
TL/DD10131

E
x
te

n
d
e
d

M
e
m

o
ry

S
u
p
p
o
rt

fo
r
H

P
C

A
N

-5
7
7

National Semiconductor
Application Note 577
Raja Gopalan
January 1989

Extended Memory Support
for HPC

INTRODUCTION

HPCTM family of microcontrollers have maximum address-

ing capability of 64 kbytes directly by the CPU. If an applica-

tion requires more than 64k of address space, then the HPC

address space can be expanded in terms of banks of mem-

ory, using an I/O port to select the memory banks. For ex-

ample one can use PORTB pins 8, 9, 13 and 14 to select up

to 16 banks of memory (which the MOLE development sys-

tem also supports currently for debugging purposes). Please

refer to the application note AN-497 ‘‘Expanding the HPC

Address Space’’ by Joe Cocovich for hardware details.

The current version of HPC software package (Compiler,

Assembler and Linker) however, does not directly support

more than 64k of address space. This is mainly due to the

Linker, which currently can handle only 64k of address

space.

This report describes a method to handle more than 64k of

address space from a software point of view. In order to do

this, the user has to do multiple linking of modules in differ-

ent banks and resolve the inter-bank symbol references.

The rest of the report describes the following:

1. Compiler generated selections (of code and data).

2. Programming conventions for bank switching.

3. Switch function to support bank switching.

4. Linking for bank switching.

SECTIONS GENERATED BY THE COMPILER

The compiler generates sections of relocatable assembly

code which can be positioned in absolute address using the

Linker in two ways:

1. Using the /SECT directive.

2. Using the /RANGE directive.

The following are the sections generated by the compiler for

a source file named ‘‘MODULE’’:

1. MODULE code,rom8 Code.

2. MODULE code,rom16

3. MODULE ram8 bss,ram8 Data area for uninitialized

4. MODULE ram16 bss,ram16 static variables.

5. MODULE ram8 data,ram8 Data area for initialized

6. MODULE ram16 data,ram16 static variables.

7. MODULE ram8 strdata,ram 8 Data area for string literals.

8. MODULE ram16 init,rom8 Initial value for static

9. MODULE ram8 init,rom8 variables.

10. MODULE ram8,strinit,rom8 Initial values for string

literals.

11. MODULE base16 bss,base Base page area for uninitialized

12. MODULE base8 bss,base static variables.

13. MODULE base16 data,base Base page area for initialized

14. MODULE base8 data,base static variables.

15. MODULE base16 init,rom16 Initial values for Base page

16. MODULE base8 init,rom8 initialized variables.

17. MODULE rom16 data,rom16 Area for constant storage type.

18. MODULE rom8 data,rom8

19. c stack,ram16 Stack area in module

containing main().

20. init info for each module which has any

static variables defined.

HPCTM is a trademark of National Semiconductor Corporation.

C1995 National Semiconductor Corporation RRD-B30M105/Printed in U. S. A.

PROGRAMMING CONVENTIONS TO BE USED FOR

BANK SWITCHING

As far as the bank switching hardware is concerned, the

HPC addressing space is divided into banks of memory. The

Fixed Address space is referred to as shared bank and the

switchable address space is called as switchable bank. Any

mechanism for bank selection can be used, as long as the

conventions mentioned below are strictly followed:

1. All static variables must be placed in the shared memo-

ry. Basepage must go in basepage (which is shared).

2. If string literals are not in ROM, they must be placed in

the shared memory.

3. Initialization values for static variables or string literals in

RAM must be in the shared memory. This includes

basepage initializers and ÐinitÐinfoÐ sections.

4. If string literals for a bank are in ROM, and are never

used as an argument to an inter-bank function call, the

literals for that bank can be in the switchable bank.

5. If constants for a bank are never used by passing their

address as an argument to an inter-bank function call,

the constants for that bank can be in the switchable

bank.

6. If the addresses of constants or string literals for a bank

are used as arguments to an inter-bank function call, the

constants or literals must be in the shared memory.

