
TL/EE10359

B
y
te

-O
rd

e
r
Is

s
u
e
s

fo
r
th

e
N

S
3
2
5
3
2

A
N

-5
9
1

National Semiconductor
Application Note 591
George Grenley
July 1989

Byte-Order Issues
for the NS32532

1.0 INTRODUCTION

There are two methods of numbering the bytes in a comput-

er’s memory in common use today. One method, known as

‘‘Big Endian’’, is derived from IBMÉ and is followed by Moto-

rola in the 68000 family. The other method, known as ‘‘Little

Endian’’, is derived from DEC and is followed by National in

the Series 32000É family, and Intel in the 8086 family.

Although not usually a major problem, the differences be-

tween these two methods need to be considered when de-

signing systems with processors of different types and when

designing processors onto bus-based systems which use

the opposite nomenclature for byte ordering, such as the

National NS32532 on the VME bus.

2.0 TWO BYTE-ORDERING METHODS

As shown in Figure 1, when a 68000 references a word

(16-bit), it uses the address which is numerically lower and

the most significant byte (MSB). When it references a long-

word (32-bit), it uses the address which is numerically low-

est and the most significant byte of the most significant

word.

IBM/Motorola Method

D31 D24 D23 D16 D15 D08 D07 D00

Byte 0 Byte 1 Byte 2 Byte 3

Word 0 Word 1

Longword 0

FIGURE 1. ‘‘Big Endian’’ Byte Ordering

The VME specification follows this addressing method. Fur-

thermore, the VME specification is quite explicit about which

data lines should be active when a given byte, word, or long

word is being referenced. Specifically, for byte and word

transfers, even bytes are transferred on D8–D15, and odd

bytes are transferred on D0-D7. For longword transfers,

byte 0 is transferred on D24–D31, byte 1 is transferred on

D16–D23, byte 2 on D8–D15, and byte 3 on D0–D7.

DEC/Intel/National Method

D31 D24 D23 D16 D15 D08 D07 D00

Byte 3 Byte 2 Byte 1 Byte 0

Word 1 Word 0

Longword 0

FIGURE 2. ‘‘Little Endian’’ Byte Ordering

This byte-ordering method is different than the system used

by NSC in the Series 32000 family (see Figure 2). Specifi-

cally, IBM and VME are ‘‘backwards’’ with respect to how

byte addresses are associated with data lines, compared to

the NSC method. Word and longword addressing is similar,

however, in that a word or longword is referenced by the

numerically-lowest address contained therein. The differ-

ence is that these numerically lower addresses point to the

least significant byte of the word or longword, instead of the

most significant, as in the IBM/VME case. To summarize,

both ‘‘Big Endian’’ and ‘‘Little Endian’’ byte-ordering

schemes:

1. refer to a word or longword by the numerically lowest

address within the word.

2. define D31 as the MSB (231), and D0 as the least signifi-

cant byte LSB (20).

3. store text strings, in order, in numerically ascending loca-

tions in memory.

The only difference between these two methods is the num-

bering of bytes within the word (i.e., the assignment of byte

addresses to data bus bits). Series 32000 devices define

D0–D7 as byte 0, IBM/Motorola devices define D0–D7 as

byte 3.

3.0 BYTE-ORDERING SOLUTIONS

There is no way to hook a Series 32000 processor to VME

bus without creating certain compatibility problems. There

are two ways to connect the processor, as shown inFigures
3 and 4. Note that both systems are internally consistent,

since the data written by the processor in either case will be

read back the same way. The compatibility arises only when

the processor (such as an NS32532) transfers data to a

slave unit (such as a 68000 on a peripheral board).

3.1 CORRECT BIT ALIGNMENT

Figure 3 is the most obvious solution. Suppose that the

NS32532 is to read a 32-bit integer $0123ABCD stored at

longword address 0. When the NS32532 reads the word,

the device will correctly read $0123ABCD, with 0 as the

most significant bit, and D as the least. Similarly, if the

NS32532 passes the 32-bit pointer to a 68000 family slave

processor, the slave will read it in the correct order.

