit is set, the twÐclearÐexception subroutine is

called. On the 3180-2 model terminal, the command may

have a second data byte. This routine checks bit 8 of the

first data byte, if it is set, one more byte will be popped out

and saved into twÐctrl2 in the SCP.

The twÐwriteÐdataÐldÐcurÐcmd command may also

have one or more data bytes associated with it. This routine

checks the first data byte to determine if it is in the range of

01 to 0Eh. If the data byte is not in this range, it is the only

data byte associated with the command and the routine just

writes it to the location pointed to by the address counter. If

the data byte is in this range, the routine will take the first

byte as the byte count and will pop that number of data

bytes from the queue and write them into the regen buffer.

During the write operation, the address counter will be incre-

mented and checked for overflow. Storage exception status

will be posted if an overflow occurs. At the end of the opera-

tion, the program updates the cursor register to the value of

the address counter and loads up the action stack by calling

the twÐactÐldr routine.

The twÐwriteÐdataÐtoÐindÐcmd command routine han-

dles the WRITE DATA AND LOAD CURSOR command ad-
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dressed to the indicators. It simply pops out the data byte

following the command and saves it in the memory location

twÐidctrÐdata in the appropriate SCP. It also notes the

transition direction of certain indicators and saves this infor-

mation in the memory location twÐsaÐtransÐident for

Smart Alec.

The twÐwriteÐimmÐcmd routine first pops the starting ad-

dress from the queue, then checks to see if it is valid. If it is

valid, it will be converted into absolute form and passed to

the receiver interrupt. The starting address entry of the ac-

tion stack is also set up. The receiver will then pick up the

rest of the operation when the ACTIVATE WRITE command

is received.

The twÐwriteÐdataÐcmd routine checks the address

counter and passes it to the receiver interrupt as the starting

address of the operation. The subsequent operation is iden-

tical to the WRITE IMMEDIATE command.

Operators

The module TWÐOPER.BCP contains command routines

for all operator commands. Entry names of these routines

are shown in Table 6-7.

The CLEAR command routine is actually a subroutine that

returns to its caller. Therefore, the command routine twÐ
clearÐcmd simply calls the actual clear routine, twÐclearÐ
routine, and upon return from that routine, twÐclearÐcmd

LJMP’s back to twÐsession as required by all command

routines. The subroutine twÐclearÐroutine checks the ad-

dress and reference counters to see if they point at valid

screen addresses and that the address counter is less than

or equal to the reference counter. If any of these are false

an invalid register exception is posted and no clearing takes

place. Otherwise, the bytes starting with the byte pointed to

by the address counter are zeroed up to and including the

byte pointed to by the reference counter. Then an action

stack entry is made to notify the Smart Alec interface of the

screen update. The address counter and reference coun-

ter’s contents are not modified.

TABLE 6-7. Entry Names of Module twÐoper

Command Name
Command Routine

Entry Name

INSERT CHARACTER twÐinsertÐcmd

CLEAR twÐclearÐcmd

MOVE DATA twÐmoveÐcmd

SEARCH NEXT ATTRIBUTE twÐsearchÐattrÐcmd

SEARCH NEXT NULL twÐsearchÐnullÐcmd

The twÐinsertÐcmd command routine first examines the

regen buffer location pointed to by the reference counter. If

it is not a null, a Null or Attribute error exception will be

posted and operation terminates. If it is a null, the program

proceeds to check the address counter and reference coun-

ter to see whether they are valid. If the counter values are

valid, the insert operation will be carried out. At the end of

the operation, the address counter and cursor register will

be updated and the action stack will be loaded by calling the

twÐactÐldr routine.

Although the operation of the twÐmoveÐcmd command is

quite complex, the IBM PAI gives a fairly clear description of

it. This routine checks the address counter, reference coun-

ter and cursor register to determine whether the move is

forward or backward. The program then carries out the

move operation as per the description of the PAI. The action

stack load for the move command consists of two entries or

four values. The first entry is the starting address and end-

ing address of the destination area of the move. The second

entry is the starting address of the source area and the

direction of operation. Details of these entries can be found

in the Smart Alec user manual.

The twÐsearchÐattrÐcmd command routine first checks

the address counter to make sure it is within the valid range.

Next, starting from the current address counter value, the

routine searches the regen buffer to find an attribute. If an

attribute is located, the reference counter will be set to the

address of the attribute minus one. The routine will post a

null or attribute error exception if no atribute is found when

the end of buffer is reached.

At the beginning of the twÐsearchÐnullÐcmd routine, it

checks both the address counter and reference counter to

make sure they are within valid range and that the reference

counter is equal to or greater than the address counter. If

the checks are successful, the program proceeds to search

for a null character starting from the current value of the

address counter. If a null is found, the reference counter will

be set to the address of the null minus one. Otherwise the

operation will terminate when the reference counter is

reached and a null or attribute error exception will be post-

ed.

Control

The module TWÐCNTL.BCP contains all the routines that

handle the control commands. The entry names of all rou-

tines are shown in Table 6-8.

TABLE 6-8. Entry Names of Module twÐcntl

Command Name
Command Routine

Entry Name

LOAD ADDRESS COUNTER twÐloadÐaddrÐcmd

LOAD CURSOR REGISTER twÐloadÐcursorÐcmd

LOAD REFERENCE COUNTER twÐloadÐrefÐcmd

SET MODE twÐsetÐmodeÐcmd

RESET twÐresetÐcmd

EOQ Ð

The twÐloadÐaddrÐcmd command routine pops the ad-

dress counter value from the command queue and saves it

on the SCP after changing it to absolute form. However, as

per IBM’s PAI, there is no need to check the validity of the

value before loading. As a remark to clarify the ambiguity of

the PAI, the address counter value consists of two bytes,

the upper byte is the first data byte following the command

while the lower byte is in the second byte.

The twÐloadÐcursorÐcmd command routine loads the

cursor register in the SCP with a new value. The operation is

similar to twÐloadÐaddrÐcmd routine.

The twÐloadÐrefÐcmd command routine loads the refer-

ence counter in the SCP with a new value. The operation is

similar to twÐloadÐaddrÐcmd routine.

The twÐsetÐmodeÐcmd routine pops the fill bit count

from the command queue, converts it to the BCP’s Fill Bit

Register format, and saves it on the SCP. Next, the set

mode received bit is set in the SCP. This signals the back-

ground receiver interrupt that it may start responding to

polls using the two byte response format, (after a PACK is

received). Finally, if the current exception state indicates

POR then the exception state is cleared.
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Like the twÐclearÐcmd routine, twÐresetÐcmd actually

calls the subroutine twÐpor which performs a POR on the

current session. The routine twÐpor first places the current

session OFFLINE by signaling to the background receiver

interrupt (via the RXÐRESET bit) that it is not to respond to

the host until further notice for this station address. Once

this is done, the twÐpor routine can begin changing memo-

ry locations normally updated by the background receiver

interrupt without disabling interrupts because the RXÐRE-

SET bit effectively disables the receiver interrupt when

working with this physical session. Next the exception

status is changed, notifying other tasks that this session is

in POR. The time count for this session is cleared and a bit

is set (in the twÐporÐwaitedÐsession byte on the DCP)

informing the other tasks that the 5 second POR timeout

has commenced. The twÐtask routine will use this time

count and this session’s POR wait bit to determine when to

bring the session back on line. Other tasks use the POR

wait bit when interpreting the meaning of the time count for

the current session. The action stack is cleared next, along

with the smart alec task handshake bits. Then, the screen

buffer for this session is cleared via a call to twÐclearÐrou-

tine, which issues an action stack entry reflecting the

cleared screen. (This allows the PC to accurately reflect the

POR state.) Finally, the remaining SCP variables are set to

their appropriate values, except for the variables controlled

by the smart alec task, (i.e., Model ID, Keyboard ID, etc . . . ),

which are left unchanged.

The End Of Queue command does not actually have a com-

mand routine, for at this point in the command decoding

process of the MPA-II it does not provide any additional

information. As far as the command processor is con-

cerned, the queue load complete flag, set by the back-

ground receiver interrupt, indicates the actual end of queue.

So the act of popping the EOQ command off the queue

completed this command’s execution, no call to a command

routine is required.

The Twinax Session Command Processor

The twinax session command processor, twÐsession, is lo-

cated in module TWÐSESS.BCP. Its job is to perform all

non time-critical functions related to sustaining an active

twinax session. This includes processing the internal com-

mand queue, error recovery, and performing a POR. In addi-

tion, twÐsession and its subordinate routines are responsi-

ble for communicating important events (like screen up-

dates) to the emulation interface routine (i.e., the smart alec

task), which operates asynchronously to twinax session ac-

tivity.

The command processor, twÐsession, and its subordinate

routines are written with ‘‘reusable’’ code. That is, all the

information regarding a given twinax session’s state is kept

in the SCP (the data memory Session Control Page) at-

tached to that physical session. There is no dependency

between twÐsession and an active session’s state from

one call to the next. At any time, any SCP may be passed to

twÐsession. In other words, the current state of a given

physical twinax session exists only in its SCP, not in the

command processor. This gives one set of routines

(twÐsession and its subordinates) the ability to process all

the active twinax sessions concurrently. The twinax task

twÐtask simply passes the pointer of the scheduled ses-

sion’s SCP (via the IZ register) to twÐsession and twÐ

session then determines the current state of that session

and what action(s) need to be performed.

The program flow of twÐsession proceeds as follows. First,

twÐsession checks for the ACTIVATE WRITE command

for the current session completed in the background. If one

has occurred, twÐsession performs an action stack push,

which notifies the Smart Alec interface of the screen up-

date. Next, the command processor checks for actions re-

quested by other tasks. Currently, two actions are defined:

the ‘‘forced’’ POR and the ‘‘requested’’ POR. The ‘‘forced’’

POR is usually issued by the smart alec interface task and it

forces a POR regardless of the current session status. After

the POR is initiated control returns to the calling routine

(twÐtask). The ‘‘requested’’ POR is usually issued by twÐ
task when an Auto-POR is desired. A POR is only per-

formed if the current session is not already in the POR ex-

ception state or if an error condition does not exist. Other-

wise, this request is ignored. In this way, the twinax session

will not unnecessarily POR. Again, after a POR is initiated

control returns to the calling routine.

Once all the requested actions from other tasks have been

handled, the command processor attempts to process the

internal command queue of the current session. Rather then

holding off the command processor from processing com-

mands on the queue until a queue load is complete, we

opted to exploit the power of the BCP by using a parallel

processing approach where both the background receiver

interrupt and the foreground command processor have ac-

cess to the command queue simultaneously. This enables

the command processor to execute commands even while

the queue is still being loaded by the host. To avoid con-

flicts, the command processor twÐsession takes a ‘‘snap

shot’’ of the current internal command queue and current

exception status (in the poll response byte). The command

processor then works from the ‘‘snap shot’’ while the back-

ground receiver task updates in real time.