7. The stack must be in the shared memory.

8. Interrupt vectors must point to routines in the shared

memory.

9. Only code and qualified ROM data can be placed in

switchable banks.

10. A call to a function placed in the shared memory is al-

ways direct.

11. A function call from one switchable bank to another

switchable bank must use a switching routine in the

shared memory. Such a call cannot pass arguments

which are addresses of functions, constants, or string

literals in the calling bank. All pointers passed must be

to objects in the shared memory.

12. A function which returns a structure cannot be used in

an inter-bank function call if the returned structure is in

memory in the calling bank. If the returned structure is

an argument to another function, has a member of it

accessed, or is assigned to a static or local variable, it is

legal. If it is placed into switchable memory, by assigning

to what is pointed at by a pointer, the operation will fail

for an inter-bank function call.

13. The START macro in CRTFIRST must initialize the

bankswitching port as necessary, and select the bank

containing main() if it is not in the shared memory.

FUNCTION IN ASSEMBLER TO HANDLE SWITCHING OF

BANKS

When bank switching must occur, the stack is set up by the

compiler generated code for a normal function call. Instead

of calling the destination function directly, however, the in-

ter-bank link for the destination is called, as a result of the

special manipulations with the linker LNHPC. This routine

must change banks and then transfer to the destination,

and must receive the return from the destination function so

as to switch back to the original caller. This must be done

transparentlyÐno registers may be modified, and the stack

must appear the same.

Included is the code to support the actual switching of

banks during inter-bank function calls. This code allows a

routine in either the shared memory or one of the switchable

banks to make an inter-bank call to a routine in another

bank.

The inter-bank link for each destination is created by a mac-

ro, invoked for each required linkage. The inter-bank link is

simply a subroutine call to a common switching routine, with

in-line arguments giving the bank and address of the desti-

nation. The common switching routine does the necessary

manipulation of the stack to execute the destination and

receive the return. The excess information is saved off in a

separate software stack; upon return this information is

used to restore the situation as if a normal function call had

occurred.

Since the inter-bank transfer is completely transparent, it is

not limited to handling C function calls. Any subroutine call

which does not pass pointers to objects in switchable

banks, which does not have in-line arguments, which does

not use the Carry bit as either input or return, and which

does not use a Return And Skip instruction, can be used

with an inter-bank function call. However, the macro gener-

ates names using the C convention; an additional form is

available for assembly subroutine names.

Also available is a version which allows the bank switching

stack to be in 8-bit memory. It differs only in a few places

from the 16-bit stack version.

The normal arrangement calls for the common switching

routine and all the inter-bank links to be in shared memory.

However, order of execution in the bank switching code is

such that the inter-bank links for each destination that a

bank needs can be in the switchable memory, and only the

common routine needs to be in shared memory.

The software stack used by the bank switching is designed

to grow downward, in contrast to the hardware stack, which

grows upward. This allows the software stack to be placed

in the same memory area as the hardware stack, but above

it, and the two stacks will share their memory.

LINKAGE PROCEDURE FOR BANK SWITCHING

The actual linking of a multibank program is a series of indi-

vidual linkages. The result will be a load module represent-

ing each bank’s code, plus that bank’s contribution to the

shared memory area. It is essential that command files be

used as inputs to LNHPC because each module must be

linked several times, and changes would be ruinous:

First, each bank’s set of modules must be linked indepen-

dently. The Map files from each bank’s linkage will give the

necessary information on:

1. Undefined references, both functions and data.

2. A list of library routines invoked to support the code.

3. The size of the ÐinitÐinfoÐ section for the bank.

4. The size of the total code.

5. The entry for the functions defined in that bank.

6. The address of the variables defined in the bank (which is

applicable for shared bank only).

