
TL/EE10400

U
s
in

g
th

e
G

N
X

-V
e
rs

io
n

3
C

O
p
tim

iz
in

g
C

o
m

p
ile

r
in

th
e

U
N

IX
E
n
v
iro

n
m

e
n
t

A
N

-6
0
5

National Semiconductor
Application Note 605
June 1989

Using the GNX-Version 3
C Optimizing Compiler in
the UNIXÉ Environment

1.0 INTRODUCTION

To optimize the performance of systems built around Na-

tional’s Embedded System ProcessorsTM and Series

32000É microprocessors, National has developed a set of

advanced optimizing compilers. Four compilers are avail-

able to support the C, Pascal, FORTRAN 77, and Modula 2

languages. They are offered with Release 3.0 of the GE-

NIXTM Native and Cross-Support (GNXTM) Language Tools.

By generating high-quality code specifically tailored to the

Series 32000 architecture, these compilers allow Series

32000 microprocessors to achieve their full performance

potential.

National’s optimizing compilers use advanced optimization

techniques to improve speed or save space. When code

size is critical, the compilers can produce code that is more

compact than code generated by other compilers. When

speed is important, they can produce code that is 30%–

200% faster.

Figure 1-1 shows the compilation process performed by Na-

tional’s optimizing compilers. When a program is compiled,

the compiler performs syntactic and semantic verification of

the source code and then translates it into a unique interme-

diate language called IR32.

Next, the IR32 code is passed to a dedicated optimizer. The

optimizer performs four optimization steps to tailor the code

to the processor architecture.

The first step is local optimization. During this step, the IR32

code is partitioned into basic blocks. Each basic block con-

sists of a straight sequence of code. The only branches

allowed in a basic block are at the entry or exit of the se-

quence. Some of the local optimizations performed include

constant folding, value propagation, and the elimination of

redundant assignments.

The second optimization step is flow optimization. During

this step, a flow graph is constructed in which each basic

block of code is represented by a node. Optimizations of the

flow and elimination of dead code are performed during this

step.

The third optimization step is global optimization. During this

step, global code transformations are performed to speed

program execution. Optimizations performed include loop-

invariant code motion and the elimination of fully and partial-

ly redundant expressions.

Register allocation is the fourth optimization step performed

by the optimizer. During this step, variables are placed in

registers instead of main memory. The use of volatile regis-

ters and the allocation of register parameters are also opti-

mized.

After the IR32 code has been optimized by the optimizer, it

is passed to the code generator. The code generator further

optimizes the code by selecting optimal code sequences,

performing peephole optimizations, aligning the code and

data, and performing frame optimizations. It then translates

the optimized IR32 code into assembly code.

Finally, an assembler generates object files from the assem-

bly code, and a linker links the files together for execution.

This application note presents guidelines for using the GNX-

Version 3 C Optimizing Compiler. However, much of the in-

formation presented here also applies to the optimizing

compilers for Pascal, FORTRAN 77, and Modula 2. Topics

presented here include:

Optimization options for UNIX systems.

UNIX command-line optimization options.

Porting existing C programs to the GNX-Version 3 C

Optimizing Compiler.

Debugging optimized code.

Additional techniques to improve code quality.

Time requirements for compilation.

Specifying a target machine.

TL/EE/10400–1

FIGURE 1-1. The Compilation Process

Series 32000É is a registered trademark of National Semiconductor Corporation.

GENIXTM, GNXTM and Embedded System ProcessorTM are trademarks of National Semiconductor Corporation.

UNIXÉ is a registered trademark of AT&T Bell Laboratories.

C1995 National Semiconductor Corporation RRD-B30M75/Printed in U. S. A.

2.0 OPTIMIZATION OPTIONS

Table 2-1 lists all of the optimization options for the GNX-

Version 3 C Optimizing Compiler. Different combinations of

optimization flags can be used to tailor the optimizations for

specific applications. For example, some applications must

be optimized for speed, while others require smaller code

size.

TABLE 2-1. Optimization Options

UNIX Description

o Does not invoke the optimizer phase.

c Does not compute floating-point constant

expressions at compile time.