The ‘‘snap shot’’ involves the following steps. Interrupts are

disabled to prevent background tasks from updating the

command queue. The command queue is then checked to

see if another task has marked it as ‘‘corrupt’’. When a

background task determines that the command queue may

contain invalid data (for example, due to a line parity error or

the detection of an exception) it marks the queue as corrupt

and schedules that session. The twÐsession routine then

flushes the queue when it gets control. Flushing the com-

mand queue resets all the queue pointers and flags. This

marks the command queue as empty. It also signals the

background tasks that twÐ session has acknowledged the

error and cleaned up the command queue. This handshake

is required since background tasks are only allowed to push

onto the internal command queue, never flush it. (At the

next poll to this session, the background receiver interrupt

will indicate ‘‘not busy’’ to signal the host that this device

has completed error recovery.) After the command queue is

flushed, twÐsession will deschedule this twinax session

and return to the calling routine (twÐtask). If the internal

command queue is not corrupt, twÐsession checks to see if

it is ‘‘ready’’ for processing. The command queue is marked

as ‘‘not ready’’ while the background receiver interrupt is in

the middle of pushing a multi-byte command (for example

the LOAD ADDRESS COUNTER command) onto the
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queue. While the queue is marked as ‘‘not ready’’,

twÐsession will not attempt to process any commands on

the queue. Instead, twÐsession leaves this session sched-

uled and returns to twÐtask. This keeps the command

processor and its subordinate routines from attempting to

pop incomplete commands off the internal command

queue. On the next Kernel cycle, twÐ session will once

again be called upon (by twÐtask) to process this session’s

command queue. If the internal command queue is marked

‘‘ready’’ for processing then twÐsession copies the current

queue pointer, the current exception status (located in the

poll response byte), and then deschedules this session.

This completes the ‘‘snap shot’’. Interrupts are enabled so

that other tasks may continue to update the command

queue.

Now that the ‘‘snap shot’’ of the command queue has been

taken, twÐsession can begin popping commands off the

queue and decoding them. The command queue is process-

ed based on twÐsessions’ current verion of the exception

status, initially recorded during the ‘‘snap shot’’. This excep-

tion status is checked before the decode of each command

to determine the current exception state of this session,

since command decode depends on this state and previous

command execution may change the state. (Note that this

copy of the poll response’s exception status may not match

the actual exception status after the ‘‘snap shot’’ has been

taken. This is simply a consequence of background/fore-

ground parallel processing and is not a problem. The next

time a queue ‘‘snap shot’’ is taken the tasks are brought

back into sync.) While in POR exception state, only the SET

MODE and RESET commands are considered valid. While

in any other exception state, only the SET MODE, RESET,

and WRITE CONTROL DATA commands are considered

valid. In normal mode (no exception state,) all commands

are considered valid. If an invalid command for the current

exception state is decoded, the command queue is flushed

and twÐsession will attempt to post an exception. A valid

command decode causes twÐsession to pass control to

that command’s routine (called a command routine) for pro-

cessing. Most of the commands have been fully decoded by

twÐsession before their command routine is executed, but

a few commands require the command routines to further

decode the feature address field. Each command routine is

responsible for popping its associated data off the com-

mand queue. Each command stub is responsible for carry-

ing out complete command execution, including posting ex-

ceptions, making action stack entries, etc . . . (Many of

these tasks are actually carried out by calls to support sub-

routines.) All command routines return to the same entry

point in twÐsession. (See the comments in twÐsession, at

the command decode section, for a complete set of rules

regarding command stub coding.)

When all the commands have been popped off the current

command queue snap shot, the queue load complete flag

(TWÐQUEÐCOMPLETE) is checked. This flag is set by the

background receiver interrupt when an EOQ designator has

been received. (An EOQ designator can be an EOQ com-

mand, a PREACTIVATE command, or a full command

queue.) If the queue load complete flag is set then

twÐsession flushes the command queue, clearing this flag

and resetting the command queue pointer. The clearing of

the queue load complete flag by twÐsession signals the

receiver task that it may clear the poll response busy status

flag at its discretion. This in turn signals the host that the

queue load has been completely processed and a new

queue load may be initiated.

Finally, twÐsession returns control to the calling routine,

twÐ task, not to be called again for the current session until

another task schedules this session to perform additional

work.

Handling Exceptions

Exceptions are posted by the subroutine twÐpostÐexcep-

tion (located in module TWÐUTIL.BCP). This is the only

reliable way for foreground tasks to post exceptions since

both foreground and background tasks must be made

aware of the exception. The twÐpostÐexception routine

first disables interrupts to hold off background processing. It

then updates twÐsession’s exception status. Next, it up-

dates the poll response exception status, but only when no

exception is currently pending. The twÐpostÐexception

routine then places the background receiver interrupt into its

busy wait state. This prepares the receiver interrupt to re-

spond ‘‘not busy’’ on subsequent polls from the host. Fol-

lowing that, twÐpostÐexception flushes the command

queue per the PAI. Finally, after a quick check of BIRQ,

interrupts are enabled and twÐpostÐ exception returns to

the calling command stub.

Exception status is cleared by twÐclearÐexception, locat-

ed in module TWÐUTIL.BCP, for the same reason as stat-

ed above. This routine sets both twÐsession’s exception

status and the poll response exception status to zero while

interrupts are disabled. Again, BIRQ is checked before inter-

rupts are enabled and then control returns to the calling

command routine.

Twinax Software Debugging Aids

The subroutine twÐbugs, located in the module

TWÐTASK.BCP, is used for a debugging aid. Routines call

twÐbugs when they detect invalid states; for example, the

Smart Alec read command addressed to physical session 7

(the seven physical sessions are numbered 0–6). During

initial debug, the SCPs and DCP are usually relocated into

dual port memory by trading them with screen buffer 3 (sbp

3). The twÐbugs routine is then set to disable interrupts,

unlock the PC, and jump to itself so that when called, the

current state of the MPA-II is frozen and can then be viewed

using the Capstone Technology debugger. After initial de-

bug is complete, twÐbugs is set to simply log the occu-

rence of a bug by incrementing a counter in the DCP and

return to the caller. The caller should then attempt a grace-

ful recovery. A check of the twÐbugs counter will reveal if

routines are detecting unexpected conditions when in the

field.

Smart Alec Interface Overview

Smart Alec is a micro-to-System 3x or AS/400 link pro-

duced by Digital Communications Associates. It provides

the IBM PC, PC XT, or PC AT with a direct link to IBM

System 34, System 36, System 38, or AS/400 midrange

computers. The Smart Alec product includes a printed cir-

cuit board that installs in any full length slot in the PC, and a

software package that consists of a 5250 terminal emula-

tion program, called EMU, and a bi-directional file transfer

utility. A splice box to facilitate connection to the twinaxial

cable is also included.

The terminal emulation program provides the user with all

the features of 5251 model 2, 5291, or 5292 model 1 termi-
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nal. It also allows a PC printer to emulate the IBM 5256,

5219, 5224, 5225, and 4214 system printers. The file trans-

fer utility provides bi-directional data transfer between the

PC and the System 3x. Additional features include the ability

to support up to seven host sessions, the capability to bid

for unused addresses, compatibility with software written to

comply with the IBM Application Program Interface, ‘‘hot

key’’ access, and 3270 pass through support.

As mentioned earlier, IBM was the first to enter the market-

place with a 5250 terminal emulator. This was soon fol-

lowed by the release of similar products including DCA’s

Smart Alec. Smart Alec was however, the first product to

offer seven session support, address bidding, and a docu-

mented architecture for third party interfacing. As with

IRMA, Smart Alec and its associated interface gained ac-

ceptance in its respective market place. As a result of this

the Smart Alec interface was chosen for the Multi-Protocol

Adapter-II to further show the power and versatility of the

DP8344A Biphase Communications Processor. The MPA-II

hardware with the MPA-II soft-loadable microcode is equiva-

lent in function to the DCA Smart Alec board and its associ-

ated microcode with respect to terminal emulation and file

transfer capabilities (the printer emulation and non-vol RAM

configuration storage were not implemented on this version

of the MPA-II). Both directly interface with the Smart Alec

terminal emulation software that runs on the PC (EMU, file

transfer utilities, etc . . . ) providing the same terminal emula-

tion functions and features of the Smart Alec product. The

following sections describe the hardware interface and the

BCP software in the Multi-Protocol Adapter-II Design and

Evaluation kit that is used to implement the Smart Alec in-

terface. All of the following information corresponds to Rev

1.51 of the Smart Alec product.

Hardware Considerations

The Smart Alec printed circuit board plugs into any full size

expansion slot in the IBM PC System Unit. It provides a

cable and splice box that allows the bulky twinaxial cable

from the System 3x or AS/400 to be connected to the back

panel of the Smart Alec board. The splice box also contains

termination resistors that can be switched in to terminate

the line if it is the last device. Smart Alec operates in a

stand-alone mode, using an on-board microprocessor (the

Signetics 8X305) to handle the 5250 protocol and multiple

session screen buffers. Because of the timing requirements

of the 5250 protocol, the on-board 8X305 operates inde-

pendently of the 8088 or the System Unit. The 8X305 pro-

vides the intelligence required for decoding the 5250 proto-

col, maintaining the multiple screen buffers, and handling

the data transfer and handshaking to the System Unit.

The Smart Alec card uses a custom integrated circuit to

interface the 8X305 to the twinaxial cable. This custom de-

vice is essentially a transmitter and receiver built for the

5250 environment. It can take parallel data from the 8X305

and convert it to a serial format while adding the necessary

5250 protocol information and transmit this to the twinaxial

cable through additional interface circuitry. It also accepts a

serial TTL level signal in the 5250 word format and extracts

the 5250 protocol specific information and converts it to a

parallel format for the 8X305 to read.

The card contains 16K of data memory for the screen buff-

ers and temporary storage. Each session can require up to

2K of data memory for its associated screen buffer, ac-

counting for a total of 14K. The remaining memory space is

used by the 8X305 for local storage.

The hardware used in enabling the 8X305 to communicate

with the PC’s 8088 processor is a dual four byte register

array. The 8X305 writes into one side of the four byte dual

register array which is read by the 8088. The 8088 writes

into the other side of the dual array which is in turn read by

the 8X305. The dual register array is mapped into the PC’s

I/O space at locations (addresses) 228h–22Bh. This inter-

face is identical to that found on the IRMA board except for

the I/O addresses.

A handshaking process is used between the two processors

when transferring data. After the 8088 writes data into the

array for the 8X305, it sets the ‘‘Command’’ flag by toggling

bit 0 (writing a ‘‘1’’ then writing a ‘‘0’’) in I/O location 22Eh.

This is decoded in hardware and sets a flip-flop whose out-

put is read as bit 7 (the msb) at location 22Eh. When the

8X305 has read the registers and responded with appropri-

ate data for the 8088, it clears this flag by resetting the flip-

flop. A similar function is provided in like manner for trans-

fers initiated by the 8X305. Here the flag is called the ‘‘At-

tention’’ flag and can be read as bit 6 at location 22Eh. This

flag is cleared when the 8088 toggles an active low bit in bit

position 0 at location 22Dh. Even though the attention flag

function is documented, it is not used on this revision of

Smart Alec.