This information should be checked and validated. The un-

defined data references must be only to data which will be

in the shared memory. The undefined function references

should be for the function calls defined in other banks. The

library routines invoked may be reduced by library routines

which will be in the shared memory to support code there,

or can be placed in shared memory to use the shared ver-

2

sion for several banks. The size of each bank’s

ÐinitÐinfoÐ section will be used to make dummy sections

for the initial shared memory linkage (see next step below).

Finally, the total size of the code, allowing for library rou-

tines which will be in the shared memory, must fit in the

bank.

Second, an initial linkage of the shared memory is done to

determine the addresses of routines and data which will be

in there. This requires certain routines to be assembled:

1. The inter-bank switching routine and all the links needed

for inter-bank function calls (their bank and address val-

ues are left out initially).

2. External references for any additional library routines to

be forced into the shared memory.

3. Dummy ÐinitÐinfoÐ sections which are each as large

as the corresponding bank’s real ÐinitÐinfoÐ section

(or one dummy section as large as all the bank’s sections

combined).

The shared memory is then linked with all of these items

included, and the Map file will give valid addresses of data,

functions, and sections.

Third, the banks can be linked to produce actual modules.

All entry points in the shared memory are now defined, and

need to be provided to the linkages of each bank. Assembly

files providing the definitions is the simplest way to go. One

file can provide the addresses of all user functions, library

routines, and data variables in the shared memory, from the

Map of the shared memory. Individual files need to be made

to provide the addresses of the inter-bank links, because

the links for a bank cannot be given to that bank. Additional-

ly, the next available addresses need to be figured for each

memory area. This provides linkage and layout by creating

the new names and values to resolve the undefined refer-

ences in the linkage; the linker will do the work of substitut-

ing the link address for the undefined function address.

Then each bank can be linked, with the addresses for mem-

ory areas given to the linker, and the additional files defining

shared memory and the other banks inter-bank links being

linked in. After each bank, the next available addresses

must be updated. Note that the ÐinitÐinfoÐ sections must

be contiguous and in the exact space created by the dummy

routines.

Finally, the shared memory can be linked to produce the

actual module. The banks and addresses must be provided

for each inter-bank link and that module reassembled. The

external references for additional library routines remains

the same, and the dummy section for ÐinitÐinfoÐ are un-

changed. The Map of this linkage must be checked against

the Map of initial linkage and/or against all addresses fed to

the bank switched modules.

EXAMPLE CODE DISTRIBUTION

The example is a skeleton for a realtime program which

accumulates time data into tables, then processes those

tables by regression fit into a table of coefficients. The sys-

tem then monitors further events and uses the coefficient to

predict behavior as it occurs. The following files are to be in

a system with two banks, from 0x4000 to 0x7fff.

TABLES.H Data structure

MAIN.C Main program, for shared bank

TABLES.C Table accumulation and processing

MONITOR.C Monitor external events and predict

ERRORS.C Error routines

TIMERS.C Timer initialization and interrupt service

UART.C UART processing and interrupt service

CRTFIRST.ASM Modified to set up Port B for Bankswitch-

ing

CRTFIRST.INC kStandard module, unchangedl

BANKSWIT.ASM kStandard module, unchangedl

BANKLINK.INC Modified for inter-bank linkages

BANKDEFS.INC Macro definitions to simplify linkages

The distribution shown in Table I is intended as an initial

starting point. The monitor and prediction code is very large,

and fills the bank. The table processing code has room left

so the error routines (which are seldom called) are fit in

there. This bank has RAM in it, which is not known to the

compiler but is managed by the program. Main is in shared

memory because it is the major loop of the program. Timers

and UART are in shared because they contain the Interrupt

Service Routines.

Shared Bank 0 Bank 1

Main Tables Monitor

Timers Errors Strings

UART Strings Constants

Crtfirst Constants

Statics Table RAM

Initialization

Printf

Stack

Bank Stack

Crtinit

All statics will be in shared memory. Initialization data is in

shared memory. The string literals are all in ROM, and will

be in banks; since these are passed as arguments to

printf(), printf() must either be in both banks or in shared

memory in this case, to avoid duplication of memory usage

and to save room in Bank 1. Constants are in banks, since

inter-bank calls can be avoided when using constants and

string literals. The stack and the bank stack are in the

shared memory. The crtfirst routine is modified, and crtinit is

with it in shared memory (although it may be possible to

have crtinit in the bank selected by the START macro, this

would require more manual linkage for the call in crtfirst).