C Performs floating-point constant folding.

F Uses fixed frame references, avoids use of the

FP register or the ENTER/EXIT instruction.

f Compiles for debugging: uses slower FP and

TOS addressing modes.

I Applies all optimizations to all variables

(including global variables).

i Compiles system code: assumes that all global

and static memory variables and pointer

dereferences are volatile.

L Assumes use of standard run-time library.

l Assumes that all routines have corrupting side

effects.

M Performs global code motion optimizations.

m Does not perform global code motion

optimizations.

U Ignores user register declarations.

u Allocates user-declared register variables in

registers as done by pc.

R Performs the register allocation pass of the

optimizer.

r Does not perform the register allocation pass of

the optimizer.

S Optimizes for speed only.

s Does not waste space in favor of speed.

1–9 Maximal memory/swap-space available is 1

through 9 Mbytes (default: 4 Mbytes)

3.0 UNIX COMMAND-LINE OPTIONS

Specifying the -O option on the command line enables the

optimizer. This results in the fastest possible code based on

the default settings listed in Table 2-2. Specifying the opti-

mizer pass is equivalent to entering:

-OCFILMRSU

In special cases, such as when compiling operating-system

code, it may be necessary to change the optimization set-

tings from their default values. This can be done by specify-

ing optimization flags. Individual optimization flags can be

specified either by using the -F option, or by simply append-

ing them to -O. Table 3-1 suggests situations in which turn-

ing off an optimization option may be desirable.

Note that specifying the compiler debug option -g on the

command line automatically turns off the optimizer’s fixed-

frame flag -OF, unless otherwise specified on the command

line.

Also note that using the compiler target option -KB1 favors

space over speed by saving alignment holes normally pro-

duced when the buswidth is the default (4 bytes).

By not specifying the -O option on the command line, the

optimizer pass can be omitted. However, even when the

optimizer pass is omitted, some optimizations are performed

by the code generator. As a result, bypassing the optimizer

is equivalent to entering:

-OocfIlmrSu

TABLE 3-1. Reasons to Turn off Optimization Options

Option Reason for Turning

off Option

-Of To debug the program or to compile

nonportable programs that assume

knowledge of the runtime stack.

-Oi To compile system programs, such as

device drivers, which contain variables

that change or are referenced

spontaneously.

-Ol To compile programs which

reimplement standard functions, in a

way which does not agree with the

optimizer’s assumptions (i.e., have

side effects).

-Oc To compile programs whose correct

execution depends on the order in

which floating-point expressions are

evaluated.

-Om To compile programs which contain

huge functions, which are a drain on

the system’s resources and are time

consuming to optimize.

-Ou To compile programs which rely on the

register allocation scheme of pcc.

-Or To run programs that cease to work

when performing register allocation.

-Os To compile programs which must fit as

tightly as possible in memory.

-Oo or use When the optimizer phase is not

-Fflags required and another flag needs to be

without turned off as well. For instance, -OoF

giving -O turns fixed frame on without running

the optimizer, while -Of turns off fixed

frame but runs the optimizer.

4.0 PORTING EXISTING C PROGRAMS

Almost every program that runs when compiled by other C

compilers, will compile and run under the GNX-Version 3 C

compiler without any changes in the source code. Occa-

sionally, however, a program may operate differently than

before. Other programs may work when compiled without

the optimizer, but will not work when the code is optimized.

Possible causes for these problems are described in the

following sections.

2

4.1 Undetected Program Errors

The single most common reason for a nonfunctioning pro-

gram is an undetected program error. These errors become

apparent when a different compiler is used or when the

code is optimized. Many of these errors result from compil-

er-specific code in non-portable programs. The following

lists some of the most common problems:

Unitialized local variables.

The memory and register allocation algorithms of the GNX-

Version 3 C Optimizing Compiler are very different from

those of other compilers. As a result, a local variable may

end up in a completely different place than expected. Be-

cause of this, there is no guarantee that local variables will

contain zero when the program is started. Therefore, all lo-

cal variables should be initialized from within the program.

Relying on memory allocation.

If two variables are declared in a certain order there is no

guarantee that they will actually be allocated in that order.