Two additional features not found on rev. 1.42 of the IRMA

card were implemented on the Smart Alec board. These are

the ability to softload the 8X305’s instruction memory and

the ability to save configuration information in a non-volatile

RAM on the board. The control signals needed for these

tasks are transferred to the Smart Alec Board from the 8088

in bits 1–5 at location 22Dh and 22Eh, and in bits 6 and 7 at

I/O location 22Fh. When the terminal emulation program,

EMU, is invoked for the first time after each power up the

8X305 microcode is downloaded into RAM on the Smart

Alec board. Information generated through the configuration

program EMUCON is loaded into a 9306 serial non-vol RAM

on the Smart Alec board. This is accessed at power up thus

eliminating the need for the user to configure the board ev-

ery time the PC is turned on. A block diagram of the Smart

Alec hardware is shown in Figure 6-18.

The Multi Protocol Adapter-II printed circuit board also plugs

into any expansion slot in the IBM PC System Unit. Like

Smart Alec, it provides an adapter to allow the bulky twinaxi-

al cable from the System 3x or AS/400 to be connected to

the back panel of the card. The MPA-II board contains the

termination resistors on the PC card and not in a splice box.

These resistors can be ‘‘switched in’’ via two jumpers. The

MPA-II operates in a stand-alone mode, using the DP8344A

Biphase Communications Processor to handle the 5250

protocol and multiple screen buffers. Again. because of the

timing requirements of the 5250 protocol, the BCP operates

independently of the 8088 microprocessor of the System

Unit. As with the 8X305, the BCP provides the intelligence

required for decoding the 5250 protocol, maintaining the
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TL/F/10488–38

FIGURE 6-18. Smart Alec Hardware Block Diagram

multiple screen buffers, and handling the data transfer and

handshaking to the System Unit. However, with the BCP’s

higher level of integration, it also interfaces with the twinaxi-

al cable. The BCP has an internal biphase transmitter and

receiver that provides functions similar to the custom trans-

ceiver on the Smart Alec board. As is the case in 3270, the

BCP’s CPU can handle the 5250 communications interface

very efficiently. It also has the extra bandwidth to allow the

MPA-II to easily handle the multiple sessions.

The MPA-II card contains a single 32K x 8 RAM memory

device for the screen buffers and temporary storage. This

memory size was chosen to handle all seven twinax ses-

sions in a single RAM.

The hardware used to enable the MPA-II’s BCP to commu-

nicate with the PC’s 8088 processor is steering logic (con-

tained in PALs) and the data RAM. In a typical application,

the BCP communicates with a remote processor by sharing

its data memory. This is true with the MPA-II, but because

the MPA-II must run with the Smart Alec software, steering

logic has been used to direct the 8088’s I/O reads and

writes done by the Smart Alec software into data memory

locations on the MPA-II card. The I/O accesses performed

by the Smart Alec software can be fit into three groups;

accesses to the dual register array, accesses to the hand-

shaking flags, and accesses to configure the card. All of

these are directed into the BCP’s data memory, however

each are handled differently by the MPA-II. By using data

memory and the extra processing power of the BCP’s CPU

instead of discrete components the number of integrated

circuits on the board was reduced.

The Smart Alec dual register array is implemented on the

MPA-II card in the same fashion as the IRMA dual register

array. The I/O accesses from the System Unit are

‘‘steered’’ to two different BCP data memory locations de-

pending on if they are reads or writes. The writes from the

8088 are directed to memory locations 7F28h–7F2Bh, and

the reads from the 8088 are sourced from memory locations

7E28h–7E2Bh. The MPA-II Register Array Implementation

is shown in Figure 6-19.

TL/F/10488–39

FIGURE 6-19. MPA-II Register Array

Implementation for Smart Alec

The handshaking process on the Smart Alec card differs

from the IRMA implementation. To set the command flag,

bit 0 in the register at I/O location 22Eh must be toggled (a

write of a ‘‘1’’, followed by a write of a ‘‘0’’). In the IRMA

interface, just writing to an I/O location would set the com-

mand flag. This is not the case with Smart Alec because the

additional softload and configuration capabilities of the

Smart Alec card required that each of the bits in these regis-

ters have different functions. The MPA-II hardware used to

emulate the handshaking function for Smart Alec is similar

to its IRMA implementation. When the 8088 goes to set the

command flag by toggling bit 0 at I/O location 22Eh, it actu-

ally does a write to 7F2Eh in the MPA-II’s data memory via

the steering logic. The steering logic also interrupts the BCP

telling it an access has been made to the Smart Alec I/O

space. The BCP then determines if it was a write to the PC

I/O location 22Eh by reading the access register from the

steering logic. If a write occurs to I/O location 22Eh, the

BCP reads the memory location 7E2Eh and determines if
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the ‘‘set command flag’’ bit has been toggled. It does this by

checking to see if bit 0 and bit 4 (the non-vol RAM enable

bits) are low. If this is the case, it then knows the Smart Alec

software intended to set the command flag. The attention

flag is not implemented on this version of Smart Alec and is

therefore not implemented on the MPA-II. However, if one

chooses to do so it can easily be done in the same manner.

The System Unit accesses used to configure the Smart Alec

Board consist of a method to softload the 8X305 and to

read and write set-up information into a non-vol RAM. Be-

cause the MPA-II uses the DP8344B, there is no need to

emulate the 8X305 softload function. The DP8344B is itself

softloaded using the MPA-II Loader before the Smart Alec

software is invoked. The reading and writing of the non-vol

RAM is done using additional bits in the control and strobe

registers at I/O locations 22Dh, 22Eh and 22Fh. In the

Smart Alec implementation the System Unit must provide all

the control, data and clock signals to the non-vol RAM via

the above mentioned I/O locations. The non-vol RAM is not

implemented on the MPA-II card but because the Smart

Alec emulator, EMU, reads this information on power-up the

MPA-II does emulate the non-vol RAM when it is being read.

This is done in the same manner as the handshaking flags

and further illustrates the flexibility a designer is given with

the additional bandwidth of the BCP’s CPU.

Smart Alec Microcode

The Smart Alec application software written for the personal

computer (EMU, file transfers, etc . . . ) is architected around

a defined interface between Smart Alec and the System

Unit (the 8088 and its peripheral devices). The hardware

portion of this interface was discussed in a previous section.

The software portion of this interface is the microcode writ-

ten for the 8X305 processor. For the following discussion,

the software and hardware are viewed as a single interface

function. All of the Smart Alec application software has

been written around this interface. When configured in the

Smart Alec mode the MPA-II becomes this interface. The

method of communication between Smart Alec and the Sys-

tem Unit will be discussed briefly in the next section. A more

exhaustive discussion on this interface is given in the Smart

Alec manual.

Smart Alec and the System Unit communicate through the

dual four byte register array. The System Unit issues com-

mands to Smart Alec by writing to this array. This register

array is viewed by the System Unit as four I/O locations

(228h–22Bh). Each I/O location corresponds to one eight

bit word. When the System Unit issues a command, the first

byte, word 0, is defined as the command number and logical

device. The next three bytes, word 1 through word 3, are

defined as arguments for the command. The number of ar-

guments associated with an individual command varies from

zero to three. Twenty-three commands are used in the com-

munication between the System unit and Smart Alec. The

upper three bits of each command specify the logical device

to be referenced by the command. To begin a command the

System Unit program sets word 0 equal to the logical device

and the command number. It also provides any necessary

arguments in word 1 through word 3, and sets the command

flag. The command flag is continually being polled by the

8X305 processor when it is not busy managing the higher

priority 5250 communications interface. When it detects the

setting of this flag by the System Unit, it will read the data

from the register array and execute the command. Once the

command has been executed, the 8X305 will place the re-

sulting data into the other side of the register array and clear

the command flag. The System Unit program has been con-

tinually polling this flag and, after seeing it cleared, reads

the result from the register array. The command flag can

only be set by the System Unit. This is done by toggling bit 0

at I/O location 22Eh. The command flag can only be

cleared by the Smart Alec’s 8X305.

The Smart Alec board was designed at DCA after the IRMA

product. It is obvious from the additional commands that

steps were taken to improve the performance of the inter-

face with the System Unit. An action stack was generated to

hold address pairs that denoted where the screen buffer

had been modified and with what type of modification. Also

read multiple commands were added to speed up data

transfer through the interface. While this did improve the

performance of the interface it still contains the inherent

limitations of not dual porting data memory.

MPA-II Implementation

The smart alec interface on the MPA-II board operates es-

sentially in the same manner as described above. The Sys-

tem Unit I/O accesses to the Smart Alec register array

space are transferred to two locations in the BCP’s data

memory. One location is for System Unit reads of the array

(7E28h-7E2Bh), the other is for System Unit writes to the

array (7F28h-7F2Bh). Different BCP memory locations were

used because the register array on the Smart Alec card

actually contains eight byte wide registers (four for System

Unit and four for System Unit writes) in hardware.

The command flag is implemented using a 74LS74 on the

Smart Alec board, hence the setting and clearing by tog-

gling a bit in the control register at 22Eh (this clocks the flip-

flop). This function has been implemented on the MPA-II

using an external PAL and the bi-directional interrupt pin,

BIRQ. Also, the MPA-II takes advantage of the fact that the

Smart Alec software accesses the I/O locations in exactly

the same fashion for each command. This is done because

the Smart Alec emulation program, EMU, was written in the

C programming language. It accesses the Smart Alec I/O

registers by calling an assembly language subroutine to per-

form the command/data and handshaking flag communica-

tions. This assembly routine writes to the I/O locations 228h

through 22Bh, toggles the command flag, and then reads

the state of the command flag (bit 7 at location 22Eh) until it

returns low. If there is a write to the Smart Alec I/O space

228h-22Fh, then a PAL issues an interrupt to the BCP via

the BIRQ input. The BCP then reads other outputs of that

PAL to determine to which of those I/O locations the write

occurred. If it is to 228h-22Bh then the MPA-II will assert the

bit which tells the System Unit that the command flag is set.

The MPA-II then waits for a System Unit write to I/O loca-

tion 22Eh with the set command flag bit (bit 0 at 22Eh) low.

The MPA-II then sets an internal command flag. It is this

internal command flag that tells the MPA-II’s smart alec task

routine that an actual command has been issued by the

System Unit.

The commands from the System Unit are executed in the

smart alec task routine. This routine is a foreground sched-

uled task in the MPA-II Kernel. The smart alec task routine

first checks to see if the non-vol RAM is being read. If so it
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supplies the necessary data in bit position 6 at I/O location

22Fh. If the non-vol RAM is not being read, the smart alec

task routine then determines if a command is present. If so

the command is decoded and executed by the appropriate

command routine. In most cases, the appropriate physical

device will have to be determined in order to access the

correct session control page, or SCP, and the correct

screen buffer for each active session. The SCP contains

status and control information for each of the seven possi-

ble sessions. During the command execution the required

status is calculated by calling the status update subroutine.

The command’s result and the calculated status are then

placed in the appropriate memory locations (7E28h-7E2Bh).

After this is complete, the task clears the command flags

and returns program control to the Kernel.

There are three separate code modules used to allow the

MPA-II to emulate the Smart Alec Interface.

1) power-up initialization routine

2) BIRQ interrupt routine

3) smart alec task routine

These three routines will be discussed in the following sec-

tion. For clarity, the term ‘‘smart alec’’ is capitalized when

referring to DCA products and lower case when referring to

the MPA-II software that has been written to emulate the

interface. Figure 6-20 gives a graphical representation of

where these routines fit into the software architecture of the

MPA-II.

