Extended Memory Support
for HPC

INTRODUCTION

HPCT™™ family of microcontrollers have maximum address-
ing capability of 64 kbytes directly by the CPU. If an applica-
tion requires more than 64k of address space, then the HPC
address space can be expanded in terms of banks of mem-
ory, using an 1/0 port to select the memory banks. For ex-
ample one can use PORTB pins 8, 9, 13 and 14 to select up
to 16 banks of memory (which the MOLE development sys-
tem also supports currently for debugging purposes). Please
refer to the application note AN-497 “Expanding the HPC
Address Space” by Joe Cocovich for hardware details.

The current version of HPC software package (Compiler,
Assembler and Linker) however, does not directly support
more than 64k of address space. This is mainly due to the
Linker, which currently can handle only 64k of address
space.

This report describes a method to handle more than 64k of
address space from a software point of view. In order to do
this, the user has to do multiple linking of modules in differ-
ent banks and resolve the inter-bank symbol references.

1. MODULE_code,rom8

2. MODULE_code,roml6

3. MODULE_ram8_bss,ram8

4. MODULE_raml6_bss,raml6
5. MODULE_ram8_data,ram8

6. MODULE_ramlé_data,ramle
7. MODULE_ram8_strdata,ram 8
8. MODULE_raml6_init,rom8
9. MODULE_ram8_init,rom8
10. MODULE_ram8,strinit,rom8
11. MODULE_baselB_bss,base
12. MODULE_base8_bss,base
13. MODULE_basel6_data,base
14. MODULE_base8_data,base
15. MODULE_basel6_init,roml6
16. MODULE_base8_init,rom8
17. MODULE_roml6_data,roml6
18. MODULE_rom8_data,rom8
19. c_stack,ramlé

20. _init_info_

HPC™ is a trademark of National Semiconductor Corporation.

National Semiconductor
Application Note 577
Raja Gopalan

January 1989

The rest of the report describes the following:

1. Compiler generated selections (of code and data).
2. Programming conventions for bank switching.

3. Switch function to support bank switching.

4. Linking for bank switching.

SECTIONS GENERATED BY THE COMPILER

The compiler generates sections of relocatable assembly
code which can be positioned in absolute address using the
Linker in two ways:

1. Using the /SECT directive.
2. Using the /RANGE directive.

The following are the sections generated by the compiler for
a source file named “MODULE”:

Code.

Data area for uninitialized
static variables.

Data area for initialized
static variables.

Data area for string literals.

Initial value for static
variables.

Initial values for string
literals.

Base page area for uninitialized
static variables.

Base page area for initialized
static variables.

Initial values for Base page
initialized variables.

Area for constant storage type.

Stack area in module
containing main().

for each module which has any
static variables defined.

©1995 National Semiconductor Corporation TL/DD10131

RRD-B30M105/Printed in U. S. A.

9dH 410} uoddng Alowa|\ papuaix3

LLS-NV

PROGRAMMING CONVENTIONS TO BE USED FOR
BANK SWITCHING

As far as the bank switching hardware is concerned, the
HPC addressing space is divided into banks of memory. The
Fixed Address space is referred to as shared bank and the
switchable address space is called as switchable bank. Any
mechanism for bank selection can be used, as long as the
conventions mentioned below are strictly followed:

1. All static variables must be placed in the shared memo-
ry. Basepage must go in basepage (which is shared).

2. |If string literals are not in ROM, they must be placed in
the shared memory.

3. Initialization values for static variables or string literals in
RAM must be in the shared memory. This includes
basepage initializers and __init__info__ sections.

4. |If string literals for a bank are in ROM, and are never
used as an argument to an inter-bank function call, the
literals for that bank can be in the switchable bank.

5. If constants for a bank are never used by passing their
address as an argument to an inter-bank function call,
the constants for that bank can be in the switchable
bank.

6. If the addresses of constants or string literals for a bank
are used as arguments to an inter-bank function call, the
constants or literals must be in the shared memory.

7. The stack must be in the shared memory.

8. Interrupt vectors must point to routines in the shared
memory.

9. Only code and qualified ROM data can be placed in
switchable banks.

10. A call to a function placed in the shared memory is al-
ways direct.

11. A function call from one switchable bank to another
switchable bank must use a switching routine in the
shared memory. Such a call cannot pass arguments
which are addresses of functions, constants, or string
literals in the calling bank. All pointers passed must be
to objects in the shared memory.

12. A function which returns a structure cannot be used in
an inter-bank function call if the returned structure is in
memory in the calling bank. If the returned structure is
an argument to another function, has a member of it
accessed, or is assigned to a static or local variable, it is
legal. If it is placed into switchable memory, by assigning
to what is pointed at by a pointer, the operation will fail
for an inter-bank function call.

13. The START macro in CRTFIRST must initialize the
bankswitching port as necessary, and select the bank
containing main() if it is not in the shared memory.

FUNCTION IN ASSEMBLER TO HANDLE SWITCHING OF
BANKS

When bank switching must occur, the stack is set up by the
compiler generated code for a normal function call. Instead
of calling the destination function directly, however, the in-
ter-bank link for the destination is called, as a result of the
special manipulations with the linker LNHPC. This routine
must change banks and then transfer to the destination,
and must receive the return from the destination function so
as to switch back to the original caller. This must be done
transparently—no registers may be modified, and the stack
must appear the same.

Included is the code to support the actual switching of
banks during inter-bank function calls. This code allows a
routine in either the shared memory or one of the switchable
banks to make an inter-bank call to a routine in another
bank.

The inter-bank link for each destination is created by a mac-
ro, invoked for each required linkage. The inter-bank link is
simply a subroutine call to a common switching routine, with
in-line arguments giving the bank and address of the desti-
nation. The common switching routine does the necessary
manipulation of the stack to execute the destination and
receive the return. The excess information is saved off in a
separate software stack; upon return this information is
used to restore the situation as if a normal function call had
occurred.

Since the inter-bank transfer is completely transparent, it is
not limited to handling C function calls. Any subroutine call
which does not pass pointers to objects in switchable
banks, which does not have in-line arguments, which does
not use the Carry bit as either input or return, and which
does not use a Return And Skip instruction, can be used
with an inter-bank function call. However, the macro gener-
ates names using the C convention; an additional form is
available for assembly subroutine names.

Also available is a version which allows the bank switching
stack to be in 8-bit memory. It differs only in a few places
from the 16-bit stack version.

The normal arrangement calls for the common switching
routine and all the inter-bank links to be in shared memory.
However, order of execution in the bank switching code is
such that the inter-bank links for each destination that a
bank needs can be in the switchable memory, and only the
common routine needs to be in shared memory.

The software stack used by the bank switching is designed
to grow downward, in contrast to the hardware stack, which
grows upward. This allows the software stack to be placed
in the same memory area as the hardware stack, but above
it, and the two stacks will share their memory.

LINKAGE PROCEDURE FOR BANK SWITCHING

The actual linking of a multibank program is a series of indi-
vidual linkages. The result will be a load module represent-
ing each bank’s code, plus that bank’s contribution to the
shared memory area. It is essential that command files be
used as inputs to LNHPC because each module must be
linked several times, and changes would be ruinous:

First, each bank’s set of modules must be linked indepen-
dently. The Map files from each bank’s linkage will give the
necessary information on:

1. Undefined references, both functions and data.

2. A list of library routines invoked to support the code.

3. The size of the __init__info__ section for the bank.

4. The size of the total code.

5. The entry for the functions defined in that bank.

6. The address of the variables defined in the bank (which is
applicable for shared bank only).

This information should be checked and validated. The un-
defined data references must be only to data which will be
in the shared memory. The undefined function references
should be for the function calls defined in other banks. The
library routines invoked may be reduced by library routines
which will be in the shared memory to support code there,
or can be placed in shared memory to use the shared ver-

sion for several banks. The size of each bank’s
__init__info__ section will be used to make dummy sections
for the initial shared memory linkage (see next step below).
Finally, the total size of the code, allowing for library rou-
tines which will be in the shared memory, must fit in the
bank.

Second, an initial linkage of the shared memory is done to
determine the addresses of routines and data which will be
in there. This requires certain routines to be assembled:

1. The inter-bank switching routine and all the links needed
for inter-bank function calls (their bank and address val-
ues are left out initially).