Therefore, a program, which uses address calculations to

proceed from one declared variable to another declared

variable may not work.

Failing to declare a function.

A char returning function will return a value in the low-order

byte of R0, without affecting the other bytes. A failure to

declare that function where it is used may result in an error.

For instance, assuming that getÐcode() is defined to re-

turn a char, then:

main() À

int i;

if ((i 4 get code()) 4 17)

do something();

Ó

may never execute doÐsomething, even if getÐcode re-

turns 17. This is because the whole register is compared to

17, not just the low-order byte.

A similar problem exists for functions which return short or

float, or those which return a structure.

4.2 Compiling System Code

System code is distinguished from general ‘‘high-level’’

code by the fact that it is machine-dependent, often con-

tains real-time aspects and interspersed asm statements,

and is often driven by asynchronous events, such as inter-

rupts. Examples of system code are interrupt routines, de-

vice handlers, and kernel code.

To the optimizer, ordinary-looking global variables can actu-

ally be semaphores or memory-mapped I/O that can be af-

fected by external events not under the optimizer’s control.

Even so, it is still possible to optimize such code by taking

some precaution and by activating some special optimiza-

tion flags. Some of these issues are discussed in the follow-

ing sections.

Volatile variables.

Volatile variables are variables that may be used or

changed by asynchronous events, such as I/O or interrupts.

The volatile flag -Oi treats all global variables, static vari-

ables, and pointer dereferences as volatile. This means that

they are not subject to any optimizations. As a result, the

number and nature of memory references to them will not

change.

Note: Individual identifiers can be declared as volatile by using the volatile

type modifier.

The following examples demonstrate the consequences of

volatile variables and pointer dereferences.

Examples: 1. x e 17; x e 18;

If x is volatile, both of the two assignments to x

are executed even though the first one seems

redundant.

2. x e 9;

y e x a 1;

If x is volatile, this program segment is not op-

timized to y e 10.

3. *p e b a c;

If *p is volatile, then this results in

movd b, REG

addd c, REG

movd REG, 0(p)

and not

movd b, 0(p)

addd c, 0(p)

The difference stems from the fact that

the second sequence, though faster,

makes two references to 0(p) when the

programmer may have wanted only one.

4.3 Timing Assumptions

Optimizing a program changes the timing of various con-

structs. In particular, delay-loops may now run faster than

before.

4.4 Low-Level Interface

Relying on register order

A program that relies on the fact that a given register vari-

able resides in a specific register must be compiled with the

user-registers flag -Ou turned on. (See Section 6.7.)

Relying on frame structure.

A program that relies on a specific frame structure must be

compiled with the fixed-frame flag -Of turned off. This in-

cludes, in particular, programs that use the standard

alloca() function that allocates space on the user’s frame.

Referring to variables on the frame of a different function

(such as the caller of this function) by complex pointer arith-

metic may also cease to work.

Using asm statements.

The code inserted by asm statements may cease to work

because the surrounding code produced by the GNX-Ver-

sion 3 C compiler will normally differ from another compil-

er’s code. (See Section 6.6.)

4.5 Using Non-Standard Library Routines

The GNX-Version 3 C compiler assumes by default that all

the C standard mathematical library routines listed in Table

4-1 are available as a standard run-time library. These li-

brary routines have absolutely no access to global vari-

ables. Therefore, calls to these routines are specially recog-

nized and marked as calls that do not disturb optimizations

3

of global variables. This is normally a safe assumption since

it is unusual for a program to redefine (and thereby hide)

these standard routines. In addition, the functions abs, fabs,
and ffabs actually compile into in-line code and do not gen-

erate a procedure call at all.

The compiler generates a warning message whenever it

compiles a program which does redefine one of these rou-

tines. In this case, the user must decide whether the rede-

fined behavior of the routine is consistent with the assump-

tion of the optimizer that it will not affect the optimization of

global variables. If it does affect global-variable optimiza-

tions, the user has the choice of:

renaming the redefined routine (so that calls to it are not

specially recognized), or

using the no-standard-libraries flag -O -Fl to turn off the

recognition of all library routines.