MPA-II Smart Alec Initialization Routine

The smart alec power up initialization routine is called by the

housekeeping task if it detects that the smart alec bit has

just been set in the MPA-II configuration register. The smart

alec initialization routine is titled saÐinit in the MPA-II

source code. This routine initializes the memory locations

and BCP internal registers that are used by the smart alec

emulation code. It also unmasks the BIRQ interrupt and

schedules the smartÐalecÐtask in the MPA-II Kernel. The

memory locations that are initialized in this routine are the

blocks of memory that correspond to the contents of the

emulated non-vol RAM, the memory locations used to emu-

late the dual register array and the flag registers, the loca-

tions on the seven session control pages that EMU controls,

and the device control page memory locations that control

the logical to physical mapping for the multiple sessions.

The saÐinit routine also initializes some internal BCP regis-

ters. It does this because other routines, such as the dca

BIRQ interrupt routine, must access certain stored values

very quickly to keep their execution time quick. The final

function of the saÐinit routine is to schedule the saÐtask

routine. This is done by loading the task number into the

accumulator and calling the scheduleÐtask routine. After

this, program control is returned to the Kernel.

MPA-II DCA Interrupt Routine

The second code module required to emulate the Smart

Alec Interface is the dca BIRQ interrupt routine. The MPA-II

board uses the extra CPU bandwidth of the BCP to reduce

the discrete components needed to provide the command

and flag function. It does this by letting the CPU decode part

of the System Unit I/O access address and by letting it pro-

vide the set function of this flag. The BCP code necessary

for this is the BIRQ interrupt routine whose source module is

DCAÐINT.BCP. The BIRQ interrupt is generated when the

System Unit writes to any I/O locations from 220h to 22Fh.

It would have been more expedient in this case to only have

interrupts generated on writes to I/O location 22Eh. Howev-

er, the MPA-II hardware also supports the IBM and IRMA

emulation programs. The MPA-II implementation for the IBM

interface requires interrupts to be generated from more Sys-

tem Unit I/O access locations, so to reduce external hard-

ware, interrupts are generated for a sixteen byte I/O block.

This flexibility of hardware design further illustrates the use-

fulness of the extra CPU bandwidth of the DP8344B.

When the BCP detects the BIRQ interrupt, it transfers pro-

gram control to the dcaÐint routine. The function of this

routine is to set the command flag or provide the appropri-

ate serial non-vol RAM data. There is a section of code in

the dcaÐint routine that does the same function as that

described above, but is called from the other routines and

not by the external BIRQ interrupt. To increase perform-

ance, the interrupt routines check the BIRQ flag in the

CCRregister before they return. If the flag is set, it calls the

dcaÐfastÐbirq section of the dcaÐint routine. Here the

same operations as described earlier are performed except

for the saving and restoring of the environment. The
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dcaÐfastÐbirq routine does not have to provide this func-

tion because the other routines do so. This decreases the

number of instructions executed and therefore improves the

overall performance.

MPA-II Smart Alec Task Routine

The majority of the Smart Alec emulation takes place in the

smart alec task routine. This routine is run in the foreground

as a scheduled task. Therefore the decision to execute this

routine is dependent only on the MPA-II’s task scheduler

and is not impacted by the System Unit. In reality, the task is

run many times between System Unit accesses because

the code execution speed of the BCP is much greater than

that of the 8088. The smart alec task routine, appropriately

labeled in the source code as ‘‘saÐtask’’, contains four ma-

jor sections. These sections are the non-vol RAM routine,

the command execution routines, the physical session de-

termination routine, and the status update routine.

When the smart alec task is called, it first checks to see if

EMU has tried to read the non-vol RAM. If so, it determines

how many times it was read (the non-vol RAM is read serial-

ly) so it can adjust the serial bit stream it is providing to

EMU. If no accesses have been made to the non-vol RAM,

the smart alec task checks to see if a command is present.

If there is no command present (the internal command flag

is not set), the task returns to the Kernel. If a command is

present, the lower five bits of the command word is decod-

ed to determine which of the twenty three commands has

been issued by the System Unit. Program control is then

transferred to the specific routine that executes the com-

mand. In most cases, the first thing done in the specific

command routine is to determine which session the com-

mand was issued to. This is done by decoding the top three

bits in the command word to determine what logical session

the command was issued for. After that, the corresponding

physical session is determined and pointers are set up in

internal registers to point to the appropriate session control

page and screen buffer. Both of these functions are per-

formed in the twÐsaÐspset subroutine. Using this informa-

tion the command is executed and the required status is

calculated. The status is calculated in the twÐsaÐallÐ
status routine if full status is required. If only common status

is required, the twÐsaÐcommonÐstatus routine is called

instead. After this, the resulting data is placed in the section

of memory that is accessed by the System Unit when it

reads the I/O locations 228h-22Bh. The smart alec task

then clears both the internal and Smart Alec command flags

and returns program control to the Kernel.

MPA-II Command Set

New to the MPA-II is the support of an MPA-II command set.

The primary purpose of this command set is to allow any

part of the MPA-II’S data memory to be accessed by the PC

without having to stop the BCP or depend on the current

interface mode running, (i.e., IRMA, IBM, ALEC). As almost

always happens, the usefulness of this interface caused the

MPA-II command set to expand. Another benefit of the

MPA-II command set is that it demonstrates a better way to

communicate with the BCP than that of the IRMA, IBM or

ALEC interfaces. By taking advantage of the fact that the

BCP directly supports dual port memory, one bit sema-

phores can be used to handshake with the PC and, there-

fore, no BIRQ interrupt routine nor lock out of the PC is

required.

The MPA-II commands are listed in Table 6-9. The routine

housekeep in KERNEL.BCP is responsible for the execution

of these commands. The commands allow the PC to read

and write any part of the BCP’s data memory (including non-

dual port memory), determine what version of MPA-II code

is actually executing, and read or clear the receiver’s error

counters.

The MPA-II commands consist of a command byte written

to the MPA-II configuration register (2DCh) and an optional

parm written to the MPA-II parm/response register (2DBh).

If the command returns a response, it is read by the PC from

the MPA-II parm/response register (2DBh).

A command is identified by setting the CFÐMPAÐCMD bit

to one. This bit is part of the command’s value listed in

Table 6-9. The completion of a command’s execution is in-

dicated by the restoration of the current MPA-II configura-

tion in the MPA-II configuration register (which clears the

CFÐMPAÐCMD bit).

Use the following steps to issue a command via the PC:

1) Write the command’s parm (if any) into the parm/re-

sponse register (I/O location 2DBh).

2) Write the command into the MPA-II configuration register

(2DCh).

3) Read the MPA-II configuration register (2DCh) until the

CFÐMPAÐCMD bit is cleared. This indicates completion

of command execution by the MPA-II microcode. (Note,

the current MPA-II configuration has been restored).

TABLE 6-9. MPA-II Command Set

Name (Value) Parm Response Comment

LACL (10) AC low byte none Load new MPA-II AC, low byte

LACH (11) AC high byte none Load new MPA-II AC, high byte

WRITE (12) data byte none WRITE ‘‘data byte’’ into memory at MPA-II AC’s location

LCR (13) control byte none Load ‘‘control byte’’ into MPA-II Control Register

RACL (18) none AC low byte Read current MPA-II AC, low byte

RACH (19) none AC high byte Read current MPA-II AC, high byte

READ (1A) none data byte READ ‘‘data byte’’ from memory at MPA-II AC’s location

REV (1B) none rev byte read REVision number of the MPA-II software

CLRE (30) none none CLear REceiver error counters

RDIS (31) none error count Read receiver’s DISable error count

RLMBT (32) none error count Read receiver’s Loss of Mid-Bit error count

RIES (33) none error count Read receiver’s Invalid Ending Sequence error count

RPAR (34) none error count Read receiver’s PARity error count

ROVF (35) none error count Read receiver’s OVerFlow error count

RPRO (36) none error count Read PROtocol detected error count
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4) Read the parm/response register (I/O location 2DBh)

for the command’s response (if any).

A PC program called MPADB.EXE has been included with

the MPA-II which communicates with the MPA-II using this

interface. MPADB is written in C and has some additional

debugging capabilities, such as reading blocks of BCP

memory using one command. After starting MPADB, type

‘‘help’’ at the prompt, bl, for information on the com-

mands supported by MPADB. All the source code for

MPADB is included, see MPADB.C under the directory

DEBUG.

The read and write data commands use an internal MPA-II

register called the MPA-II address counter, AC. This ad-

dress counter works much like the Coax and Twinax ad-

dress counters. The read command returns the byte pointed

to by the MPA-II address counter. The write command

places its data at the location pointed to by the MPA-II ad-

dress counter. Whether or not the MPA-II address counter

auto-increments depends on the contents of the MPA-II

control register, seeFigure 6-21. If the LSB is a one (1) then

the MPA-II address counter auto-increments, otherwise it

does not change.
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FIGURE 6-21. MPA-II Control Register

The Load Address Counter High, Load Address Counter

Low, Read Address Counter High, and Read Address Coun-

ter Low commands simply provide access to the 16-bit

MPA-II address counter. The Load Control Register allows

one to write to the 8-bit MPA-II control register.

The receiver error counter commands provide an easy, reli-

able way to read the MPA-II receiver error counters located

in the MPA-II Device Control Page, DCP. PC software that

uses these commands does not have to be updated if the

receiver errors are relocated in BCP data memory because

the BCP assembler will automatically update all references

to those error counters when the MPA-II microcode is re-as-

sembled.

Finally, the Revision Number command allows the PC to

determine a) if the MPA-II running and b) what version of the

MPA-II microcode is the MPA-II running. This MPA-II com-

mand is used by the Loader when the Loader performs an

autoload (-a option). For the PC to read the revision number,

the REV command must be executed three (3) times. Each

returned byte’s bits are defined as ‘‘xxcc dddd’’, where:

dddd e a revision digit coded in Binary Coded Decimal,

BCD

cc e a count showing the position of the revision digit

xx e reserved

For example, if calling REV three times returned (in hex) 20,

34, and 13, then the revision number is 3.04.

Last notes, unused commands and invalid parms are ig-

nored. In addition, commands with values less than 3F(hex)

are reserved for National Semiconductor. Feel free to define

commands with values greater than this if compatibility with

future MPA-II releases is desired.

7.0 LOADER AND MPA-II DIAGNOSTICS

The Loader is a PC program designed to load the MPA-II

with BCP microcode, start the BCP, and configure the

MPA-II interface mode. A number of user selectable options

are available with the Loader which provide maximum flexi-

bility in loading, running, and configuring the MPA-II system.

The Loader can also be used to run diagnostics by specify-

ing the ‘‘selftest’’ option. This will test the functionality of the

MPA-II hardware. The Loader syntax is:

LD [ConfigÐoptions . . . ] [Options . . . ] kFilenamel

where the following notation applies:

[ ] Items enclosed in square brackets are optional.

k l Items enclosed in triangular brackets are re-

quired.

ALL CAPS Items in all capital letters must be entered exact-

ly as shown.

lower case Items in lower case letters indicate that desired

values should be substituted.