2. External references for any additional library routines to
be forced into the shared memory.

3. Dummy __init__info__ sections which are each as large
as the corresponding bank’s real __init__info__ section
(or one dummy section as large as all the bank’s sections
combined).

The shared memory is then linked with all of these items
included, and the Map file will give valid addresses of data,
functions, and sections.

Third, the banks can be linked to produce actual modules.
All entry points in the shared memory are now defined, and
need to be provided to the linkages of each bank. Assembly
files providing the definitions is the simplest way to go. One
file can provide the addresses of all user functions, library
routines, and data variables in the shared memory, from the
Map of the shared memory. Individual files need to be made
to provide the addresses of the inter-bank links, because
the links for a bank cannot be given to that bank. Additional-
ly, the next available addresses need to be figured for each
memory area. This provides linkage and layout by creating
the new names and values to resolve the undefined refer-
ences in the linkage; the linker will do the work of substitut-
ing the link address for the undefined function address.
Then each bank can be linked, with the addresses for mem-
ory areas given to the linker, and the additional files defining
shared memory and the other banks inter-bank links being
linked in. After each bank, the next available addresses
must be updated. Note that the __init__info__ sections must
be contiguous and in the exact space created by the dummy
routines.

Finally, the shared memory can be linked to produce the
actual module. The banks and addresses must be provided
for each inter-bank link and that module reassembled. The
external references for additional library routines remains
the same, and the dummy section for __init__info__ are un-
changed. The Map of this linkage must be checked against
the Map of initial linkage and/or against all addresses fed to
the bank switched modules.

EXAMPLE CODE DISTRIBUTION

The example is a skeleton for a realtime program which
accumulates time data into tables, then processes those
tables by regression fit into a table of coefficients. The sys-
tem then monitors further events and uses the coefficient to
predict behavior as it occurs. The following files are to be in
a system with two banks, from 0x4000 to Ox7fff.

TABLES.H Data structure

MAIN.C Main program, for shared bank
TABLES.C Table accumulation and processing
MONITOR.C Monitor external events and predict
ERRORS.C Error routines

TIMERS.C Timer initialization and interrupt service
UART.C UART processing and interrupt service

CRTFIRST.ASM Modified to set up Port B for Bankswitch-
ing
CRTFIRST.INC <Standard module, unchanged>
BANKSWIT.ASM <Standard module, unchanged>
BANKLINK.INC Modified for inter-bank linkages
BANKDEFS.INC Macro definitions to simplify linkages
The distribution shown in Table | is intended as an initial
starting point. The monitor and prediction code is very large,
and fills the bank. The table processing code has room left
so the error routines (which are seldom called) are fit in
there. This bank has RAM in it, which is not known to the
compiler but is managed by the program. Main is in shared
memory because it is the major loop of the program. Timers
and UART are in shared because they contain the Interrupt
Service Routines.

Shared Bank 0 Bank 1
Main Tables Monitor
Timers Errors Strings
UART Strings Constants
Crtfirst Constants

Statics Table RAM

Initialization
Printf

Stack

Bank Stack

Crtinit

All statics will be in shared memory. Initialization data is in
shared memory. The string literals are all in ROM, and will
be in banks; since these are passed as arguments to
printf(), printf() must either be in both banks or in shared
memory in this case, to avoid duplication of memory usage
and to save room in Bank 1. Constants are in banks, since
inter-bank calls can be avoided when using constants and
string literals. The stack and the bank stack are in the
shared memory. The crtfirst routine is modified, and crtinit is
with it in shared memory (although it may be possible to
have crtinit in the bank selected by the START macro, this
would require more manual linkage for the call in crtfirst).

LINKAGE PROCEDURE

Each bank load module is created by linking the banks sep-
arately. The linking is done in two steps. The first step is trial
linkage and the parameters are specified in BANKO__
1.CMD,BANK1_1.CMD and SHARED__1.CMD for linker.
The information from this trial linkage is used in the second
attempt where the load module is actually created. The
command files used are BANKO__2.CMD, BANK1_2.CMD
and SHARED__2.CMD.

Initial linker command files are:

SHARED_1.CMD
BANKO_1.CMD
BANK1_1.CMD

describing memory as

0000-01ff shared: onchip RAM & I/O
0200-0fff shared: offchip RAM
1000-3fff shared: ROM
4000-7fff banks
bank 0: 4000-5fff ROM
6000-7fff RAM, private
bank 1: 4000-7fff ROM
8000~-ffff shared: ROM

where the private RAM is not mentioned to the linker. The
private RAM is defined to the compiler using constants; an-
other alternative would have been to define an assembler
module of the proper size allocating the space, and place it
with the linker. This would require another piece of assem-
bly code, but would limit the address information to the link-
er command files.

During the trial linkage Bank 0 links but contains printf(),
which was desired to be in shared memory so it can be
passed string literals; putchar() will also be there. This
leaves only the variable live, which is just fine, will be placed
in shared bank. The size of __init__info__ is 0x4136 to
0x4147 or 18 bytes (this information is best taken from the
Section Table of the map). The code is not present; it is
assumed to fit. For Bank 1, printf() will again be defined in
shared; putchar() will not be referenced. The undefined for
live, capture__table(), and error() are correct. The size of
__init__info__ is Ox409A to Ox409F or 6 bytes. The code is
assumed to fit.

The initial linkage of the shared memory requires the crea-
tion of the linkage files. The linkages have to be put into
BANKLINK.INC for all inter-bank entry points, including from
shared to a bank. The sizes for the __init__info__ sections
and the library access forcing requests are put in a file, us-
ing BANKDEFS.INC to make things easier. These are linked
together, with the C stack and the switch stack in the off-
chip RAM, with the switch stack on top so that they can
share the same memory. There are few inter-bank calls, so
the SWITCH__STACK__DEPTH used is 10. Linking this fin-
ishes the initial sequence, and the values are now available
for the real second attempt of linking whereby the actual
modules will be created.

Now the definitions to complete each bank are created. The
module BANKDEFS.INC makes this easier. Each bank de-
fines the linkages to entry points within that bank. The
shared defines publics within the shared memory. (These
values are best taken from the Symbol Table portion of the
map.) Then the linker command files need to be modified (in
the example new file names are used, but the user will prob-
ably not use new files, rather simply modify the existing
files). The definition files needed for each bank will be add-
ed; these are the file for shared memory and for every other
bank but this one. The No Output option is changed to giv-
ing a name for the object file, if desired, and the Ignore
Errors is added because there is still no reset vector for a
bank.

Finally, the memory addresses have to be determined from
the shared load map and put into the command file (these
values are best taken from the Memory Order Map, Memory
Type Map, or the Section Table). The positioning of __init__
info__ is critical, the others can have gaps. A trial linkage
shows where the linker places modules, and final adjust-
ments are required to ensure such placements meet the
requirements. Bank O requires only that the initialization
data be moved to shared memory. The updated addresses
from Bank O are used in Bank 1. Bank 1 is placed accept-
ably by the linker.

The final linkage of the shared memory can now be done.
Address and bank information is added to the linkage list.
The remaining parts don’t change. This linkage must be
checked against the first linkage of shared to be certain no
addresses have changed. Finally, the addresses used in
each bank or shared should be checked against other
banks to check for overlaps, and the types of sections in
each memory should be checked to make sure all conven-
tions have been met.

If everything is correct, you have load modules for the sys-
tem.

Modem (408) 739-1162
Voice (408) 721-5582

The code listed in this Application Note is available on Dial-A-Helper.