TABLE 4-1. Recognized Library Routines

abs erf fceil fhypot fsinh jn sqrt

acos erfc fcos flog fsqrt ldexp tan

asin exp fcosh flog10 ftan log tanh

atan fabs ferf fmod ftanh log10 y0

atan2 facos ferfc fmodf gamma modf y1

cabs fasin fexp fpow hypot pow yn

ceil fatan ffabs frexp j0 sin

cos fatan2 ffmod fsin j1 sinh

cosh fcabs ffmodf

4.6 Reliance on Naive Algebraic Relations

The optimizer performs floating-point constant folding. That

is, it rearranges expressions to evaluate constant subex-

pressions at compile time. As a result, some naive algebraic

expressions are folded away.

Example: do À

a 4 a*2;
Ó

while ((a 0 1.0) 1 1.0 44 a);

is optimized to

do À

a 4 a*2;
Ó

while (1);

which was not the programmer’s intention.

To maintain the program and keep the programmer’s origi-

nal intention, the programmer should use the nofloat-fold

flag -Oc to suppress the folding optimization.

5.0 DEBUGGING OF OPTIMIZED CODE

Most of the time, the user should not need to debug an

optimized program. The majority of all bugs can be found

before optimization is turned on. However, there are some

very rare bugs which make their appearance only when the

optimizer is introduced. These bugs are difficult to find with-

out a debugger.

The problem is that code motion optimizations and register

allocation make most of the symbolic debugging information

generated by the compiler obsolete. With this in mind, spe-

cial care must be used when reviewing assembly code gen-

erated by the compiler. The following ‘‘rules of thumb’’ can

be employed when using symbolic debug information to-

gether with the optimizer:

Line number information is correct, but the code per-

formed at the specified lines may be different from non-

optimized code. This is a result of various code motion

optimizations, such as moving loop invariant expressions

out of loops.

Symbolic information for global variables is normally cor-

rect, since global variables are rarely put in registers. In

particular, if a global variable is not referenced within the

current procedure, the value in memory is valid and the

symbolic information is correct.

Symbolic information for parameters is correct except in

the following two cases:

1. When a parameter is allocated a register and there is

an assignment to that parameter, the symbolic infor-

mation is incorrect.

2. When a parameter of a local procedure is passed in a

register as a result of an optimization, the symbolic

information is incorrect. In this case, the symbolic in-

formation of all other paramaters is incorrect because

their offset within the procedure’s frame has been

changed.

Symbolic information of local variables is likely to be in-

correct because most of the local variables are put in

registers; the rest of the local variables are reordered

into new frame locations.

Note that if symbolic information is requested, then

slightly different code is generated. This happens be-

cause the fixed-frame flag -Of is automatically disabled

when the debug qualifier -g is used. Specifically, the EN-

TER instruction is always generated at the entry of pro-

cedures, and frame variables are referenced by FP-rela-

tive rather than SP-relative addressing mode. Without

disabling this flag, symbolic debugging is almost impossi-

ble.

It is helpful to have an assembly listing of the program in

question which has been compiled with the -S and the -n

qualifiers. Such a listing contains comments from the opti-

mizer regarding its actions.

6.0 ADDITIONAL GUIDELINES FOR IMPROVING CODE

QUALITY

The following programming guidelines take advantage of

the GNX-Version 3 C compiler optimizations to further im-

prove the quality of compiled code.

6.1 Static Functions

It is not only good software engineering practice, but also

good optimization practice to declare all functions not called

from outside the file as ‘‘static’’. This allows the optimizer to

use a more efficient internal calling sequence to call such

routines. This internal calling sequence uses the BSR in-

struction instead of the JSR or CXP instruction and also

passes parameters in registers rather than on the stack.

Note: If a program consists of a single file, and compilation and linking is

indicated in one step, then all functions within that file are automati-

cally considered as static by the compiler.

6.2 Integer Variables

Many operators, including index calculations, are defined in

C to operate on integers and imply a conversion when given

4

non-integer operands. Therefore, to avoid frequent run-time

conversions from char or short to int, integer variables

should be defined as type int and not short or char. This is

particularly important for integer variables that serve as

array indices.