The Loader Options that apply to the ‘‘soft-loading’’ of in-

struction memory will be discussed in the section titled

‘‘Soft-Loading Instruction Memory’’. The Loader

ConfigÐoptions will be discussed in the section titled ‘‘Con-

figuring the MPA-II’’. The Loader options that apply to the

selftest facility will be discussed in the section titled ‘‘MPA-II

Diagnostics’’. Examples demonstrating the Loader options

as well as the Loader defaults will also be provided in this

chapter.

The Loader is primarily written in Microsoft ‘‘C’’5.1. The por-

tion of the Loader code which performs the MPA-II Diagnos-

tics has been written using National Semiconductor’s

DP8344 BCP Assembler System as well as Microsoft’s

Macro Assembler 5.1. All of the source code required for

the Loader is included on the distribution disks and is well

documented. For complete details of the implementation of

the Loader functions described in this section, refer to the

source code.

The Loader provides two levels of help. The first level of

help is provided in a brief, single screen and is accessed by

typing LD with no options at the DOS system prompt. A

multi-screened, comprehensive help, is accessed by speci-

fying the -h option of the Loader as shown below:

LD bh

The Loader provides the following return values which are

useful when using the Loader in a batch file:

0 PASSED: Loader ran to completion as requested by the

user.

8 WARNING: Loader ran to completion, but not exactly as

requested by the user.

16 FATAL ERROR: Loader was unable to run to comple-

tion due to a fatal error.

Before the Loader implements any of its primary func-

tions, the Loader will verify that the MPA-II printed circuit

board is present in the PC. This is done in two different

stages (see the Loader flow chart, Figure 7-1 ). First, the

Loader performs a non-intrusive test. This test entails

reading RIC a number of times while checking that the

value of RIC does not change and that the single step bit

of RIC is not set. The second test is intrusive, meaning

that it will affect the current state of operation of the

MPA-II, if the MPA-II is ‘‘alive’’ (more on this later). This

test checks for the presence of the MPA-II by writing vari-

ous patterns to RIC, then reading RIC back to check that it

contains the correct value. For example, when the pattern

written to RIC has the single-step bit set and the start bit

cleared, the Loader expects to read back RIC with the

single-step bit cleared. If either of the instrusive or non-in-
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trusive tests fail, the Loader indicates the failure and exits

with an error level of 16. The failure mechanism could be

either of the following: an MPA-II printed circuit board is not

present or an I/O conflict is occurring.

Soft-Loading Instruction Memory

The Loader uses the ‘‘soft-load’’ feature of the BCP to load

files in either a binary format, referred to as ‘‘BCX’’ format;

or in a simple ASCII PROM format, referred to as ‘‘FMT’’

format, into instruction memory. Files in these formats can

be produced with National Semiconductor’s DP8344 BCP

Assembler System. The Loader can be used to load any file

in one of these formats using the bB option to specify that

the file format is ‘‘BCX’’ or the bF option to specify that the

file format is ‘‘FMT’’. These options are useful when using

the MPA-II Design/Evaluation kit to develop BCP code. The
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FIGURE 7-1. Loader Flow Chart
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MPA-II system can be soft-loaded immediately upon power-

up, or from any state after power-up. Thus, the system may

be reloaded without powering down or resetting.

Dual-port memory must be enabled prior to soft-loading the

MPA-II because the Loader uses dual port memory to pass

information, such as the instructions to be loaded, to the

BCP. The Loader enables dual port memory by writing the

upper byte of the address for the relocatable memory seg-

ment to the MPA-II’s segment register. The MPA-II’s seg-

ment register is mapped into the PC I/O space 2D7h. The

Loader defaults to map dual port memory to the PC memory

space CE000, But the user can move the location of dual

port memory using the bU option.

The soft-load procedure begins by stopping the BCP’s CPU.

The BCP must be stopped when writing to either the pro-

gram counter or instruction memory. The Loader then veri-

fies that the BCP is set to access the low byte of instruction

memory. This is accomplished in the following manner: the

program counter is set to 0000h; RIC is then pointed to

instruction memory, and a byte is read from instruction

memory. At this time, the program counter is read to deter-

mine if it incremented. If it did, the BCP is now set to access

the low byte of instruction memory. If the program counter

did not increment, then the BCP is set to access the high

byte of instruction memory, so the Loader reads another

byte of instruction memory. Next, the Loader initializes the

program counter to the starting address where instruction

memory is to be loaded. The starting address of the pro-

gram counter defaults to 0000h, but it is user selectable with

either the bN or bR options. The program counter is writ-

ten by pointing ÀRICÓ to the low byte of the program coun-

ter, and then writing the low byte of the Instruction Address

to dual port data memory. Next, ÀRICÓ is set to point to the

high byte of the program counter, and the high byte of the

Instruction Address is written to dual port data memory.

Once the program counter has been initialized, the first in-

struction to be loaded into instruction memory is fetched

from the BCX or FMT format file specified by the user. The

instruction is then split into high and low bytes. This is nec-

essary because the instructions are 16 bits wide, but they

must be latched into instruction memory through the BCP’s

8-bit Data bus. The instructions are then loaded into the

MPA-II’s instruction memory by pointing RIC to instruction

memory and writing the low byte of the instruction followed

by the high byte of the instruction to dual port memory. The

program counter then auto-increments allowing the next in-

struction to be loaded. At any time, the program counter

may be modified, followed by instruction loads, to allow ar-

eas of instruction memory to be skipped. The remaining in-

structions are loaded in the same manner. When all the

instructions have been loaded, the system is started and

configured as requested by the user.

Interrupts can occur prior to the execution of the first in-

struction loaded into instruction memory if a BCP program

has been previously running in the MPA-II system with inter-

rupts enabled. This is because the BCP uses a ‘‘dummy’’

instruction to fetch the first instruction in instruction memory

and this ‘‘dummy’’ instruction does not disable interrupts.

The following is a scenario that describes this: the MPA-II is

running with a BCP program that has receiver interrupts en-

abled. The BCP is then stopped by clearing [STRT] in

ÀRICÓ and instruction memory soft-loaded with a new BCP

program. Although the BCP’s CPU is stopped, the receiver

is operating independently and, therefore, the receiver still

monitors the line for activity. If the receiver becomes active,

it generates an interrupt to the BCP’s CPU. When the BCP’s

CPU is started with the intention of running the BCP pro-

gram just loaded, it will instead service the receiver interrupt

immediately after the ‘‘dummy’’ instruction cycle. This will

result in problems if the first and second BCP programs do

not use the same interrupt table location because the new

interrupt table location will not have been loaded into ÀIBRÓ

yet. Therefore, the BCP will vector to an instruction address

determined by the current contents of ÀIBRÓ, set by the first

BCP program. Since the second BCP program has already

been loaded into instruction memory, the interrupt table that

is vectored to is meaningless and will create unexpected

results. There are various methods which can be used to

disable interrupts until the first instruction of the new code

can be executed; for example, resetting the BCP. Since the

Loader cannot reset the BCP, we chose to single step the

BCP immediately after ‘‘soft-loading’’ the BCP’s instruction

memory and prior to starting the system running. This allows

an interrupt, such as the receiver interrupt generated in the

previous example, to be serviced during the single step.

Servicing the interrupt automatically disables the Global In-

terrupt Enable by clearing [GIE]. After single stepping the

BCP, its program counter must be reset. The BCP may now

be safely started.

For convenience the Loader notation is repeated and the

options which apply to the soft-loading are discussed here:

LD [ConfigÐoptions . . . ] [Options . . . ]kFilenamel

Filename: The file specified by the Filename contains the

BCP microcode to be soft-loaded into the MPA-II system.

The file format must be either BCX or FMT as described

earlier in this section. The bB and bF options can be

used to specify the file format as BCX or FMT, respec-

tively. The file format can also be specified implicitly with

a file extension of .BCX for BCX format files or .FMT for

FMT format files. The Loader defaults to BCX format,

and, if no file extension is entered, the Loader will append

the appropriate file extension (i.e., either .BCX or .FMT).

A file with no extension can be loader by ending the file

name with a ‘‘.’’.

Options:

bBÐ Specifies that the format of the file to be loaded is

binary or ‘‘BCX’’ format. This option provides the user

with the flexibility to load a file with an extension other

than .BCX as a BCX format file.

bFÐ Specifies that the format of the file to be loaded is

ASCII PROM or ‘‘FMT’’ format. This option provides the

user with the flexibility to load a file with an extension

other than .FMT as a FMT format file.

bN[e] [IÐaddr]Ð Soft-loads the file into instruction mem-

ory beginning at the hex address, IÐaddr, but does not

start the MPA-II after the load. This feature can be useful

for debugging code using tools such as Capstone’s moni-

tor debugger, BSID. The load address, IÐaddr, defaults

to the hex address 0000.

bR[e] [addr] [,rÐaddr]Ð Soft-loads the file into instruc-

tion memory beginning at the hex address IÐaddr, then

sets the program counter to rÐaddr and starts the BCP.
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The instruction address where the BCP begins running,

rÐaddr, defaults to the value of IÐaddr if rÐaddr is not

specified. IÐaddr defaults to the hex address 0000.

bU[e] [segÐid]Ð Enables dual port RAM in the PC mem-

ory map to the PC memory segment segÐid, where

segÐid is the upper byte of the PC memory segment.

This allows the MPA-II system to avoid PC memory con-

flicts. The Loader defaults to segÐideCE. The value for

the segÐid must be on an even 8K boundary. Therefore,

segÐideCD is invalid.

Examples using the file, MPA2.BCX, provided in the MPA-II

Design/Evaluation Kit are shown below. This file is a BCX

formatted file. The following examples all load the file

MPA2.BCX in the same format and demonstrate the bB

and bF options:

LD MPA2 Loader defaults to BCX

format and applies the .BCX

file extension.

LD MPA2.BCX Loader determines that

format is BCX from the file

extension.

LD MPA2.BCX bB Loader determines that the

file format is BCX from

the 1B option.

The following example demonstrates options which affect

how the file is soft-loaded:

LD MPA2 1R40000, 0126 1U4CC

In this example, the Loader soft-loads code through dual

port memory mapped at the PC memory address CC000,

from the BCX format file MPA2.BCX, starting at instruction

memory 0000h. The Loader then sets the program counter

to 0126h and starts the BCP.

Configuring The MPA-II

The Loader configures the MPA-II terminal emulation inter-

face mode as requested by the user through the Configura-

tion Options. Configuring the MPA-II interface mode enables

the MPA-II to emulate the standard PC terminal emulation

interfaces including DCA’s IRMA and Smart Alec interface

modes; and IBM’s 3270 CUT and DFT interface modes. In

addition, the MPA-II extends the DCA and IBM 3270 modes

to support single session 3299. (Multi-session 3299 support

is possible for the BCP, but not for the DCA or IBM interfac-

es.) The terminal emulation interface which the MPA-II emu-

lates is implemented by the MPA-II as described in Chapter

6. The Loader Configuration Options available to the user

will be discussed later in this section.

The Loader configures the MPA-II interface mode by writing

the configuration to the MPA-II’s Configuration Register.