Dial-A-Helper is a service provided by the Microcontroller Applications Group. The Dial-A-Helper system provides access to
an automated information storage and retrieval system that may be accessed over standard dial-up telephone lines 24 hours
a day. The system capabilities include a MESSAGE SECTION (electronic mail) for communicating to and from the Microcon-
troller Applications Group and a FILE SECTION mode that can be used to search out and retrieve application data about
NSC Microcontrollers. The minimum system requirement is a dumb terminal, 300 or 1200 baud modem, and a telephone.
With a communications package and a PC, the code detailed in this Application Note can be downloaded from the FILE
SECTION to disk for later use. The Dial-A-Helper telephone lines are:

For Additional Information, Please Contact Factory

Contents of Linker command file BANKO__1.CMD:

/Echo

/1ibfile=\hpc\library
/Format=1m
/Map=bank0__1.map

/Table

/Cr
/Range=BASE=(0x0002:0x00BF)

/Range=RAM16=(0x0200: 0xOFFF,0x01C0:0x01FF,BASE)

/Range=RAM8=RAM16

/Range=ROM16=(0x4000: 0x5FFF,0x8000: 0xFFCF,0x1000:0x3FFF)

/Range=ROM8=ROM16
tables,

errors

/NoOutput

Contents of the Linker map file BANKO__1.MAP:

NSC LNHPC, Version E2 (Nov 02 15:46 1987)

Reset Vector: 0000
~=- Range Definitions --

BASE 0002:00BF
ROM16 4000:5FFF
ROM16 8000:FFCF
ROM16 1000:3FFF
RAM16 0200:0FFF
RAM16 01CO0:01FF

RAM16 BASE
ROM8 ROM16
RAM8 RAM16

-- Memory Order Map --

0200 0211 RAM16
4000 4508 ROM16
450A 4687 ROM16
4688 47BF ROM8

-- Memory Type Map --

BASE

[size = 0000]
RAM16

0200 0211

[size = 0012]
RAM8

[size = 0000]
ROM16

4000 4508

450A 4687

[size = 0687]
ROM8

4688 47BF

[size = 0138]

VECTOR
[size = 0000]

09-May-88 08:37

TL/DD/10131-1

TL/DD/10131-2

-- Total Memory Map --

TOTAL RAM = BASE + RAM16 + RAM8
0200 0211
[size = 0012]

TOTAL ROM = ROM16 + ROM8 + VECTOR
4000 4508
450A 4687
4688 47BF
[size = 07BF]

-- Section Table --

start end attributes Section
Module
0200 020D RAM16 WORD TABLES_RAM16_BSS
0200 020D tables
4000 4135 ROM16 WORD TABLES_CODE
4000 4135 tables
4136 4147 ROM16 WORD _INIT_INFO_
4136 413B tables
413C 4147 errors
020E 020F RAM16 WORD ERRORS_RAM16_DATA
020E 020F errors
0210 0211 RAM16 WORD ERRORS_RAM16_BSS
0210 0211 errors
4148 41C3 ROM16 WORD ERRORS_CODE
4148 41C3 errors
4688 4689 ROM8 WORD ERRORS_RAM16_INIT
4688 4689 errors
468A 4703 ROM8 BYTE ERRORS_ROM8_STRDATA
468A 4703 errors
41C4 4508 ROM16 WORD LIBI_CODE
41C4 4508 Tibi
450A 4687 ROM16 WORD LIBP_CODE
450A 4687 Tibp
4704 47BF ROM8 BYTE LIBRARY
4704 47BF LIBIDVL
Error: Undefined External: _Tive

Address: 0096
Module: tables

Error: Undefined External: _putchar
Address: 0044
Module: errors

Error: Undefined External: _putchar
Address: 004A

TL/DD/10131-3

Error:

Error:

Error:

Error:

Error:

Error:

Error:

Error:

Error:

Error:

Module: 1ibi

Undefined External:

Address: 0086
Module: 1ibi

Undefined External:

Address: 0190
Module: Tibi

Undefined External:

Address: 028A
Module: 1ibi

Undefined External:

Address: 02D9
Module: Tibi

Undefined External:

Address: 0337
Module: 1ibi

Undefined External:

Address: 0027
Module: 1libp

Undefined External:

Address: 0057
Module: libp

Undefined External:

Address: 0146
Module: Tibp

Undefined External:

Address: 0175
Module: 1ibp

_putchar

_putchar

_putchar

_putchar

_putchar

_putchar

_putchar

_putchar

_putchar

No End Address has been specified

signed_divide_32 .
-LIBIDVL
signed_remainder_32
-LIBIDVL
unsigned_divide_32 . .
-LIBIDVL Tibp
unsigned_remainder_32
-LIBIDVL 1ibp
_build_tables
-tables
_capture_table
-tables
_compute_coefficients
-tables
_d_printf

-1ibp
_error . .

-errors
_fatal_error .
-errors
_initialize_table_memory
-tables

_live

4704 Null ROM8

4708
4739
473D
4048
404E
40AB
453C
4148
4168

4000

Kkkkk

Null
Null
Null
Null
Null
Nul1
Null
Nulil
Null
Null

Null

ROM8
ROM8
ROM8
ROM16
ROM16
ROM16
ROM16
ROM16
ROM16

ROM16

TL/DD/10131-4

tables
printf . .. oo
-1ibi errors
_putchar
errors 1ibi
_quit
-errors
_s_printf
-1ibp 1ibi
_u_printf
-1ibp 1ibi

41C4 Null ROM16
*xkk Nyl

Tibp

41B0 Null ROM16
450A Null ROM16

459A Null ROM16

Information obtained from BANKO__1.MAP are:

1) The _INIT_INFO_ section size for Bank0 linkage is 18 bytes,

ie from 0x4136 to Ox4147.

2) The entry address for functions obtained here as follows:

Function Address
initialize_table_memory 0x4000
build_tables 0x404b
capture_table 0x404e
compute_coefficients 0x40ab
error 0x4136
fatal_error 0x4159

These addresses will be used by the SWITCH_TO_FUNCTION assembly

macro calls in the file BANKLINK.INC.

TL/DD/10131-5

3) The undefined external reference for the variable Tive is expected,

which will be defined in the SHARED bank. The undefined function
putchar will also be defined in the shared bank.

TL/DD/10131-6

Contents of Linker command file BANK1__1.CMD:

/Echo

/1ibfite=\hpc\library

/Format=Tm

/Map=bankl__1.map

/Table

/Cr

/Range=BASE=(0x0002:0x00BF)
/Range=RAM16=(0x0200:0x0FFF,0x01C0:0x01FF ,BASE)
/Range=RAM8=RAM16
/Range=ROM16=(0x4000:0x7FFF,0x8000:0xFFCF,0x1000:0x3FFF)
/Range=ROM8=ROM16

monitor

/NoOutput
TL/DD/10131-7

Contents of the Linker map file BANK1__1.MAP:

NSC LNHPC, Version E2 (Nov 02 15:46 1987)

Reset Vector: 0000
-- Range Definitions --

BASE 0002:00BF
ROM16 4000:7FFF
ROM16 8000:FFCF
ROM16 1000:3FFF
RAM16 0200:0FFF
RAM16 01CO:01FF

RAM16 BASE
ROM8 ROM16
RAMS RAM16

-- Memory Order Map --

0200 0201 RAM16
4000 43E4 ROM16
43E6 4563 ROM16
4564 465F ROM8

== Memory Type Map --

BASE

[size = 0000]
RAM16

0200 0201

[size = 0002]
RAM8

[size = 0000]
ROM16

4000 43E4

43E6 4563

[size = 0563]
ROM8

4564 465F

[size = O0FC]

VECTOR
[size = 0000]

09-May-88 08:37

TL/DD/10131-8

10

-- Total

Memory Map --

TOTAL RAM = BASE + RAM16 + RAM8

0200 0
[size =

201
0002]

TOTAL ROM = ROM16 + ROM8 + VECTOR

4000 4
43E6 4
4564 4
[size =

-- Sectio

start end

0200 020
0200 020
4000 409
4000 409

3E4

563

65F
065F]

n Table --

attributes

1 RAM16 WORD
1
9 ROM16 WORD
9

4564 45A3 ROM8 BYTE
4564 45A3

409A 409

409A 409F

40A0 43E4 ROM16 WORD
40A0 43E4

43E6 4563 ROM16 WORD
43E6 4563

45A4 465F ROM8 BYTE
45A4 465F

Error: Undefined External:

Error:

Error:

Error:

Error:

Error:

F ROM16 WORD

Address: 0002
Module: monitor

Undefined External:

Address: 0012
Module: monitor

Undefined External:

Address: 0026
Module: monitor

Undefined External:

Address: 0030
Module: monitor

Undefined External:

Address: 0091
Module: monitor

Undefined External:

Address: O004A
Module: 1libi

Section
Module

MONITOR_RAM16_BSS
monitor
MONITOR_CODE
monitor
MONITOR_ROM8_STRDATA
monitor
INIT_INFO_
monitor
LIBI_CODE
1ibi
LIBP_CODE
Tibp
LIBRARY
LIBIDVL