6.3 Local Variables

Since local variables have a better chance of being placed

in registers, they should be used as much as possible, par-

ticularly when they are employed as loop counters or array

indices.

6.4 Floating-Point Computations

In programs which do not require double-precision floating-

point computations, a significant run-time improvement can

be achieved by using the following guidelines:

All functions should be defined as returning type float,

not double.

All constants should be defined to be float using the f

suffix or cast expressions explicitly to float.

The single-precision version of the standard floating-

point routines should be used. For example, ffabs()

should be used instead of abs(), fsin() instead of sin(),

etc.

6.5 Using Pointers

6.5.1 Terminology

The following terms are used throughout this section.

Potential definition

A statement potentially defines a memory location if the

execution of the statement may change the contents of

that memory location.

Example: A call to a function potentially defines all glob-

al variables because their values may change

during the execution of that function. Imagine

the following code fragment:

extern int *p, *q:

#
#

*p e 8;

#
#

The assignment statement potentially defines

the memory location *q because q may point

to the same memory location as p. The loca-

tion *p is defined (i.e., given a new value) by

the assignment. Location *q may be changed;

therefore, it has the potential definition.

Potential use

A statement ‘‘potentially uses’’ a memory location if it

may reference (read from) that memory location.

Address taken variable

A vaiable is considered ‘‘address taken’’ if the address

operator (&) is applied to it within the file or if the variable

is a global variable that is visible by other files.

Voltatile/nonvolatile registers

By convention, the registers are divided into volatile reg-

isters (registers R0 through R2 and F0 through F3) and

nonvolatile registers (registers R3 through R7 and F4

through F7). Volatile registers may be changed by a pro-

cedure call, whereas nonvolatile registers are guaran-

teed to retain their value across procedure calls. There-

fore, all nonvolatile registers used within a procedure

must be saved at the entry and restored at the exit of that

procedure.

6.5.2 Potential Difference Assumptions

The optimizer does not keep track of the contents of point-

ers. Therefore, it cannot tell, for any given location in the

program, where each pointer is pointing. Since a pointer can

point to any memory location, the optimizer makes the fol-

lowing assumptions concerning pointer usage:

1. Every assignment to a pointer dereference (the location

pointed to by a pointer) potentially defines all other point-

er dereferences and all address-taken variables.

2. Every use of a pointer dereference (i.e., a value read

through a pointer) potentially uses all other pointer dere-

ferences and all address-taken variables. This is be-

cause any accessible memory location is potentially

read.

3. Every function call potentially defines and potentially

uses all pointer dereferences, all address taken-vari-

ables, and all global variables. Therefore, using pointers,

the function’s code may read and/or write any accessi-

ble memory location. Of course, any global variable may

be used and/or changed.

When working with pointers, these assumptions should be

considered. For example, using arrays is preferable to using

pointers. The following example illustrates this point. As-

sume a is an array of char and p is a pointer to char. The

two program segments perform the same function.

Example: program segment 1

for (i 4 0 ; i !4 10 ; i00) À

a[i] 4 global var;

a[i01] 4 global var 0 1;
Ó

program segment 2

for (p 4 &a[0] ; p !4 &a[10] ; P00) À

*p 4 global var;

*(p01) e global var 0 1;
Ó

In program segment 1, globalÐvar can be put in a register.

In program segment 2, however, p may point to globalÐvar.

The first statement (*p e globalÐvar) potentially defines

globalÐvar; therefore, it cannot be put in a register.

6.5.3 Common Subexpressions

Another aspect of this same issue is that of common

subexpressions. The optimizer normally recognizes multiple

5

uses of the same expression and saves that expression in a

temporary variable (usually a register). This cannot be per-

formed when worst-case assumptions are made about po-

tential definition of expressions (as described above). Ex-

pressions that contain pointer dereferences or global vari-

ables are vulnerable. Therefore, if many uses of the same

expression span across procedure calls, it is advisable to

save them in local variables. Consider the example:

foo1(pxx);

foo2(pxx);

Here, the expression pxx cannot be recognized by the

optimizer as a common subexpression because foo1() may

change its value. In this case, the following hand optimiza-

tion may help:

t e pxx; /* t is local, therefore */

foo1(t); /*not potentially defined by foo1() */

foo2(t); /*so its value is still valid for foo2() */

The programmer can make this optimization by using the

knowledge that pxx is not changed by foo1(). The opti-

mizer cannot do the same because it assumes the worst

case.