Figure 7-2 shows the bit definitions for the MPA-II Configu-

ration Register. The Loader writes to the configuration regis-

ter immediately after starting the BCP’s CPU. The MPA-II

configuration register is located at the PC I/O location

2DCh. Writing to this register will set the BIRQ interrupt, and

thus, could lock out the PC if this feature has been activated

by previous BCP microcode. If the BCP’s CPU is stopped

when the configuration register is written, then the next ac-

cess of the BCP’s memory (both dual port and I/O) made by

the PC could be held off indefinitely since the BIRQ interrupt

can not be cleared by the BCP’s microcode. Therefore,

when the Loader Option bN, as described in the previous

section, is selected, the Loader will not set the configuration

requested. (The Loader notifies the user that the configura-

tion has not been set.) See Chapter 5 for further information

regarding BIRQ and the PC lock out feature.

The Loader uses the following handshaking protocol with

the BCP microcode to verify that the configuration has been

recognized by the MPA-II system. The Loader sets [POR] in

the MPA-II Configuration register when it writes a configura-

tion to the MPA-II Configuration Register. The Loader then

polls the MPS-II Configuration Register looking for [POR] to

be cleared by the BCP microcode. This indicates that the

BCP microcode has processed the requested configuration.

The value in the MPA-II Configuration Register now con-

tains the actual MPA-II interface configuration implemented

by the BCP microcode. If [POR] is not cleared within a pre-

defined time period, then the Loader reports a failure. If
[POR] is cleared within the predefined time limit, the Loader

then compares the configuration implemented with the con-

figuration requested by the user. If they are not the same,

the Loader reports the differences. This feature allows the

BCP microcode to determine valid configurations.

The Loader Configuration Options are discussed here.

Where applicable, these options can be combined to create

a customized configuration for the interface mode. Once

again, for convenience the Loader notation is repeated:

LD[Config options...][Options...]kFilenamel
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FIGURE 7-2. MPA-II Configuration Register
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ConfigÐoptions:

-CÐThe Loader clears the 5250/3270 bit of the MPA-II

Configuration Register. This selects a 3270 Coax-Twisted

Pair terminal emulation interface mode for the MPA-II inter-

face.

-DÐThe Loader sets the DCA Interface Mode bit of the

MPA-II Configuration Register. This selects a DCA terminal

emulation interface mode for the MPA-II interface. The

5250/3270 bit of the MPA-II Configuration Register is used

to determine which DCA Interface mode, IRMA or Alec, is

actually set.

-EÐThe Loader sets the EAB bit of the MPA-II Configura-

tion Register. This selects the Coax Extended Attribute Buff-

er.

-IÐThe Loader sets the IBM Interface Mode bit of the

MPA-II Configuration Register. This selects the IBM 3270

terminal emulation interface mode for the MPA-II interface.

-TÐThe Loader set the 5250/3270 bit of the MPA-II Config-

uration Register. This selects a 5250 Twinax terminal emu-

lation interface mode for the MPA-II interface.

-X[e]kaddrlÐThe Loader sets the 3299, mux, bit of the

MPA-II Configuration Register. This selects 3299 coax

mode for the MPA-II interface. A decimal muX address is

required, and is passed to the MPA-II through the MPA-II

parm/response register, 2DBh, which is written prior to the

configuration being set, but after the BCP’s CPU is started.

-ZÐThe Loader does not set the MPA-II Configuration Reg-

ister. This option provides the flexibility to use the Loader to

load microcode other than the MPA-II microcode.

-M[e]kmodelÐThis option allows for automatic configu-

ration of the standard terminal emulation modes, i.e.,: DCA’s

IRMA, DCA’s Smart Alec and IBM’s interface modes. Valid

MODE options are IRMA, IBM, and ALEC. These modes set

the MPA-II Configuration Register as follows: When the

mode is ALEC, the Loader sets the 5250/3270 bit and the

DCA Interface Mode bit in the MPA-II Configuration Regis-

ter. For IBM mode, the Loader clears the 5250/3270 bit and

sets the IBM Interface Mode bit. For IRMA mode, the Load-

er clears the 5250/3270 bit, sets the DCA Interface bit and

the Coax EAB bit. This option also allows a hex value to be

entered directly into the MPA-II Configuration Register with

the kMODEleCONFIG[e]kconfigl, where config is the

hex byte value to be loaded into the MPA-II Configuration

Register. The Loader defaults to configure the MPA-II inter-

face mode for IRMA.

As an example of how to use the configuration options, lets

assume that the IRMA interface mode is required along with

coax 3299 support using the 3299 station address 3. The

following command lines all perform this task using the Con-

figuration Options discussed above:

LD MPA2.BCX -M4IRMA -X43

LD MPA2.BCX -C -D -E -X43

For further flexibility, the Loader also provides an autoload

option, -a, to configure the MPA-II on the fly. The autoload

function is actually a ‘‘smart hotswitch’’, allowing the user to

change the MPA-II’s configuration without necessarily re-

loading BCP microcode. The autoload is ‘‘smart’’ in that the

Loader verifies that the MPA-II is ‘‘alive’’ before it changes

configurations. If the MPA-II is not alive (i.e., running with

the correct version of microcode), the Loader will automati-

cally load the BCP microcode and configure the MPA-II as

requested.

The autoload function is useful when the Loader is used in a

batch file such as the AUTOEXEC.BAT file. If the PC is re-

booted then the Loader will not destroy an ongoing terminal

emulation session. In addition, the error levels returned by

the Loader may be used to skip loading of the PC terminal

emulator if the MPA-II board is not present. The following is

an example of how to use the autoload function to imple-

ment the IRMA interface mode in a batch file:

LD MPA2.BCX -M4IRMA -A

IF ERRORLEVEL 8 GOTO SKIPIRMA

E78 /R

:SKIPIRMA

MPA-II Diagnostics

The Loader can run diagnostics to test the functionality of

the MPA-II hardware. These diagnostics are implemented

with the Loader and the BCP microcode; MPADIAG.BCX,

provided in MPA-II Design/Evaluation Kit. Note, the Loader

expects the file MPADIAG.BCX to be located in the same

directory as the file LD.EXE.

Figure 7-3, The MPA-II Diagnostics Flow Chart, provides a

good overview of the extent of testing performed by the

MPA-II diagnostics. For the actual implementation of these

tests, refer to the source code, which is well documented.

The first four diagnostic tests do not require BCP micro-

code. These diagnostics include testing RIC, the BCP’s Pro-

gram Counter, dual port memory, and instruction memory. In

all of these diagnostics, the Loader writes patterns to the

device under test, and expects to read the pattern back

from the device under test.

If all these initial tests pass, then the BCP microcode,

MPA-DIAG.BCX is soft-loaded into instruction memory and

the BCP is started. The Loader maintains ultimate control

over the diagnostics. This is accomplished through a hand-

shaking protocol in which dual port memory is used to pass

codes to and from the Loader program and the BCP micro-

code program, MPADIAG.BCX. The Loader passes a start

code through dual port memory. The BCP microcode polls

dual port memory until it receives the start code. Once the

BCP microcode recognizes the start code, it executes the

next test in sequence. Each diagnostic test that the BCP

microcode executes writes codes into dual port memory to

indicate both the completion of the test and if the test

passed or failed. When appropriate, the BCP microcode

also indicates the failure mechanism. The BCP microcode

then polls dual port memory for the start code of the next

test. After the Loader writes a start code to dual port memo-

ry, it polls dual port memory for the code from the BCP

microcode indicating completion of the test. If the comple-

tion code is not received within a predefined time limit, the

Loader indicates a failure. If the completion code is re-

ceived, the Loader then checks dual port memory to deter-

mine if the test passed or failed.

Either of the two Loader Options, -s or -l, cause the Loader

to implement the MPA-II diagnostics. For convenience the

Loader notation is repeated and the options which apply to

the MPA-II diagnostics are discussed here:

LD[Config options...][Options...]kFilenamel
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Options:

-S[e] [count[,irqÝ]]Ð Selftest option of the Loader. Cy-

cles through the MPA-II Diagnostics count (default

counte1) times. The irqÝ refers to the PC IRQ interrupt

level to be tested. irqÝe2 (default) tests the PC IRQ2

interrupt (i.e., jumper JP6 connected). irqÝ3 tests the PC

IRQ3 interrupt (i.e., jumper JP4 connected). irqÝe4 tests

the PC IRQ4 interrupt (i.e., jumper JP5 connected).

-LÐ In addition to the selftest, the BCP’s transceiver is test-

ed by implementing an external Loopback feature. In

loopback, the BCP’s receiver and transmitter are allowed

to be active at the same time. This allows the BCP to test

the external transmitter and receiver logic on the

MPA-II board. This test should not be performed when

the MPA-II is connected to a controller as it may cause

the controller to detect line errors.

The following examples demonstrate using the Loader op-

tions to implement the MPA-II diagnostics:

LD -Se3, 4 Cycles through the MPA-II diagnostics three

times (the external loopback test is not per-

formed), the PC IRQ interrupt level 4 is test-

ed.

LD -L -S Cycles through the MPA-II diagnostics one

time, the loopback test is performed, and PC

IRQ interrupt level 2 is tested.

TL/F/10488–47

FIGURE 7-3. MPA-II Diagnostics Flow Chart
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APPENDIX B

Timing Analysis

This section will first discuss the timing analysis used in sel-

eting appropriate data memory and instruction memory for

use in the MPA-II system. Following this is a description of

the timing involved in interfacing the MPA-II system with the

PC-XT/AT.

As discussed in Chapter 5ÐHardware Architecture, the

BCP utilizes a Harvard Architecture, where the data memory

and instruction memory are organized into two independent

memory banks, each with their own address and data bus-

es. The data memory is dual ported enabling both the BCP

and the remote processor to have access. The instruction

memory, on the other hand, is exclusively owned by the

BCP. Any remote processor accesses to this memory occur

through the BCP, and only when the BCP is idle.

The MPA-II system runs with the BCP operating at full

speed, 18.8696 MHz (ÀDCR[CCS]Ó e 0), with zero instruc-

tion (nIW) and one data (nDW) wait state resulting in a

T-state of 53 ns. For a system running the BCP at half

speed, 9.45 MHz (ÀDCR[CCS]Ó e 1), with zero instruction

and zero data wait states, the T-state is 106 ns. The T-state

is calculated as shown:

T-state e 1/(CPU Clock Frequency)

Interfacing Memory to the DP8344B

As with most other aspects of a design, choosing memory is

a cost vs. performance trade off. Maximum performance is

achieved running no wait-states with fast, expensive memo-

ry. Slower, less expensive memory can be used, but wait-

states must be added, slowing down the BCP. Therefore

one needs to choose the slowest memory possible while

still meeting design specifications. While this appendix as-

sumes RAM is used for instruction and data memory, the

information is relevant to memory devices in general.