_live

_live

_live

_capture_table

_error

_putchar

TL/DD/10131-9

1

Error: Undefined External: _putchar
Address: 0086
Module: 1ibi

Error: Undefined External: _putchar
Address: 0190
Module: Tibi

Error: Undefined External: _putchar
Address: 028A
Module: 1ibi

Error: Undefined External: _putchar
Address: 02D9
Module: 1ibi

Error: Undefined External: _putchar
Address: 0337
Module: 1ibi

Error: Undefined External: _putchar
Address: 0027
Module: Tibp

Error: Undefined External: _putchar
Address: 0057
Module: 1ibp

Error: Undefined External: _putchar
Address: 0146
Module: 1ibp

Error: Undefined External: _putchar
Address: 0175
Module: Tibp

Error: No End Address has been specified

signed_divide_32 . . 45A4 Null ROM8
-LIBIDVL

signed_remainder_32 45A8 Null ROM8
-LIBIDVL

unsigned_divide_32 . 4509 Null ROM8
-LIBIDVL Tibp

unsigned_remainder_32 4500 Null ROM8
-LIBIDVL 1ibp

_capture_table . . . *¥**% Nyuli
monitor

_compute_prediction 4032 Null ROM16
-monitor

_d_printf 4418 Null ROM16
-1ibp 1ibi

_error . L. RN
monitor

Tive ..o L L RN
monitor

_monitor 4000 Null ROMi6
-monitor

_printf L. 40A0 Null ROM16
-1ibi monitor

_putchar FRREONYT]
1ibi 1ibp

TL/DD/10131-10

12

s printf 43E6 Null ROM16

-1ibp 1ibi
_u_printf 4476 Null ROM16
-1ibp 1ibi
_validate_calculation 4053 Null ROM16
-monitor

TL/DD/10131-11
The informations derieved from this file are:

1) The _INIT_INFO_ section size for Bank0 linkage is 6 bytes.
je, from 0x409a to 0x409f.

2) The entry address for functions obtained here as follows:
Function Address

monitor 0x4000

These addresses will be used by the SWITCH_TO_FUNCTION assembly
macro calls in the file BANKLINK.INC.

3) The undefined external reference for the variable live is expected,
which will be defined in the SHARED bank. The undefined function
putchar will also be defined in the shared bank. The undefined external
references for functions defined in Bank0 and Shared will be taken care
by proper link addresses during second pass of linkage.

TL/DD/10131-12

13

Contents of the Linker command file SHARED 1.CMD:

/Echo

/1ibfile=\hpc\library

/Format=1m

/Map=shared_1.map

/Table

/Cr

/Range=BASE=(0x0002:0x008BF)
/Range=RAM16=(0x0200:0x0FFF,0x01C0:0x01FF ,BASE)
/Range=RAM8=RAM16
/Range=ROM16=(0x8000:0xFFCF,0x1000:0x3FFF)
/Range=ROM8=ROM16
/Sect=c_stack=0x0200:0x0FFF
/Sect=switch_stack=c_stack

main,

timers,

uart,

crtfirst,

bankswit, shared_1

/NoOutput

Note that we include the files BANKSWIT.ASM and SHARED_1.ASM.
BANKSWIT.ASM includes BANKLINK.INC file in which we have made the

switch_to_function macro calls for the inter bank function refernces.

SHARED_1.ASM contains the init_dummy macro call to create continuous
space for _INIT_INFO_ section in shared memory. Also it contains

the force_library macro call to force PUTCHAR and PRINTF in shared
address space.

TL/DD/10131-13

14

Contents of the Linker output file SHARED_1.MAP:

NSC LNHPC, Version E2 (Nov 02 15:46 1987)

Reset Vector: FFAF
-- Range Definitions --

BASE 0002:00BF
ROM16 8000:FFCF
ROM16 1000:3FFF
RAM16 0200:0FFF
RAM16 01CO0:01FF

RAM16 BASE
ROM8 ROM16
RAM8 RAM16

-- Memory Order Map --

0002 0003 BASE
0200 OABF RAM16
8000 80A8 ROM16
80AA 8118 ROM16
811A 845E ROM16
8460 85DD ROM16
85DE 873C ROM8
FFAF FFBF ROM8
FFF4 FFF5 VECTOR
FFFA FFFB VECTOR
FFFE FFFF VECTOR

-- Memory Type Map --

BASE
0002 0003
[size = 0002]

RAM16
0200 OABF
[size = 08C0]

RAM8
[size = 0000]

ROM16
8000 80A8
80AA 8118
811A 845t
8460 85DD
[size = 05DB]

09-May-88 08:37

TL/DD/10131-14

15

ROM8
85DE 873C
FFAF FFBF
[size = 0170]

VECTOR
FFF4 FFF5
FFFA FFFB
FFFE FFFF
[size = 0006]

-- Total Memory Map --

TOTAL RAM = BASE + RAM16 + RAM8
0002 0003
0200 OABF
[size = 08C2]

TOTAL ROM = ROM16 + ROM8 + VECTOR
8000 80A8
80AA 8118
811A 845E
8460 850D
85DE 873C
FFAF FFBF
FFF4 FFF5
FFFA FFFB
FFFE FFFF
[size = 0751]

-- Section Table --

start end attributes Section

Module
0200 O09FF RAM16 WORD C_STACK
0200 OQ9FF main
0AO0 O0A27 RAM16 WORD SWITCH_STACK
0A00 0A27 Bank_Switch
0A28 0A2D RAM16 WORD MAIN_RAM16_DATA
0A28 0A2D main
OA2E 0A41 RAM16 WORD MAIN_RAM16_BSS
O0A2E O0A41 main
8000 8031 ROM16 WORD MAIN_CODE
8000 8031 main
85DE 85E3 ROM8 WORD MAIN_RAM16_INIT
85DE 85E3 main
8032 8061 ROM16 WORD _INIT_INFO_

TL/DD/10131-15

16

8032 803D
803E 8043
8044 8049
804A 8061

0A42 OABF RAM16

0A42 OABF

8062 80A8 ROM16

8062 80A8

80AA 8118 ROM16

80AA 8118
FFAF FFBF ROMS
FFAF FFBF
0002 0003 BASE
0002 0003
85E4 85E5 ROM8
85E4 85E5
85E6 8659 ROM8
85E6 8659
865A 873C ROM8
865A 8680
8681 873C

811A 845E ROM16

811A 845E

8460 85DD ROM16

8460 850D

WORD
WORD
WORD
ABS

WORD
BYTE
BYTE
BYTE

WORD

WORD

initialize_memories

-crtinit crtfirst

PROGRAM_exit . .
-crtfirst
PROGRAM_start

-crtfirst main

STACK_end
-main
STACK_start

-main crtfirst

signed_divide_32 . .

-LIBIDVL

signed_remainder_32

-LIBIDVL

unsigned_divide_32 .
-LIBIDVL Tibp
unsigned_remainder_32
-LIBIDVL 1ibp

_build_tables
-Bank_Switch

_button_service
-timers

_calibrating

-main

_capture_table

-Bank_Switch

main
timers
Bank_Switch
SHARED_1
TIMERS_RAM16_BSS
timers
TIMERS_CODE
timers
UART_CODE
uart
CRTFIRST
crtfirst
SWITCH_POINTER
Bank_Switch
SWITCH_INIT
Bank_Switch
SWITCH_CODE
Bank_Switch
LIBRARY
crtinit
LIBIDVL
LIBI_CODE
1ibi
LIBP_CODE
Tibp

865A Null ROMS
FFBF Null ROM8
FFAF Null ROM8
0A0O Null RAM16
0200 Null RAMi6
8681 Null ROM8
8685 Null ROM8
86B6 Null ROM8
86BA Null ROM8
85EB Null ROM8
8086 Null ROM16
0A2A Byte RAM1G6

85F0 Null ROMS8

TL/DD/10131-16

17

_coefficients OAZE Byte RAM16

-main

_compute_coefficients . 85F5 Null ROM8
-Bank_Switch main

_d_printf 8492 Null ROM16
-libp Tibi

_error 85FF Null ROM8
-Bank_Switch

_fatal_error 8604 Null ROM8
-Bank_Switch

_initialize_inputs . . . 8062 Null ROM16
-timers main

_initialize_outputs . . 80AA Null ROM16
-uart main

_initialize_table_memory 85E6 Null ROM8
-Bank_Switc main

_Tive O0A42 Byte RAM16
-timers

_main 8000 Null ROM16
-main crtfirst

_monitor 85FA Null ROM8
-Bank_Switc main

_operational O0A28 Byte RAM16
-main

_predicting O0A2C Byte RAM16
-main

_printf 811A Null ROM16
-1ibi SHARED_1

_but_uart B810E Null ROM16
-uart

_putchar B80AB Null ROM16
-uart 1ibi 1ibp

_s_printf 8460 Null ROM16
-1ibp 1ibi

_timer_service 8063 Null ROM16
-timers

_u_printf B84F0 Null ROM16
=libp Tibi

Notice that there is entry for each function that is actully placed in
switchable bank being called from other banks. These entries are used
as link addresses for the respective functions when linking the banks
individually. Refer the files shared.asm, bankO.asm and bankl.asm.