However, suppose the 68000 family slave then stores the

text string ‘‘Unix’’ beginning at location 0. The 68000 will put

the first character at its byte 0, the next at byte 1, etc. When

the NS32532 reads this string, it will see ‘‘x’’ at location 0,

‘‘i’’ at location 1, ‘‘n’’ at location 2, and ‘‘U’’ at location 3.

This is, of course, backwards. The NS32532 will then have

to swap the bytes to get the correct order. This method

(shown in Figure 3) is called correct bit alignment. It pre-

serves the bit position relationship.

Series 32000É is a registered trademark of National Semiconductor Corporation.

IBMÉ is a registered trademark of International Business Machines Corporation.

MULTIBUSÉ is a registered trademark of Intel Corporation.

C1995 National Semiconductor Corporation RRD-B30M75/Printed in U. S. A.

TL/EE/10359–1

FIGURE 3. Correct Bit Alignment Method

TL/EE/10359–2

FIGURE 4. Correct Byte Alignment Method

3.2 CORRECT BYTE ALIGNMENT

The byte-swapped arrangement shown in Figure 4 solves

the problem of mis-ordered byte strings. When the 68000

slave stores the string ‘‘Unix’’ as above, the NS32532 will

now read it correctly. However, this method fails when read-

ing words and longwords. Using the example from above,

the 32-bit integer is read back as $CDAB2301. This method

is called correct byte alignment because it preserves the

byte-sequence that strings are stored in memory. Note that

in both cases, the order of bits within a byte is the same.

3.3 CHOOSING THE BEST SOLUTION

A dynamic byte-ordering mechanism would solve the dilem-

ma caused by the two methods. Obviously, if one knew that

integers were being read, the data path inFigure 3 would be

selected. If it were text, Figure 4 would be selected. The

problem is, there is no way for the hardware to know thisÐ

the size of the data transfer does not indicate the type of

data being transferred.

VME boards with software-selectable byte swapping have

been built. However, these have some major pitfalls. First, if

one sets the swap bit, any further fetches of code from off-

board memory will be garbled. In a system where caches

are doing this independent of programmer control, there are

major problems associated with keeping things under con-

trol. This can be partly solved by restricting swapped trans-

fers to a certain address range, but the additional logic re-

quired to support this requires a lot of real-estate.

The second pitfall is that there is no agreed-upon conven-

tion among vendors of VME boards based 80x86 and Series

32000 family processors regarding when to swap (i.e., to

stay compatible with VME specifications) and when it is

okay not to swap (and thereby deviate from specifications).

In short, any programmable or dynamic byte-swapping ap-

proach is likely to produce problems and system crashes,

and is definitely not in compliance with VME specifications.

So, designers are faced with the necessity of making a

choice, where neither option is ideal. There are, however,

good reasons for picking the correct byte alignment meth-

od. The first reason is compatibility with VME addressing

standard. VME states that when byte 0 is referenced, D24–

D31 shall be active for 32-bit transfers, and D8–D15 for

16-bit transfers, etc.

The second reason is compatibility with virtually all I/O de-

vices. The byte-ordering problem first became a major issue

when computer networks became common and designers

began hooking DEC equipment to IBM. As network proto-

cols grew in complexity, network designers had to solve

compatibility problems. Designers solve these problems by

specifying all transfers as streams of byte oriented informa-

tion. Any larger unit of data is defined in terms of the ar-

rangement of bytes within it. For example, if the net-

2

work sends a 32-bit address, it might send four bytes, where

byte 3 is defined as the most significant, byte 2 and 1 in the

middle, and byte 0 the least significant. It is the responsibili-

ty of the processor interpreting this data to do so in accord-

ance with the specification.

Using this methodology means that I/O control blocks (and

other inter-processor data structures) can be specified in a

machine-independent way. Each byte in the structure is as-

signed an address by VME, and referred to in all documen-

tation by its byte address. Other structures are built up

based on these addresses. This leaves it up to the program-

mer who is writing for a specific processor to be aware of its

internal ordering, and to program accordingly. Note, howev-

er, that macros can be defined to handle the ordering for a

specific processor, thus making it transparent to the pro-

grammer.