LINKAGE PROCEDURE

Each bank load module is created by linking the banks sep-

arately. The linking is done in two steps. The first step is trial

linkage and the parameters are specified in BANK0Ð
1.CMD,BANK1Ð1.CMD and SHAREDÐ1.CMD for linker.

The information from this trial linkage is used in the second

attempt where the load module is actually created. The

command files used are BANK0Ð2.CMD, BANK1Ð2.CMD

and SHAREDÐ2.CMD.

Initial linker command files are:

SHARED 1.CMD

BANK0 1.CMD

BANK1 1.CMD

describing memory as

0000–01ff shared: onchip RAM & I/O

0200–0fff shared: offchip RAM

1000–3fff shared: ROM

4000–7fff banks

bank 0: 4000–5fff ROM

6000–7fff RAM, private

bank 1: 4000–7fff ROM

8000–ffff shared: ROM

3

where the private RAM is not mentioned to the linker. The

private RAM is defined to the compiler using constants; an-

other alternative would have been to define an assembler

module of the proper size allocating the space, and place it

with the linker. This would require another piece of assem-

bly code, but would limit the address information to the link-

er command files.

During the trial linkage Bank 0 links but contains printf(),

which was desired to be in shared memory so it can be

passed string literals; putchar() will also be there. This

leaves only the variable live, which is just fine, will be placed

in shared bank. The size of ÐinitÐinfoÐ is 0x4136 to

0x4147 or 18 bytes (this information is best taken from the

Section Table of the map). The code is not present; it is

assumed to fit. For Bank 1, printf() will again be defined in

shared; putchar() will not be referenced. The undefined for

live, captureÐtable(), and error() are correct. The size of

ÐinitÐinfoÐ is 0x409A to 0x409F or 6 bytes. The code is

assumed to fit.

The initial linkage of the shared memory requires the crea-

tion of the linkage files. The linkages have to be put into

BANKLINK.INC for all inter-bank entry points, including from

shared to a bank. The sizes for the ÐinitÐinfoÐ sections

and the library access forcing requests are put in a file, us-

ing BANKDEFS.INC to make things easier. These are linked

together, with the C stack and the switch stack in the off-

chip RAM, with the switch stack on top so that they can

share the same memory. There are few inter-bank calls, so

the SWITCHÐSTACKÐDEPTH used is 10. Linking this fin-

ishes the initial sequence, and the values are now available

for the real second attempt of linking whereby the actual

modules will be created.

Now the definitions to complete each bank are created. The

module BANKDEFS.INC makes this easier. Each bank de-

fines the linkages to entry points within that bank. The

shared defines publics within the shared memory. (These

values are best taken from the Symbol Table portion of the

map.) Then the linker command files need to be modified (in

the example new file names are used, but the user will prob-

ably not use new files, rather simply modify the existing

files). The definition files needed for each bank will be add-

ed; these are the file for shared memory and for every other

bank but this one. The No Output option is changed to giv-

ing a name for the object file, if desired, and the Ignore

Errors is added because there is still no reset vector for a

bank.

Finally, the memory addresses have to be determined from

the shared load map and put into the command file (these

values are best taken from the Memory Order Map, Memory

Type Map, or the Section Table). The positioning of ÐinitÐ
infoÐ is critical, the others can have gaps. A trial linkage

shows where the linker places modules, and final adjust-

ments are required to ensure such placements meet the

requirements. Bank 0 requires only that the initialization

data be moved to shared memory. The updated addresses

from Bank 0 are used in Bank 1. Bank 1 is placed accept-

ably by the linker.

The final linkage of the shared memory can now be done.