TL/DD/10131-17

18

Contents of the linker command file BANKO__2.CMD:

/Echo
/1ibfile=\hpc\library
/Format=1m
/Map=bank0__2.map
/Table

/Cr

/Range=BASE=(0x0004 : 0x00BF)
/Range=RAM16=(0x0B00:0x0FFF,0x01C0:0x01FF,BASE)
/Range=RAM8=RAM16
/Range=ROM16=(0x4000:0x5FFF,0x8740:0xFFAE,0x1000:0x3FFF)
/Range=ROM8=ROM16

tables,

errors,

shared, bankl

/Sect=_init_info_=0x804A:0x8061
/Sect=errors_raml6_init=0x8740

/Output=bank0

/Ignore

Notice the ROM address is space defined as 0x4000:0x5fff for the BANKO

space. In shared memory address range 0x8740:0xffae is available, which is
obtained from shared_l.map. Also _init_info_ goes into the range 0x804a:0x8061
which was reserved by the init_dummy macro and the address is obtained from
shared_l.map. Also the section errors_raml6_init goes to address 0x8740
onwards. The 1ink addresses for the functions and variables are specified

in shared.asm and bankl.asm.

TL/DD/10131-18

19

Contents of the Linker output file BANKO__2.MAP:

NSC LNHPC, Version E2 (Nov 02 15:46 1987)

Reset Vector: 0000
-- Range Definitions --

BASE 0004 :00BF
ROM16 4000:5FFF
ROM16 8740:FFAE
ROM16 1000:3FFF
RAM16 0BOO:OFFF
RAM16 01CO:01FF

RAM16 BASE
ROM8 ROM16
RAMS RAM16

-- Memory Order Map --

0BOO 0B11 RAM16
4000 41B1 ROM16
41B2 422B ROMS
804A 805B ROM16
8740 8741 ROM8

-- Memory Type Map --

BASE

[size = 0000]
RAM16

0BOO O0B11

[size = 0012]
RAM8

[size = 0000]
ROM16

4000 41B1

804A 805B

[size = 01C4]
ROM8

41B2 422B

8740 8741

[size = 007C]

VECTOR
[size = 0000]

09-May-88 08:38

TL/DD/10131-19

20

-- Total Memory Map --

TOTAL RAM = BASE + RAM16 + RAM8
0BOO O0B1l
[size = 0012]

TOTAL ROM = ROM16 + ROM8 + VECTOR
4000 41B1
41B2 4228
804A 805B
8740 8741
[size = 0240]

-- Section Table --

start end attributes Section
Module
804A 8058 ROM16 WORD _INIT_INFO_
804A 804F tables
8050 805B errors
8740 8741 ROM8 WORD ERRORS_RAM16_INIT
8740 8741 errors
0BOO 0BOD RAM16 WORD TABLES_RAM16_BSS
0BOC 0BOD tables
4000 4135 ROM16 WORD TABLES_CODE
4000 4135 tables
OBOE OBOF RAM16 WORD ERRORS_RAM16_DATA
0BOE OBOF errors
0B10 OB11 RAM16 WORD ERRORS_RAM16_BSS
0B10 O0B1l1 errors
4136 41B1 ROM16 WORD ERRORS_CODE
4136 4181 errors
41B2 422B ROM8 BYTE ERRORS_ROM8 STRDATA
4182 422B errors
Error: No End Address has been specified

_build_tables

-tables

_capture_table .

-tables

_coefficients

-SHARED
_compute_coefficients
-tables

404B Null ROM16
404E Null ROM16
0A2E Null

40AB Null ROMi6

TL/DD/10131-20

21

_error 4136 Null ROM16

-errors

_fatal_error 4159 Null ROM16
-errors

_initialize_tabTe_memory 4000 Null ROM16
-tables

_live oooo o oo o oL 0A42 Null
-SHARED tables

_monitor . R 85FC Null
-BANK1

_printf . ..o L. 811A Null
~SHARED errors

_putchar B80AB Null
=SHARED errors

quit A419E Null ROM16
-errors

Notice that there is no undefined external references errors.

TL/DD/10131-21

Since the function Main is not defined in this bank there is no reset vector address defined
and hence the Linker gives the 'no end address specified' error message, which can be ignored.

22

Contents of the Linker command file BANK1__1.CMD:

/Echo

/1ibfile=\hpc\library

/Format=1m

/Map=bankl__2.map

/Table

/Cr

/Range=BASE=(0x0004 :0x00BF)
/Range=RAM16=(0x0C00:0x0FFF,0x01C0:0x01FF,BASE)
/Range=RAM8=RAM16
/Range=ROM16=(0x4000:0x7FFF,Dx8742:0xFFAE,0x1000:0x3FFF)
/Range=ROM8=ROM16

monitor,

shared, bankO

/Sect=_init_info_=0x805C:0x8061

/Output=bankl

/Ignore

Notice the _init_info_ section is placed in address space 0x805c to 0x8061.

This is basically the rest of the space after Bank0 _init_info_ usage.
Also the Link addresses for BANKO and SHARED are appropriately mentioned
in the assembly files bankO.asm and shared.asm and they are also Tinked.
The shared address (ROM16 and RAM16) space is properly updated with the
information from bankO__1.map.

TL/DD/10131-22

23

Contents of the Linker output file BANK1__2.MAP:

NSC LNHPC, Version E2 (Nov 02 15:46 1987)

Reset Vector: 0000

-- Range Definitions --

BASE
ROM16
ROM16
ROM16
RAM16
RAM16
RAM16
ROM8
RAMS

0004:00BF
4000:7FFF
8742:FFAE
1000:3FFF
0C00:0FFF
01CO0:01FF
BASE
ROM16
RAM16

-- Memory Order Map --

0CO0 0CO01 RAM16
4000 4099 ROM16
409A 40D9 ROM8

805C 8061 ROM16

-- Memory Type Map --

BASE
[size

RAM16
0Co0
[size

RAM8
[size

ROM16
4000
805C
[size

ROM8
409A
[size

VECTOR
[size

= 0000]

0co1
= 0002]

= 0000]

4099
8061
= D0A0]

40D9
= 0040]

= 0000]

09-May-88 08:38

TL/DD/10131-23

24

-- Total Memory Map --

TOTAL RAM = BASE + RAM16 + RAM8S
0C00 0cCo01
[size = 0002]

TOTAL ROM = ROM16 + ROM8 + VECTOR
4000 4099
409A 40D9
805C 8061
[size = 00EO]

-- Section Table --

start end attributes Section
Module

805C 8061 ROM16 WORD _INIT_INFO_

805C 8061 monitor

0C00 0C01 RAM16 WORD MONITOR_RAM16_BSS

0C00 0co0l monitor

4000 4099 ROM16 WORD MONITOR_CODE

4000 4099 monitor

409A 40D9 ROM8 BYTE MONITOR_ROM8_STRDATA

409A 40D9 monitor

Error: No End Address has been specified

_build_tables 85ED Null
-BANKO

_capture_table 85F2 Null
-BANKO monitor

_coefficients OA2E Null
-SHARED

_compute_coefficients . 85F7 Null
-BANKO

_compute_prediction . . 4032 Null ROM16
-monitor

_error - . 8601 Null
-BANKO monitor

_fatal_error . . 8606 Null
-BANKO

_initialize_table_memory 85E8 Null
-BANKO

_live 0A42 Null
-SHARED monitor

_monitor 4000 Null ROMl16
-monitor

TL/DD/10131-24

25

_printf . .. oL L 811A Null
-SHARED monitor

_putchar 80AB Null
-SHARED

_validate_calculation . 4053 Null ROM16
-monitor

Notice that there is no undefined external reference error messages.
TL/DD/10131-25
Since the function Main is not defined in this bank there is no reset vector address defined
and hence the Linker gives the 'no end address specified' error message, which can be ignored.