Instruction Memory Timing

The BCP needs separate data and instruction RAM, each

with their own requirements. Instruction read time is the ma-

jor constraint when choosing instruction RAM. Instruction

read time tI, as shown inFigure B-1, is measured from when

the instruction address becomes valid to when the next in-

struction is latched into the BCP. Instruction read time for

various clock frequencies and wait states are given in Table

B-1. Clock frequency and wait state combinations other

than those given in the table can be calculated using param-

eter 1 in Table 5-5, Instruction Memory Read Timing, of the

DP8344B data sheet:

tI e (1.5 a nIW) T b 19 ns

where tI is the instruction read time (ns), nIW is the number

of instruction memory wait states, and T is the 7-state time

(ns). The RAM chosen needs to have a faster access time

than the read time for the desired combination of clock fre-

quency and wait states. Since the MPA-II system runs at full

speed (18.8696 MHz) with nIW e 0, the RAM chosen for

instruction memory must have an access time which is fast-

er than 60.5 ns (See Table B-1). Note that 55 ns Static

Rams will work for both full speed and half speed operation

of the MPA-II.
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FIGURE B-1. Instruction Memory Read Timing

TABLE B-1. Instruction Read Times, tI (ns)

Clock Freq.

(MHz)

CPU
Wait States nIW

0 1 2 3

9.43 140 246 352 458

18.86 60.5 115.5 166.5 219.5

20.00 56 106 156 206

However, instruction read time is not the only timing consid-

eration when choosing instruction RAM. If the BCP is used

in an application which requires full speed softloading of

instruction RAM, there are two other timing relationships

which require evaluation. These are data setup time and

write pulse width (see Figure B-2 ). The relevant BCP timing

parameters are I valid before IWR rising, tDS, and IWR low

time, tIW. The value of these timing parameters depends on

the Remote Interface mode of operation, which is Fast Buff-

ered Write for the MPA-II system. Using Table 5-22, Fast

Buffered Write of IMEM, of the DP8344B datasheet, the

data setup time (parameter 19) is:

tDS e (nIW a 1)T b 18 ns

and the write pulse width tIW (parameter 20) is:

tIW e (nIW a 1)T b 10 ns

Table B-2a and B-2b give various data setup times and write

pulse widths. Once again, the RAM chosen must have a

faster RAM data setup time and quicker RAM write strobe

width than the corresponding desired data setup time and

write pulse width. Thus, for the MPA-II system, the selected

Instruction RAM data setup time must be less than 35 ns

(Table B-2a), and the RAM Write Strobe Width must be less

than 43 ns (Table B-2b). In a typical application of the BCP,

softloading occurs after reset with the BCP operating with

CLK/2 and full wait states. Under these conditions the in-

struction read time value is the critical parameter for choos-

ing the instruction RAM. In the MPA-II system, softloading

can also occur under the full speed conditions. First, soft-

loading occurs upon a first load of instruction memory into

the MPA-II on power up. The MPA-II system can then be

reloaded without powering down. In this situation, the

MPA-II system is set to full speed. Therefore, the RAM se-

lected must meet all the parameters listed thus far.
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FIGURE B-2. Data Setup Time and Write Pulse Width for Fast Buffered Write of IMEM

TABLE B-2a. Data Setup Times,

tDS (ns) for Fast Buffered

Write of Instruction Memory

Clock Freq.

(MHz)

CPU
Wait States nIW

0 1 2 3

9.43 88 194 300 406

18.86 35 88 141 194

20.00 32 82 132 182

TABLE B-2b. Write Pulse Width,

tIW (ns) for Fast Buffered

Write of Instruction Memory

Clock Freq.

(MHz)

CPU
Wait States nIW

0 1 2 3

9.43 96 202 308 414

18.86 43 96 149 202

20.00 40 90 140 190

The MPA-II uses two 55 ns 8K x 8 CMOS Static RAMs for

instruction memory. The output enable is tied low and the

chip select enables are both enabled. Therefore, the RAMs

are always selected. The write enable is the instruction write

signal (IWR) from the BCP. Table B-3 compares the select-

ed instruction memory RAM parameters with required pa-

rameters for the DP8344B.

Data Memory Timing

The MPA-II system uses a 100 ns 32K x 8 CMOS Static

RAM to implement the system data memory.

The selection of data memory RAM requires the evaluation

of several important timing parameters. The RAM access

time, strobe width, and data setup times are three of the

most critical timing parameters and must all be matched to

equivalent BCP timing parameters. The RAM access time

should be compared to the data read time of the BCP.

Data read time, tD, (Figure B-3) is measured from when the

data address is valid to when data from the RAM is latched

into the BCP. Table B-4 gives data read times. The equation

for calculating data read time is similar to the one given for

instruction read time, and is taken from Table 5-3 (Parame-

ter 14) of the DP8344B data sheet:

tD e (2.5 a MAX (nDW, nIW b 1))T b 40

where tD is the data read time (ns), nDW is the number of

data memory wait states, nIW is the number of instruction

memory wait states, and T is the T-state time (ns). Since the

lower address byte (AD) is externally latched, the latch

propagation delay needs to be subtracted from the available

read time when determining the required RAM access time.
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TABLE B-3. Instruction Memory Read and Write Parameters

Fujitsu RAM

(Minimum)

(55 ns)

DP8344B BCP (Minimum)

Parameter
Read Write

Full Half
POR

Full Half
POR

Speed Speed Speed Speed

Access Time (tI) 55 60.5 140 458

Write Pulse Width (tW) 40 43 96 414

Data Setup (tDS) 25 35 88 406

Measurements are in ns.

Full Speed is 53 ns T-state with nIW e 0 and nDW e 1.

Half Speed is 106 ns T-state with nIW e 0 and nDW e 0.

POR is 106 ns T-state with nIW e 3 and nDW e 7.
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FIGURE B-3. Data Memory Read Timing

TABLE B-4. Data Read Time, tD (ns)

Clock Freq.

(MHz)

CPU Wait States

Max (nDW, nIW b 1)

0 1 2

9.43 225 331 437

18.86 92.5 145.5 198.5

20.00 85 135 185

An octal latch (74ALS573) is used in the MPA-II system to

demultiplex and latch the address. There is a delay associ-

ated with latching of the address and it is dependant on the

latch considered. The latch enable is the ALE signal from

the BCP. While ALE is high, the outputs follow the inputs.

When ALE falls the address is latched on the outputs. The

latch has a propagation delay of 20 ns which corresponds to

the time it takes for the data on the inputs to reach the

outputs.

Therefore, for the MPA-II system the RAM access time is:

tacc e tD b 20 ns

Using Table B-4, the required RAM access time can be cal-

culated to be:

tacc e 145.5 b 20 e 125.5 ns

for full speed operation with one wait state.

Another important timing parameter is the RAM strobe

width. The BCP READ and WRITE outputs will typically be

used to strobe data out of and into the RAM. The signal

relationships for a data memory access are shown in Figure
B-3 for a read and in Figure B-4 for a write. Table B-5 con-

tains READ and WRITE pulse width values for various clock

frequencies and wait state combinations. The equation for

calculating READ and WRITE pulse widths are taken from

parameter 8 of Table 5-4 and parameter 12 of Table 5-3 in

the DP8344B data sheet:

tR e tW e (1 a MAX (nDW, nIW b 1))T b 10

where tW (e tR) is the pulse width (ns), nDW is the number

of data memory wait states and nIW is the number of in-

struction memory wait states. The RAM chosen should re-

quire shorter strobe widths than the pulse width listed in

Table B-5 for the desired combination of clock frequency

and wait states. Thus, for the MPA-II system, the RAM

strobe width must be shorter than 96 ns.

The last important consideration when choosing the data

memory RAM is setup times into the BCP on a read and into

the RAM on a write. In a typical application, READ is con-

nected to the output enable pin on the RAM. When reading

from the RAM, the data becomes valid when READ falls

and activates the RAM outputs. The data must become val-

id fast enough to meet the setup time required by the BCP.

This setup time tSR, as shown in Figure B-3 , is listed in

Table B-6 for various combinations of clock frequencies and

wait states. Using Table 5-3 (parameter 7) of the DP8344B

datasheet, tSR can be calculated as follows:

tSR e (1 a MAX(nDW, nIW b 1))T b 22

where tSR is the maximum time allowed for the data to be-

come valid (ns), nDW is the number of data memory wait

states and nIW is the number of instruction memory wait

states. The data memory RAM used needs to have a faster

output enable time than the time listed in Table B-6 for the

desired combination of clock frequency and wait states.

When writing to data memory, the data must be valid in time

to meet the setup time requirement of the RAM. In a typical

application, this time is measured from the data becoming

valid out of the BCP to WRITE going high. Figure B-4 shows

this timing relationship, tDW, and Table B-7 contains times

for various combinations of clock frequencies and wait

states. The equation for calculating this time is from Table

5-4 (parameter 4) of the DP8344B datasheet.

tDW e (1 a MAX(nDW, nIW b 1))T b 20

where tDW is the minimum data valid time before WRITE

rising (ns), nDW is the number of data memory wait states

and nIW is the number of instruction memory wait states.

This time should be at least as long as the data setup time

of the RAM.
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TABLE B-5. READ and WRITE Pulse Width, tR e tW (ns)

Clock Freq.

(MHz)

CPU Wait States

Max (nDW, nIW b 1)

0 1 2

9.43 96 202 308

18.86 43 96 149

20.00 40 90 140

TABLE B-6. Data Read Setup Time, tSR (ns)

Clock Freq.

(MHz)

CPU Wait States

Max (nDW, nIW b 1)

0 1 2

9.43 84 190 296

18.86 31 84 137

20.00 28 78 128

TABLE B-7. Data Write Valid Time, tDW (ns)

Clock Freq.

(MHz)

CPU Wait States

Max (nDW, nIW b 1)

0 1 2

9.43 86 192 278

18.86 33 86 139

20.00 30 80 130

Instruction RAM has the greatest affect on execution speed.

Each added instruction memory wait state slows the BCP by

about 40% as compared to running with no instruction

memory wait states. Each added data memory wait state

slows a data access by 33% as compared to running with

no data memory wait states. RAM costs are coming down,

but higher speed RAM still carries a price premium. So there

is the trade-off.

Table B-8 compares the BCP data memory requirements

with the selected data RAM.

PC System

The MPA-II expansion board is an 8-bit board, which runs in

a PC-XT, PC-AT or compatible system. The timings of the

two systems have many differences, but the 8 MHz PC-AT

bus specifications are more stringent than those of the

4.77 MHz PC-XT bus. So, this evaluation will cover the

8 MHz PC-AT.

The critical timing in this system will be the amount of time

the MPA-II will have before it must deassert IO-CHRDY low

in order to extend the access cycle by adding wait states.

By deasserting IOCHRDY the MPA-II can extend a read or

write cycle until the correct data is available or written, re-

spectively.

As stated before, the MPA-II is an 8-bit board so both the

I/O and memory cycles will have 8-bit access cycles. In the

PC-AT, 8-bit I/O and memory cycles have the exact same

timing. There is always one command delay (0.5 T-states)

from the time ALE falls until the command strobe (IOR,

IOW, MEMR or MEMW) goes active low. Four programmed

wait states are inserted, forcing the command strobe to stay

active low for a minimum of 4.5 T-states. Figure B-5 shows

the relationship between ALE, the command strobes and

the bus cycles T-states.

For the following calculations the original IBM PC-AT sche-

matic has been used. This schematic can be found in IBM

Technical Reference Personal Computer AT.

In the PC-AT, both ALE and all of the command strobes are

controlled by an 82288 bus controller. The command

strobes will go active a short delay time after the 82288

inserts the command delay. (The delay time for an 8 MHz

82288 is T (delay 82288) e 25 ns.) After leaving the 82288,

MEMR and MEMW pass through a 74ALS244 before reach-

ing the expansion bus.