6.6 asm Statements

The keyword asm is recognized to enable insertion of as-

sembly instructions directly into the assembly file generated.

The syntax for its use is:

asm(constant-string);

where constant-string is a double-quoted character string.

Extreme care should be taken if asm statements are used.

The following guidelines should be observed:

The optimizer is not aware of the contents of an asm

statement. Therefore, it assumes that an asm statement

potentially defines and potentially uses all of the vari-

ables (including local variables). This means that no

common subexpressions can be recognized across an

asm statement.

In order to allow an asm statement to use a specific

register (e.g., asm (‘‘save [r0,r1,r2]’’);), the optimizer de-

allocates all the registers.

The compiler usually generates code which differs from

the code generated by other compilers. This applies par-

ticularly to allocation of local variables and parameters of

static procedures.

The code surrounding the asm statement may change as

a result of changes in other parts of the procedure.

An asm statement that contains a branch instruction or a

branch target (label) may cause the optimizer to gener-

ate wrong code.

Note: For these reasons, looking at the generated assembly code is strong-

ly recommended before and after inserting asm statements into a

program.

6.7 Register Allocation

The C language is unique in that it allows the programmer to

specify (or rather, recommend) that some variables be allo-

cated to machine registers. The optimizer normally ignores

these recommendations, since in most cases the optimiz-

er’s own register allocation algorithms are as good as or

superior to the programmer’s recommendations. There are

several reasons for this:

The user can use a register for one variable only. The

optimizer, however, allocates a register along live ranges

of variables, making it possible for several variables with

non-conflicting live ranges to use the same register.

The user can declare as a register only local variables

whose addresses are not taken; whereas, the optimizer

allocates global variables as well as variables whose ad-

dresses are taken (where possible).

The user can allocate variables in safe registers only.

Therefore, every register used must be saved/restored

at the entry/exit of the procedure. The optimizer allo-

cates variables that do not live across procedure calls in

unsafe registers. Therefore, these registers need not be

saved/restored.

Because of code motion optimizations, the number of

references of variables may be changed. Therefore, the

choice of register variables may not be optimal. This is

illustrated in the following example:

Example: int j;

register int i;

i 4 j;

if (i 44 3 ll i 44 4 ll i 44 5)

In this example, undesired effects result if optimized with the

user-registers flag -Ou. The reason is that j is copy-propa-

gated and replaces all occurences of i. As a result, i occu-

pies a register but is not used. If the ordinary register alloca-

tion of the optimizer is not invoked, or if there are no regis-

ters left, j will be placed in memory.

6.8 setjmp()

Calls to setjmp() are specially recognized by the compiler.

Procedures that contain calls to setjmp() are only partially

optimized because procedure calls may end up in a call to

longjmp(). Code motion optimizations are performed only

within linear code sequences (those sequences not contain-

ing branches or branch targets). Register allocation is limit-

ed to optimizer-generated temporary variables, register-de-

clared variables, and variables whose live ranges do not

contain function calls.

6.9 Optimizing for Space

The default behavior of the GNX-Version 3 C compiler is to

optimize for optimal speed. However, there are several

things that can be done to improve code density:

Optimize with the no-speed-over-space flag -Os turned

on.

Squeeze the data area by using -KB1 for smaller align-

ment between variables.

Squeeze all record definitions by using the -J1 switch.

7.0 COMPILATION TIME REQUIREMENTS

Using the optimizer slows down the compilation process.

Therefore, it is recommended that the optimizer be used

only on final production versions of a program. The amounts

of resources (time and memory) vary strongly from program

to program and actually depend on the size of the routines

in the compiled program file. The larger a routine, the more

time and memory needed to optimize it. This behavior is

6

more or less quadratic. That is, the optimizer needs about

four times the resources to optimize a routine of 1000 lines

than to optimize a routine of 500 lines.