Contents of the Linker command file SHARED 2.CMD which is
same as SHARED 1.CMD:

/Echo
/1ibfite=\hpc\library
/Format=1m
/Map=shared_2.map
/Table

/Cr

/Range=BASE=(0x0002:0x00BF)
/Range=RAM16=(0x0200:0x0FFF,0x01C0:0x01FF ,BASE)
/Range=RAM8=RAM16
/Range=ROM16=(0x8000:0xFFCF,0x1000:0x3FFF)
/Range=ROM8=ROM16
/Sect=c_stack=0x0200:0x0FFF
/Sect=switch_stack=c_stack
main,
timers,
uart,
crtfirst,
bankswit, shared_1
/Output=shared

TL/DD/10131-26

26

Contents of the Linker output file SHARED_2.MAP which should be identical to
SHARED_1.MAP:

NSC LNHPC, Version E2 (Nov 02 15:46 1987)

Reset

-- Range Definitions --

BASE
ROM16
ROM16
RAM16
RAM16
RAM16
ROM8
RAM8

-- Memory Order Map --

0002
0200
8000
80AA
811A
8460
85DE
FFAF
FFF4
FFFA
FFFE

-- Memory Type Map --

BASE
0002
[siz

RAM16
0200
[siz

RAM8
[siz

ROM16
8000
80AA
811A
8460
[siz

Vector: FFAF

0002:00BF
8000:FFCF
1000:3FFF
0200:0FFF
01C0:01FF
BASE
ROM16
RAM16

0003 BASE
0ABF RAM16
80A8 ROMlé
8118 ROM16
845E ROM16
85DD ROM16
873C ROM8
FFBF ROM8

FFF5 VECTOR
FFFB VECTOR
FFFF VECTOR

0003
e = 0002]

OABF
e = 08C0]

e = 0000]

80A8
8118
845E
85DD

e = 05DB]

09-May-88 08:38

TL/DD/10131-27

27

ROM8
85DE 873C
FFAF FFBF
[size = 0170]

VECTOR
FFF4 FFF5
FFFA FFFB
FFFE FFFF
[size = 0006]

-- Total Memory Map --

TOTAL RAM = BASE + RAM16 + RAM8
0002 0003
0200 DOABF
[size = 08C2]

TOTAL ROM = ROM16 + ROM8 + VECTOR
8000 80A8
80AA 8118
811A 845E
8460 85DD
85DE 873C
FFAF FFBF
FFF4 FFF5
FFFA FFFB
FFFE FFFF
[size = 0751]

-- Section Table --

start end attributes Section

Module
0200 09FF RAM16 WORD C_STACK
0200 09FF main
0ACO 0A27 RAM16 WORD SWITCH_STACK
0A00 0AZ27 Bank_Switch
0A28 O0A2D RAM16 WORD MAIN_RAM16_DATA
0A28 0A2D main
OA2E 0A41 RAM16 WORD MAIN_RAM16_BSS
0A2E 0A41 main
8000 8031 ROM16 WORD MAIN_CODE
8000 8031 main
85DE 85E3 ROM8 WORD MAIN_RAM16_INIT
85DE 85E3 main

TL/DD/10131-28

28

8032
8032
803E
8044
804A
0A42
0A42
8062
8062
80AA
80AA
FFAF
FFAF
0002
0002
85E4
85E4
85E6
85E6
865A
865A
8681
811A
811A
8460
8460

8061
803D
8043
8049
8061
OABF
OABF
80A8
80A8
8118
8118
FFBF
FFBF
0003
0003
85E5
85E5
8659
8659
873C
8680
873C
845E
845E
85DD
850D

ROM16

RAM16
ROM16
ROM16
ROM8
BASE
ROM8
ROM8
ROMS

ROM16

ROM16

WORD

WORD
WORD
WORD
ABS

WORD
BYTE
BYTE

BYTE

WORD

WORD

initialize_memories
-crtinit crtfirst

PROGRAM exit
-crtfirst

PROGRAM start
-crtfirst main

STACK_end
-main

STACK_start c e e
-main crifirst

signed_divide_32 . . .
-LIBIDVL

signed_remainder_32
-LIBIDVL

unsigned_divide 32 . .
-LIBIDVL 1ibp

unsigned_remainder_32
-LIBIDVL 1ibp

_build_tables
-Bank_Switch

_button_service
-timers

_calibrating
-main

_capture_table

_INIT_INFO_
main
timers
Bank_Switch
SHARED_1
TIMERS_RAM16_BSS
timers
TIMERS_CODE
timers
UART_CODE
uart
CRTFIRST
crtfirst
SWITCH_POINTER
Bank_Switch
SWITCH_INIT
Bank_Switch
SWITCH_CODE
Bank_Switch
LIBRARY
crtinit
LIBIDVL
LIBI_CODE
Tibi
LIBP_CODE
1ibp

865A Null ROM8

FFBF Null ROM8

FFAF Null ROM8

0AOO Null RAM16
0200 Null RAM16
8681 Null ROM8

8685 Null ROM8

86B6 Null ROM8

86BA Null ROM8

85§B Null ROM8

main

8086 Null ROM16
0A2A Byte RAM16
85F0 Null ROM8

TL/DD/10131-29

29

-Bank_Switch

_coefficients OA2E Byte RAM16
-main

_compute_coefficients . 85F5 Null ROM8
-Bank_Switch main

_d_printf 8492 Null ROM16
-1ibp 1ibi

_error 85FF Null ROM3
-Bank_Switch

_fatal_error 8604 Null ROM8
-Bank_Switch

_initialize_inputs . . . 8062 Null ROM16
-timers main

_initialize_outputs . . 80AA Null ROM16
-uart main

_initialize_table_memory 85E6 Null ROM8
-Bank_Switc main

_live OA42 Byte RAMI6
-timers

_main 8000 Null ROM16
-main crtfirst

_monitor B85FA Null ROM8
-Bank_Switch main

_operational 0A28 Byte RAM16
-main

_predicting 0A2C Byte RAM16
-main

_printf 8l1A Null ROM16
-1ibi SHARED_1

_put_uart B810E Null ROM16
-uart

_putchar 80AB Null ROMI16
-uart Tibi 1ibp

_s printf 8460 Null ROM16
-1ibp 1ibi

_timer_service 8063 Null ROM16
~timers

_uprintf B8A4F0 Null ROMI16
-1ibp 1ibi

After final linkages the shared bank address space in the map files
BANKO__2.MAP, BANK1_ 2.MAP and SHARED_2.MAP should be verified for
no memory overlap.

TL/DD/10131-30

30

Kk ke Kk dkkk kK kdFe ok kg ko ko ke ko ke dkok Kk k kok sk dk ok vk vk sk ok ke sk sk gk o % e e e

National Semiconductor MicroController Group

HPC C Compiler Support and Library Routines
C Run Time Initialization User Tunable Code
CRTFIRST.ASM - C run time initialization

KRKKKKKKKKAKKKKKKKKKKKKKKKKKKKRKKKKIRKIIK K I KKK KKK KK K KKk Kk k

%% % Ok % %
* % X% % % X

;Copyright {c) 1987, National Semiconductor, Santa Clara Ca 95051
;See CRTFIRST.INC source code for explanation of macros and usage

;Code origin
.sect crtfirst,rom8,abs=0xffaf

1d 0x00f3.b,#0xff ;output pins for upper Port B
1d 0x00e3.b,#0x00 ;select bank 0
Jp

.incld crtfirst.inc

.end PROGRAM_start
TL/DD/10131-31

31

; SHARED 1.ASM - Bank switch support function
: To force library functions onto shared bank and to
; allocate continuous space for _init_info_ section on the

; shared bank.

.incld bankdefs.inc
force_library printf
init_dummy 18, 6

.end

; BANKO.ASM - Link address for functions actually defined
; in bank0

.incld bankdefs.inc

link_address initialize_table_memory, 0x85e8
link_address build_tables, 0x85ed

link_address capture_table, 0x85f2

link_address compute_coefficients, 0x85f7

link_address error, 0x8601

1ink_address fatal_error, 0x8606

.end

; BANK1.ASM - Link address for the function actually defined
; in bankl.

.incld bankdefs.inc

1ink_address monitor, 0x85fc

.end

; SHARED.ASM - Link address for the functions and variables
; defined in shared address space.