TABLE B-8. Data Memory Read and Write Parameters

Hitachi
DP8344B BCP (Minimum)

Parameter
HM62256 Read Write

RAM
Full Half Full Half

(Minimum)
Speed Speed Speed Speed

Access Time (tacc) 100 125.5 205

Write Pulse Width (tW) 60 96 96

Data Setup (tDW) 40 86 86

Output Enable (tSR) 84 84

Measurements are in ns.

Full Speed is 53 ns T-state with nIW e 0 and nDW e 1.

Half Speed is 106 ns T-state with nIW e 0 and nDW e 0.
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FIGURE B-5. Relationship of ALE, CMD, and Bus Timing
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So, T(delay 82288) a T(delay 74ALS244) is equal to the

maximum amount of time from the end of the command

delay until the command strobe reach the MPA-II.

T(strobes valid) e T(delay 82288) a T(delay 74ALS244)

e 25 ns a 10 ns

e 35 ns

In order to add wait states any expansion board must deas-

sert IOCHRDY low in time for it to propagate through a

74ALS32, then through a 74F74 (from preset to output), and

then setup to the 82284 by the end of the third programmed

wait state (which is also the beginning of the fourth wait

state). If the IOCHRDY signal also meets the 82284’s hold

requirement, then a fifth wait state will be added. Then

again, at the end of the fourth wait state if IOCHRDY is still

deasserted low a sixth wait state will be added. This will

continue until IOCHRDY is asserted high. On the other

hand, if IOCHRDY is deasserted too late (i.e. after the end

of the third programmed wait state), then the cycle will end

without adding any additional wait states.

The following is a calculation of the minimum amount of

time before the end of the third wait state that IOCHRDY

must be deasserted to add wait states:

T(add wait) e T(delay 74ALS32 H–L) a T(74F74 P–Q) a

T(setup 82284)

e 12 ns a 25 ns a 0 ns

37 ns

The maximum amount of time an expansion board has be-

fore it must deassert IOCHRDY (to add wait states) from the

command strobe being valid is:

T(Max IOCHRDY) e 3.5T b T(strobes) b T(add wait)

where, T e 125 ns in a 8 MHz expansion bus. Therefore,

T(MAX IOCHRDY e 3.5 (125 ns) b 35 ns b 37 ns

e 365.5 ns

This means that the MPA-II has 365.5 ns to deassert

IOCHRDY (if wait states are needed) from the time it re-

ceives a valid remote access command strobe.

On the MPA-II, the command strobes are buffered by a

20L8B PAL to the BCP’s REM-RD and REM-WR inputs. The

BCP will respond to a valid remote access by deasserting

XACK a delay time after receiving a valid remote access

REM-RD or REM-WR strobe. XACK controls IOCHRDY via

a 16RA8 PAL.

The maximum delay from receiving a valid remote access

command strobe to deasserting IOCHRDY follows:

T(MPA-II IOCHRDY) e T(delay 20L8B) a T(XACK) 1 a

T(delay 16RA8)

e 15 ns a 26 ns a 35 ns

e 76 ns

The MPA-II will deassert IOCHRDY a maximum of 76 ns

after it receives a valid remote access command strobe.

One should notice 76 ns is much less than the maximum

allowable time of 365.5 ns.

As a final note, the reader should be aware that most faster

PC-AT’s still run their expansion buses at 8 MHz to remain

compatible. This means that the timing on these expansion

buses should remain the same as those on any other PC-AT

no matter how fast the CPU runs. Thus, the MPA-II will run

in all PC-AT’s with 8 MHz expansion buses that follow the

original 8 MHz PC-AT’s expansion bus design. In fact, as

can be seen above, the MPA-II will run with bus speeds

faster than 8 MHz.

APPENDIX C

Filter Equations

Derivation of Filter

Equations for the Combined

Coax/Twisted Pair Interface

The basic operation of the filter can be understood by study-

ing the figure below. The actual circuit includes the effects

of the terminating resistors, DC isolation capacitors, and the

transformer; furthermore, a thorough investigation of band-

width and gain characteristics should employ the use of a

circuit simulator such as SPICE.
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Simple loop analysis yields the following transfer function

for the filter:

VO

VS

e

1

2R2C2
(s)

s2 a s Ð R1C1 a C2 (4R2 a 2R1)

2R1R2C1C2 ( a

1

R1R2C1C2

If it is assumed R1 ll R2 and C1 ll C2, we can then

simplify the equation and solve for the poles to obtain the

following form:

lfl e

1

2R2C2
g 0 1

4R2
2 C2

2
b4 # 1

R1R2C1C2J
4q

After splitting the above equation to solve each pole and

using a binomial expansion to simplify each pole’s equation,

we get:

fI &
1

qR1C1

& 20 kHz

(vs. 30 kHz from simulation and testing)

fh &
1

4qR2C2

& 40 MHz

(vs. 30 MHz from simulation and testing)
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muncations Associates, Inc., 1000 Alderman Drive, Alphar-

etta, GA 30201.

Guide to Operations Personal Computer AT (1502241) , In-

ternational Business Machines Corporation, P.O. Box

1328-C, Boca Raton, FL 33432, 1984.

Guide to Operations Personal Computer XT (6936810) , In-

ternational Business Machines Corporation, P.O. Box

1328-C, Boca Raton, FL 33432, 1983.

IBM 3270 Connection Technical Reference (GA23-0339-
02) , Information Development, Department 802, P.O. Box

12195, Research Triangle Park, NC 27709, 1988.

IBM 3174/3274 Control Unit to Device Product Attachment
Information, International Business Machines Corporation,

Armonk, NY 10504, October 1986.

IBM 3274 Control Unit to Distributed Function Device Prod-
uct Attachment Information, International Business Ma-

chines Corporation, Armonk, NY 10504, June 1985.

5250 Information Display System to System/36, System/
38, and Applications System/400, System Units Product At-
tachment Information, International Business Machines Cor-

poration, Armonk, NY 10504, October 1988.

Technical Reference Personal Computer AT (502243) , In-

ternational Business Machines Corporation, P.O. Box

1328-C, Boca Raton, FL 33432, 1984.

Technical Reference Personal Computer XT (6936808), In-
ternational Business Machines Corporation, P.O. Box
1328-C, Boca Raton, FL 33432, 1983.

abel TM(880004) , Data I/O Corporation, 10525 Willows Road

NE, P.O. Box 97046, Redmond, WA 93073-9746, 1988.

BRIEF TM User’s Guide, Underware, Inc., 84 Gainborough

St., Suite 103W, Boston, MA 02115, June 1987.

BSID, Capstone Technology, 47354 Fremont Blvd., Fre-

mont, CA 94538.

DP8344 BCP Demonstration/Development Kit , Capstone

Technology, 47354 Fremont Blvd., Fremont, CA 94538.

Microsystem Components HandbookÐVolume I (230843-
002) , Intel Corporation, Literature Department, 3065 Bowers

Avenue, Santa Clara, CA 95051.

8088 Microprocessor Data Sheet

8288 Bus Controller Data Sheet

80286 Microprocessor Data Sheet

82288 Bus Controller Data Sheet

8284 Clock Generator and Driver Data Sheet

iAPX 86/88, 186/188 User’s Manual Hardware Reference
1985 (210912-001) , Intel Corporation, Literature Distribu-

tion, Mail Stop SC6-714, 3065 Bowers Avenue, Santa Clara,

CA 95051.

iAPX286 Hardware Reference Manual 1983 (210760-001) ,
Intel Corporation, Literature Department, 3065 Bowers Ave-

nue, Santa Clara, CA 95051.

S/LS/TTI Logic Data Book (1985Ð400050) , National Semi-

conductor, 2900 Semiconductor Drive, Santa Clara, CA

95051.

Contacts

For further information on the MPA-II or the DP8344 BCP

contact:

BCP Product Marketing

National Semiconductor

2900 Semiconductor Drive

Mail Stop: D3800

Santa Clara, CA 95052-8090

Phone: (408) 721-5000

For Technical Information on the MPA-II or the DP8344 BCP

contact:

DATACOM Applications Support

National Semiconductor

1111 W. Bardin Road

Mail Stop: A2190

Arlington, TX 76017

Phone: (817) 468-6676

Fax: (817) 468-1468

For requesting IBM Product Attachment Information manu-

als (PAI’s) contact:

Industry Relations Dept.

IBM

2000 Purchase Street

Purchase, New York 10577

Phone: (914) 697-7227

For ordering IBM manuals other than PAI’s contact your

local IBM Sales Office.

For ordering products from Azure Technologies contact:

Azure Technologies, Inc.

38 Pond Street

Franklin Massachusetts 02038

Phone: (508) 520-3800

Fax: (508) 528-4518

For ordering products from Capstone Technology contact:

Richard L. Drolet

Capstone Technology

47354 Fremont Blvd.

Fremont, CA 94538

Phone: (510) 438-3500
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For ordering products from Hewlett Packard contact your

local Hewlett Packard Sales Office:

For ordering products from DCA contact:

Digital Communications Associates, Inc.

1000 Alderman Drive

Alpharetta, Georgia 30201

Phone: (404) 740-0300

For ordering products from Simware, such as SimPC Mas-

ter, contact:

Simware, Inc.

20 Colonnade Road

Ottawa, Ontario

Canada K2E 7M6

Phone: (613) 727-1779

Fax: (613) 727-9409

For ordering products from Relay Communications, such as

Relay Gold, contact:

Relay Communications, Inc.

41 Kenosia Avenue

Danbury, CT 06810

Phone: (800) 222-8672

For ordering products from Fischer International Systems,

such as Xeus, contact:

Fischer International Systems Corp.

P.O. Box 9107

4073 Merchantile Avenue

Naples, Florida 33942

Phone: (813) 643-1500

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor National Semiconductores National Semiconductor
Corporation GmbH Japan Ltd. Hong Kong Ltd. Do Brazil Ltda. (Australia) Pty, Ltd.
2900 Semiconductor Drive Livry-Gargan-Str. 10 Sumitomo Chemical 13th Floor, Straight Block, Rue Deputado Lacorda Franco Building 16
P.O. Box 58090 D-82256 F 4urstenfeldbruck Engineering Center Ocean Centre, 5 Canton Rd. 120-3A Business Park Drive
Santa Clara, CA 95052-8090 Germany Bldg. 7F Tsimshatsui, Kowloon Sao Paulo-SP Monash Business Park
Tel: 1(800) 272-9959 Tel: (81-41) 35-0 1-7-1, Nakase, Mihama-Ku Hong Kong Brazil 05418-000 Nottinghill, Melbourne
TWX: (910) 339-9240 Telex: 527649 Chiba-City, Tel: (852) 2737-1600 Tel: (55-11) 212-5066 Victoria 3168 Australia

Fax: (81-41) 35-1 Ciba Prefecture 261 Fax: (852) 2736-9960 Telex: 391-1131931 NSBR BR Tel: (3) 558-9999
Tel: (043) 299-2300 Fax: (55-11) 212-1181 Fax: (3) 558-9998
Fax: (043) 299-2500

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.