Address and bank information is added to the linkage list.

The remaining parts don’t change. This linkage must be

checked against the first linkage of shared to be certain no

addresses have changed. Finally, the addresses used in

each bank or shared should be checked against other

banks to check for overlaps, and the types of sections in

each memory should be checked to make sure all conven-

tions have been met.

If everything is correct, you have load modules for the sys-

tem.

The code listed in this Application Note is available on Dial-A-Helper.

Dial-A-Helper is a service provided by the Microcontroller Applications Group. The Dial-A-Helper system provides access to

an automated information storage and retrieval system that may be accessed over standard dial-up telephone lines 24 hours

a day. The system capabilities include a MESSAGE SECTION (electronic mail) for communicating to and from the Microcon-

troller Applications Group and a FILE SECTION mode that can be used to search out and retrieve application data about

NSC Microcontrollers. The minimum system requirement is a dumb terminal, 300 or 1200 baud modem, and a telephone.

With a communications package and a PC, the code detailed in this Application Note can be downloaded from the FILE

SECTION to disk for later use. The Dial-A-Helper telephone lines are:

Modem (408) 739-1162

Voice (408) 721-5582

For Additional Information, Please Contact Factory

4

TL/DD/10131–1

TL/DD/10131–2

5

TL/DD/10131–3

6

TL/DD/10131–4

7

TL/DD/10131–5

TL/DD/10131–6

8

TL/DD/10131–7

9

TL/DD/10131–8

10

TL/DD/10131–9

11

TL/DD/10131–10

12

TL/DD/10131–11

TL/DD/10131–12

13

TL/DD/10131–13

14

TL/DD/10131–14

15

TL/DD/10131–15

16

TL/DD/10131–16

17

TL/DD/10131–17

18

TL/DD/10131–18

19

TL/DD/10131–19

20

TL/DD/10131–20

21

TL/DD/10131–21

Since the function Main is not defined in this bank there is no reset vector address defined

and hence the Linker gives the ’no end address specified’ error message, which can be ignored.

22

TL/DD/10131–22

23

TL/DD/10131–23

24

TL/DD/10131–24

25

TL/DD/10131–25

Since the function Main is not defined in this bank there is no reset vector address defined

and hence the Linker gives the ’no end address specified’ error message, which can be ignored.

TL/DD/10131–26

26

TL/DD/10131–27

27

TL/DD/10131–28

28

TL/DD/10131–29

29

TL/DD/10131–30

30

TL/DD/10131–31

31

TL/DD/10131–41

32

TL/DD/10131–32

33

TL/DD/10131–33

TL/DD/10131–34

34

TL/DD/10131–35

35

TL/DD/10131–36

36

TL/DD/10131–37

37

TL/DD/10131–38

38

TL/DD/10131–39

TL/DD/10131–40

39

TL/DD/10131–42

40

TL/DD/10131–43

41

TL/DD/10131–44

42

TL/DD/10131–45

43

A
N

-5
7
7

E
x
te

n
d
e
d

M
e
m

o
ry

S
u
p
p
o
rt

fo
r
H

P
C

TL/DD/10131–46

Lit. Ý 100577

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor
Corporation Europe Hong Kong Ltd. Japan Ltd.
1111 West Bardin Road Fax: (a49) 0-180-530 85 86 13th Floor, Straight Block, Tel: 81-043-299-2309
Arlington, TX 76017 Email: cnjwge@ tevm2.nsc.com Ocean Centre, 5 Canton Rd. Fax: 81-043-299-2408
Tel: 1(800) 272-9959 Deutsch Tel: (a49) 0-180-530 85 85 Tsimshatsui, Kowloon
Fax: 1(800) 737-7018 English Tel: (a49) 0-180-532 78 32 Hong Kong

Fran3ais Tel: (a49) 0-180-532 93 58 Tel: (852) 2737-1600
Italiano Tel: (a49) 0-180-534 16 80 Fax: (852) 2736-9960

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