.incld bankdefs.inc

link_address printf, 0x81la

link_address putchar, 0x80ab

link_address live, 0x0a42

link_address coefficients, Ox0aZe

.end

TL/DD/10131-41

32

.title crtfirst, 'C Run Time Initialization'
KEAKKKKKKKAKKAAKRKAKKAKAKAKKAAKAKKAKRKAK A AAKAAKER AR ARk ARk kK k)

National Semiconductor MicroController Group

HPC C Compiler Support and Library Routines
CRTFIRST.INC - C Run Time Initialization

%* % % X % %
% % %k % ¥ %

e e sk ke sk ke ek e kK & kK sk ke ok sk ok vk o ok e ok 3k sk e ok e ok ok ke ok ok ok ok ok sk ok ok ok ok ok ok sk ok ok ok ok ok k ok

;Copyright (c) 1987, National Semiconductor, Santa Clara Ca 95051

;Edit History

; 12/15/86 DKL Create from CCHPC startup output

2/6/87 DKL Convert to new Assembler Syntax

2/9/87 DKL Seperate out Tunable Code

3/4/87 RPG Modify to suit new compiler

3/10/87 DKL Changes to DKL arrangement, initialize memory
3/20/87 DKL Stack out, efficient list order in

5/6/87 DKL Make this the included, not includer, file
7/27/87 DKL Move Initialization of RAM to separate subroutine

-public PROGRAM start, PROGRAM_exit
.extrn _main
.ifndef memories_8bit
.extrn initialize_memories
.else
.extrn initialize_memories_8bit
.endif
.extrn STACK start

.form
;This routine provides the standard C RunTime Routine for starting a
;compiled and linked program. It initializes the stack pointer and
;RAM memories, and enters the compiler generated code in function
;"main()" with no arguments.

;Four macros are used to allow the end user to have control of the start
;process at key moments, before the C code begins execution. The macros
;used are ORIGIN, START, READY, and HALT, in the following fashion:

; ORIGIN

;PROGRAM_start:

H 1d sp,<stack>

; START

; Jsrl initialize_memories

; READY

; Jsrl _main

;PROGRAM_exit:

; HALT

;Code size is tested to ensure that the code does not overwrite any
;dedicated addresses (e.g., subroutine jump table), and optionally to

TL/DD/10131-32

33

;ensure that no space is wasted between the end and the dedicated area.
;The dedicated address is defined as ADDRESS 1imit, and the check for
;waste space is controlled by ORIGIN check being non-zero. Either of
;these may be redefined by the user in the ORIGIN macro.

;ORIGIN macro

;Must declare the section and set the absolute origin for the startup
;code. Code must end before any dedicated addresses (ADDRESS_limit),
;and should not waste any space. If any of the other macros here are
;lengthened, this must be adjusted. Might optionally redefine values
;of ADDRESS_T1imit or ORIGIN_check.

;START macro

;Code to execute after the stack pointer is initialized, and before the
;memories are initialized. Must enable the appropriate configuration
;options for the chip, so that memories can be accessed. Since all
;memories can be accessed, the 1ist of RAM memories can be accessed
;where ever it may be.

>

;READY macro
;Code to execute after memory is initialized, but before the C code is
;entered.

;HALT macro
;Code to execute when the C code terminates.

;Limit address of code for this routine (first dedicated address)

;Whether to check that the origin provided is exactly correct
.form

;C RunTime Initialization Startup Code

ORIGIN ;declares absolute section and defines address

PROGRAM_start:

1d sp,#STACK_start ;Initialize stack
START ;User code option
.ifndef memories_8bit
Jsrl initialize_memories
.else
Jsril initialize_memories_8bit
.endif
READY
jsrl _main
PROGRAM_exit:
HALT

origin= ADDRESS_1limit - . + PROGRAM_start
.if . > ADDRESS_limit
.ERROR 'Startup Routine overlaps Subroutine Jump Table'
.else

TL/DD/10131-33

.if . < ADDRESS_limit & ORIGIN_ check

.ERROR 'Startup Routine not contiguous to Subroutine Jump Table'
.endif
.endif

TL/DD/10131-34

34

.Title Bank_Switch, 'Bank Switch Function for Function Calls'
KEKKKKEKKKKKKKKEAKKKKKRKKKKI KA KK KKK AKA A KKk KKKkKk Kk kkkkhkkkkhkkkkk

: x *
; * National Semiconductor MicroController Group *
. * *
; * HPC Code to Support Inter-Bank Function Calls *
; * BANKSWIT.ASM - Bank switch support functions *

KEEKKKKKKKKEKKKKKKKKKKEKKKKKAKKKKK KT AR KkIIhAAK KA XK KkKXKKKK)

;Copyright (c) 1988, National Semiconductor, Santa Clara Ca 95051

;Edit History

; 3/10/88 DKL Create for Memo/Apps note

; 3/15/88 DKL Add direct support for

; C function names, assembler special

>

;This is the main switching function to allow inter-bank function calls
;transparent to the compiler and assembler.

;Requires compilation with the value SWITCH_STACK_DEPTH defined, for the
;number of levels of inter-bank function call nesting to be allowed. The
;value should take into account any interrupt nesting from any interrupt
;service routines which may switch banks.

;Is called with stack as

SPp ----- > Next free location

SP-2 ---> Intermediate Switch Function Return Address

Sp-4 ---> Destination's Return Address

Sp-6 ---> Destination's Argument 1

. Destination's Argument Space

old sp -> Destination's Argument n

e Caller's Local Variable Space

FP =-=-- > Caller's First Local Variable

FP-2 ---> Caller's Parent's Frame Pointer

FP-4 ---> Caller's Return Address

FP-6 ---> Caller's Argument 1

; - Caller's Argument Space

;and must call Destination Function with stack in same form, but the
;Destination's Return Address must cause return to the switcher function.

2
H
i
>
s
s
’
s
3
s
>

;An additional stack is necessary to store the additional information so
;the main stack is not polluted. This also requires an additional stack
;pointer.

.form
.macro switch_to function, bank, address
.public _"function
_function:
jsr function_call_switcher
dfe>1

.byte Tow(address)
.byte high(address)
.byte bank

TL/DD/10131-35

35

.else

.byte 0,0,0 ;temporary place holders
.endif
.endm ;switch_to

.macro switch_assembly function, bank, address
.public function
function:
jsr function_call_switcher
dife>l
.byte Tow(address)
.byte high(address)
.byte bank
.else
.byte 0,0,0 ;temporary place holders
.endif
.endm ;switch_assembly

.form
;Bank Switching Control Port
bank_switch_port= 0x00e3:b ;must not touch lTow byte of Port B

;Values for Bank Switching Control Port

bank0 = 0x00
bank1l = 0x01
bank2 = 0x02
bank3 = 0x03
bank4 = 0x20
bank5 = 0x21
banké = 0x22
bank7 = 0x23
bank8 = 0x40
bank9 = 0x41
bankl0 = 0x42
bankll = 0x43
bankl2 = 0x60
bank13 = 0x61
bankl4 = 0x62
bankl5 = 0x63

;Switch stack
.sect switch_stack, raml6, rel
.dsw SWITCH_STACK_DEPTH * 2
growth =4
.endsect

;Switch stack pointer
.sect switch_pointer, base, rel
switch_stack_pointer: .dsw 1
.endsect

;Initialization value for switch stack pointer
.sect switch_init, rom8, rel
.byte Tow(e_sect(switch_stack))
.byte high{e_sect(switch_stack))

TL/DD/10131-36

36

.endsect

;Initialization control for switch stack pointer
.sect _init_info_, roml6, rel
.word b_sect(switch_pointer)
.word e_sect(switch_pointer) -1
.word b_sect(switch_init)
.endsect

.sect switch_code, rom8, rel
;Linkages
.incld banklink.inc

;Switch from caller's bank to destination bank, transparently
;A11 registers must be preserved

%unction_ca]]_switcher:

push a ;free up registers

push X

add switch_stack_pointer,#-growth ;get switch stack room
Td x,switch_stack_pointer

1d a,bank_switch_port ;put caller bank on switch stack
X a,[x+].w

1d a,-8[sp]l.w ;put caller return on switch stack

X a,[x+].w

1d a,-6[sp].w ;access destination information

st a,x

1d a,[x+].b ;get destination address onto stack
st a,-6[sp].b

1d a,[x+].b ;(as bytes because no alignment)

st a,-5[sp].b

1d a,[x+].b ;put destination bank in port

st a,bank_switch_port

1d a,#function_call_returner ;put switcher return on stack
st a,-8[spl.w

pop X

pop a

ret ;transfer to destination in new bank

;Return to caller's bank from destination bank, transparently
;A11 registers must be preserved