If time or memory requirements are unacceptable and rou-

tines cannot be reduced to a reasonable size of about 500

lines, it is possible to turn off some optimizations using the

no-code-motion -Om and/or the no-register-allocation -Or

flags.

On UNIX host systems, an optimization flag is available to

set an upper limit on the memory requirements of the opti-

mizer to a certain number of megabytes. This can be useful

on host systems with a limited swap-space configuration. If

necessary, the optimizer then skips certain optimizations on

huge routines only, in order to stay under the chosen limit. In

such cases, an appropriate message is given. This flag is

only necessary when compiling modules with extremely

large procedures (over 500 lines in a single procedure), a

case when the optimizer may need a larger swap space

than the one currently available. For example, the option:

-O2

limits the optimizer to 2 megabytes of swap space.

An alternate method for setting an upper limit on memory

requirements is to use the environment variable

AVAILÐSWAP. This sets the maximum swap space re-

quirement of the optimizer in megabyte units. This environ-

ment variable should be set to the number of megabytes to

be used. The user can choose from 1 Mbyte to 16 Mbytes. If

the user’s choice is outside of these parameters, the default

value of 4 Mbytes is chosen. For example,

setenv AVAIL SWAP 2

makes 2 Mbytes of swap space the default. This can be

overridden using the -0 number option previously described.

8.0 TARGET MACHINE SPECIFICATION

The GNX-Version 3 C Optimizing Compiler provides a way

to tune the code for a specific target machine by specifying

its CPU, FPU, and buswidth. The values for the CPU and

FPU can either be the complete device name (e.g.,

NS32332 or NS32081) or the last three digits of the device

name (e.g., 332 or 081). The buswidth is specified in bytes.

This tuning is performed by specifying compiler target option

-K on the command line. Table 8-1 lists the flags and the

possible settings.

Example: The following example specifies an NS32332

CPU, an NS32081 FPU, and a buswidth of 4

bytes.

cc -KC332 -KF081 -KB4 temp.c

or for cross-support,

nmcc -KC332 -KF081 -KB4 temp.c

TABLE 8-1. Target Selection Parameters

CPU (C) FPU (F) Buswidth (B)

[NS32]008 [NS32]081 1

[NS32]016 [NS32]381 2

[NS32]cg16 [NS32]580 4

[NS32]032

[NS32]332

[NS32]532

7

A
N

-6
0
5

U
s
in

g
th

e
G

N
X

-V
e
rs

io
n

3
C

O
p
ti
m

iz
in

g
C

o
m

p
il
e
r
in

th
e

U
N

IX
E
n
v
ir
o
n
m

e
n
t

Lit. Ý 100605

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor National Semiconductores National Semiconductor
Corporation GmbH Japan Ltd. Hong Kong Ltd. Do Brazil Ltda. (Australia) Pty, Ltd.
2900 Semiconductor Drive Livry-Gargan-Str. 10 Sumitomo Chemical 13th Floor, Straight Block, Rue Deputado Lacorda Franco Building 16
P.O. Box 58090 D-82256 F 4urstenfeldbruck Engineering Center Ocean Centre, 5 Canton Rd. 120-3A Business Park Drive
Santa Clara, CA 95052-8090 Germany Bldg. 7F Tsimshatsui, Kowloon Sao Paulo-SP Monash Business Park
Tel: 1(800) 272-9959 Tel: (81-41) 35-0 1-7-1, Nakase, Mihama-Ku Hong Kong Brazil 05418-000 Nottinghill, Melbourne
TWX: (910) 339-9240 Telex: 527649 Chiba-City, Tel: (852) 2737-1600 Tel: (55-11) 212-5066 Victoria 3168 Australia

Fax: (81-41) 35-1 Ciba Prefecture 261 Fax: (852) 2736-9960 Telex: 391-1131931 NSBR BR Tel: (3) 558-9999
Tel: (043) 299-2300 Fax: (55-11) 212-1181 Fax: (3) 558-9998
Fax: (043) 299-2500

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