This means that when communicating to an I/O device, an

NS32532 program would have to swap bytes on some con-

trol information, but not the data being transferred. For in-

stance, in the case of a disk controller, the initialization pa-

rameters and address pointers would have to be swapped,

but the blocks of data coming off the disk would not be.

Since there is more data than control information, this ap-

proach is more efficient.

Because I/O devices handle text data as a byte ordered

stream, whether it is disk, tape, or data communications,

preserving correct byte alignment also means that tapes

and disks holding text information will move from machine

to machine without problems. To be able to write a backup

tape on one type of machine and be able to read it properly

onto another is a great advantage. One can also move bina-

ry executable files between NS32532-VME and NS32532-

MULTIBUSÉ machines without problems; no byte-swapping

is necessary. Similarly, PROMs from one type of machine

will plug in and work properly on the other type by simply

plugging them into the same numbered byte socketÐ0 into

0, etc.

4.0 SUMMARY

In summary, two methods can be used to solve byte order-

ing differences between Series 32000 processors and IBM/

Motorola devices. The following points illustrate these two

solutions and the effects of choosing one over the other.

1. Either method can be used for NS32532 systems since

the processor will read back what it wrote.

2. There is no single way to hook an NS32532 processor to

the VME bus without creating certain compatibility prob-

lems. Two possible solutions are correct bit alignment

and correct byte alignment.

a. Correct Bit Alignment (See Figure 3), is integer com-

patible but reverses text strings.

b. Correct Byte Alignment (SeeFigure 4), is text compati-

ble but reverses bytes within integers.

3. Software transparent dynamic byte swapping is not possi-

ble, because there is no way for hardware to know what

type of data is being transferred, and therefore it cannot

know whether to swap bytes.

4. Using the correct byte alignment method, the NS32532

reverses the order of bytes, giving compatibility with the

VME world. Full text transfer capability (which is the ma-

jority of the inter-system communication) is also achieved

without penalty. This means, for example, that a tape

containing C language source files written on a 68000-

based VME machine, or an NS32532 based MULTIBUS

machine, will be read correctly on an NS32532-based

VME machine, without requiring software to swap bytes.

The only requirement involves I/O control blocks; a pro-

grammer must always byte-swap all 16- or 32-bit data

types.

National recommends that the correct byte alignment meth-

od be used on all Series 32000-based VME products, and

further recommends that the swapping be done directly at

the processor’s data lines. This way, the entire memory and

I/O structure of the system is consistent, regardless of

whether the memory and I/O is on or off card.

3

A
N

-5
9
1

B
y
te

-O
rd

e
r
Is

s
u
e
s

fo
r
th

e
N

S
3
2
5
3
2

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor National Semiconductores National Semiconductor
Corporation GmbH Japan Ltd. Hong Kong Ltd. Do Brazil Ltda. (Australia) Pty, Ltd.
2900 Semiconductor Drive Livry-Gargan-Str. 10 Sumitomo Chemical 13th Floor, Straight Block, Rue Deputado Lacorda Franco Building 16
P.O. Box 58090 D-82256 F 4urstenfeldbruck Engineering Center Ocean Centre, 5 Canton Rd. 120-3A Business Park Drive
Santa Clara, CA 95052-8090 Germany Bldg. 7F Tsimshatsui, Kowloon Sao Paulo-SP Monash Business Park
Tel: 1(800) 272-9959 Tel: (81-41) 35-0 1-7-1, Nakase, Mihama-Ku Hong Kong Brazil 05418-000 Nottinghill, Melbourne
TWX: (910) 339-9240 Telex: 527649 Chiba-City, Tel: (852) 2737-1600 Tel: (55-11) 212-5066 Victoria 3168 Australia

Fax: (81-41) 35-1 Ciba Prefecture 261 Fax: (852) 2736-9960 Telex: 391-1131931 NSBR BR Tel: (3) 558-9999
Tel: (043) 299-2300 Fax: (55-11) 212-1181 Fax: (3) 558-9998
Fax: (043) 299-2500

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