H
function_call_returner:

push a ;space for return address

push a ;free up register

1d a,[switch_stack_pointer].w ;restore caller bank

st a,bank_switch_port

1d a,2[switch_stack_pointer].w ;restore caller return

st a,-4[spl.w

add switch_stack_pointer,#growth ;give up switch stack room

pop a

ret ;return to caller in original bank
’ .endsect

.end

TL/DD/10131-37

37

* % Ok % %

National Semiconductor MicroControllier Group

Definitions of Inter-Bank Function Call Links
BANKLINK.INC - Bank switch support functions

HHAKIKKKKKKAKKAKAKKRKAKAKKXKAKKKRA KK KKK KRR AR A A KA KK A KKKk k& *k

%k K e v 3k 3k ok ok ke ok ok sk ok ok ok ok ok ke ok ok ok ke sk ok ok ok ek ok ok ok ok ok ok ko ok ok ok ok ok ok ok ok ok ok ok ok ok ook ok

% % % % %

;For every inter-bank 1link required, enter a defining 1ine

s

; switch_to

function, bank<n>, address

;where the function name is the name of the destination function,
;bank<n> is the name of the bank number (bank0, bankl, ...), and

;the address is a numeric constant for the address of the actual

;destination function code in its bank.

;Assembly Tanguage functions can be linked using

5 switch_assembly function, bank<n>, address
5
;instead.
switch_to initialize_table_memory, bank0, 0x4000
switch_to build_tables, bank0, 0x404b
switch_to capture_table, bank0, 0x404e
switch_to compute_coefficients, bank0, 0x40ab
switch_to monitor, bankl, 0x4000
switch_to error, bank0, 0x4136
switch_to fatal_error, bank0, 0x4159

TL/DD/10131-38

38

e 3k 3k 3k e e s e 3k ke 3k 3 3k ok e ok ook sk ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ek sk sk ok ok ok ok

*
* National Semiconductor MicroController Group
*
*
*

* % % % %

Macros to Assist Bank Switching Linkages

BANKDEFS.INC - Bankswitch support functions
KEKEKAKKKKKKKIKKKKAIAKEKIRIKKIKKKK LK I KKK KK KK KKK AR KKK KKKk *

;For every inter-bank 1ink into a module, substitute definitions
;are needed using the values of the inter-bank Tink in shared
;memory. These macros make it easier.

; 1ink_address function, address

; link_assembly function, address

;where function is the name of the linked function and address is the
;address of the 1ink code in the shared bank.

.macro 1ink_address function, address
.public _ function
_“function = address
.endm

.macro link_assembly function, address
.public function
function = address
.endm

;For forcing a library routine to be linked, even though not accessed.

;
5 force_library routine, routine, routine,
5 force_assembly routine, routine, routine,

;Mu1tiple Tines may be used.

.macro force_library Tlist
.set $count, 0

.do @

.set $count, $count + 1
.extrn _"@$count

.enddo

.endm ;force_library

.macro force_assembly 1list

.set $count, O

.do @

.set $count, $count + 1
.extrn @$count

.enddo

.endm ;force_assembly

;To create the dummy place holders for the initialization information
;sections.

TL/DD/10131-39
5

; init_dummy size, size, size,

;Mu1tip1e lines may be used.

.macro init_dummy list

.sect _init_info_, roml6, rel
.set $count, O
.do @

.set $count, $count + 1
.dsb @$count
.enddo
.endsect
.endm ;init_dummy
TL/DD/10131-40

39

/*
*/

#inciude "tables.h"

tables.c Placed in BankO0.

extern int coefficients[10];
extern struct table_entry live;

#define table_memory (* ((struct table_entry *) 0x6000))
#define table_memory_end (* ((struct table_entry *) 0x8000))

static int table_entries, table_values;
static struct table_entry * first_table;

/* this initializes special RAM memory in the bank for tables */

NOLOCAL
initialize_table_memory()

{

static struct table_entry * p;

/* initialize memory as an array of structure */
for(p = &table_memory, table_entries = 0;

p < &table_memory_end;

p++, table_entries++)

p->spins = 0;

p->rolls = 0;
p->result = 0;

/* record initial state */
first_table = &table_memory;
table_values = 0;

}

/* builds a series of table entries in the RAM memory from inputs */

NOLOCAL
build_tables()
{

/*
éééide when table is ready
%/
capture_table();
}

NOLOCAL
capture_table()

static struct table_entry * next;

if(table_values < table_entries)

TL/DD/10131-42

40

/* table not full, locate next and add one */
next = first_table + table_values;

else

{
/* table full, advance one as ring */
next = first_table;
if(++first_table >= &table_memory_end)

first_table = &table_memory;

*next = live;

3

/* data reduction on table */

NOLOCAL
compute_coefficients()

{
static int i;
static struct table_entry * p;

for(i =0, p = first_table; i < table_values; i++)

{
/*
éé&e to do data reduction on available data
x)
recursive_spin_reduction(p, 0);
if(++p >= &table_memory end)
p = &table_memory;
}
}

3
/* reduction on each entry */
static

recursive_spin_reduction(entry, item)
struct table_entry * entry;

int item;

/* .0 %/

if(item < entry->spins)

{
recursive_spin_reduction(entry, item + 1);
VA

3

/* o %

TL/DD/10131-43

41

/%
*/

errors.c Placed in Bank0.

static int error_count = 0;

NOLOCAL
error(code)
int code;

printf("Error number %i - continuing\n", code);
error_count++;

}

NOLOCAL
fatal_error(code)
int code;

static int i;

for(i = 0; i < 15; i++)
{
putchar(0x07);

}
printf("\n\nFATAL ERROR number %i - ABORTING PROCESSING\n\n",
code);
quit();
}

NOLOCAL
quit()
{

printf(“Program terminated. %i recoverable errors\n",
error_count);

TL/DD/10131-44

42

/*
*/
#include “tables.h"

monitor.c Placed in Bankl.

extern struct table_entry live;

NOLOCAL
monitor()

static int predictable;
/*
;§§tem monitoring
*
while(live.spins < 3
'l live.rolls < 5) ;
while(!live.result)
compute_prediction();

validate_calculation();
capture_table();

}
compute_prediction()
int i;
/*
é&ﬁp1ex calculations to give a SWAG
*x/
printf("Prediction: %i\n", 1);
}
validate_calculation()
int i, j, k;
/*

ﬁa&ch latest result to what we would predict

*/

printf("Final prediction: %i, actual: %i, accuracy: %i\n", i, j, k);

if(k <10)

error(l);

TL/DD/10131-45

43

Extended Memory Support for HPC

AN-577

/*
main.c Placed in Shared.
This is the main program for the example.

*/

/*operational mode flags */

int operational = 1,
calibrating = 1,
predicting = 0;

/* controlling coefficient array */
int coefficients[10];

main()
initialize_inputs();
initialize_outputs();
initialize_table_memory();
while(operational)
while(calibrating)
build_tables();

compute_coefficients();
while(predicting)

monitor();

TL/DD/10131-46
Lit. # 100577

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL
SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can
into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life
failure to perform, when properly used in accordance support device or system, or to affect its safety or
with instructions for use provided in the labeling, can effectiveness
be reasonably expected to result in a significant injury
to the user.
National Semiconductor National Semiconductor National Semiconductor National Semiconductor
Corporation Europe Hong Kong Ltd. Japan Ltd.
1111 West Bardin Road Fax: (+49) 0-180-530 85 86 13th Floor, Straight Block, Tel: 81-043-299-2309
Arlington, TX 76017 Email: cnjwge@tevm2.nsc.com Ocean Centre, 5 Canton Rd. Fax: 81-043-299-2408
Tel: 1(800) 272-9959 Deutsch Tel: (+49) 0-180-530 85 85 Tsimshatsui, Kowloon
Fax: 1(800) 737-7018 English Tel: (+49) 0-180-532 78 32 Hong Kong
Frangais Tel: (+49) 0-180-532 93 58 Tel: (852) 2737-1600
Italiano Tel: (+49) 0-180-534 16 80 Fax: (852) 2736-9960

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

