
TL/F/10082

A
S
C

S
I
P
rin

te
r
C

o
n
tro

lle
r
U

s
in

g
E
ith

e
r
th

e
D

P
8
4
9
0

E
A

S
I
o
r
D

P
5
3
8
0

A
S
I
a
n
d

U
s
e
rs

G
u
id

e
A

N
-5

6
3

National Semiconductor
Application Note 563
Andrew M. Davidson
June 1989

A SCSI Printer Controller
Using Either the
DP8490 EASI or
DP5380 ASI and
Users Guide

The DP8490 Enhanced Asynchronous SCSI Interface and

DP5380 Asynchronous SCSI Interface are CMOS devices,

which offer a low cost high performance Small Computer

Systems Interface. These devices are pin compatible, and

software compatible until an enhanced mode bit is set in the

DP8490. This enhanced mode offers many new features

which can yield increases in system performance through

software, in addition to the improvements in speed and

power shown by both devices over existing NMOS devices.

This application note shows how the hardware and software

can be designed for a SCSI Printer Controller (SPC) so that

it can incorporate either the DP5380 or DP8490. Since the

software automatically detects which device is inserted ei-

ther can be used, although the enhanced mode of the

DP8490 offers a better system in terms of throughput and

error tolerance. All of the software discussed is available on

a floppy disk.

1.0 Introduction
The SCSI Printer Controller (Figure 1.1) consists of five

main parts:

1. Microprocessor NSC800TM

2. Printer Interface NSC831 PIO (Parallel Input/Output)

3. SCSI Interface DP8490 or DP5380

4. Memory

CMOS EPROM NMC27C256

CMOS Static RAM 62256

5. DMA Controller 9517 or 8237

The NSC800 is an eight bit CMOS microprocessor which is

the central processing unit of the National Semiconductor

TL/F/10082–1

FIGURE 1.1

TRI-STATEÉ is a registered trademark of National Semiconductor Corporation.

NSC800TM is a trademark of National Semiconductor Corporation.

IBMÉ is a registered trademark of International Business Machines Corp.

ASC-88TM, SCSI Manager IITM, SCSI-BIOSTM and SCSI-PROTM are trademarks of Advanced Storage Concepts.

MicrosoftÉ and MS-DOSÉ are registered trademarks of Microsoft Corporation.

PALÉ is a registerd trademark of and used under license from Monolithic Memories, Inc.

Z80É is a registerd trademark of Zilog Corp.

C1995 National Semiconductor Corporation RRD-B30M105/Printed in U. S. A.

1.0 Introduction (Continued)

NSC800 microcomputer family. It is capable of addressing

64 kbytes of memory and 256 I/O devices using a multi-

plexed address and data bus. The instruction set is fully

compatible with that of the Z80.

The NSC831 is the parallel input/output (PIO) device of the

NSC800 family. This provides 20 I/O bits which can be indi-

vidually programmed to be inputs or outputs. These are con-

figured as two eight bit ports and one four bit port. The PIO

is used as the interface between the microprocessor and

the printer.

The DP5380 and DP8490 comply with the ANS X3.131-

1986 SCSI standard as defined by the ANSI X3T9.2 commit-

tee. They can act as both Initiator and Target supporting all

bus phases. Due to the on-chip high-current open-drain driv-

ers the devices interface directly to the SCSI bus.

The 64 kbyte memory space is split between a 32 kbyte

EPROM, containing the run-time software, and a 32 kbyte

static RAM.

Data transfers between memory and the EASI can be con-

trolled by the DMA controller, which supplies all read and

write strobes for a transfer in either direction. This is a syn-

chronous device which uses the 4 MHz clock output from

the microprocessor.

The microprocessor is normally in control of the internal

busses, giving it the ability to read or write memory or I/O

devices. During a DMA transfer the DMA takes control of

these busses and can pass data between the EASI and

memory. As the microprocessor is the only device with ‘in-

telligence’ it must control these transfers. It commences

and controls operations by setting registers in the DMA and

EASI.

2.0 Hardware
2.1 DEVICES

2.1.1 Introduction

This section is intended to explain the hardware of the SPC

referring to the circuit diagram given in Appendix A. This will

describe the devices used and the signals generated but

not the way in which they are programmed. What will be

discussed is how the devices relate to each other, their rela-

tive timings, and any extra hardware required. A more exact

description of the internal registers of the EASI, DMA and

PIO, and their operation, will be given in the diagnostics

section.

2.1.2 Microprocessor

The NSC800 is an eight bit microprocessor which multiplex-

es the eight bit data bus with the lower half of the address

bus to create a sixteen bit address bus. An octal latch,

MM74HCT373, is required to hold the address on the bus

during a memory read or write, with the ALE (Address Latch

Enable) output from the NSC800 strobing the latch.

Since the bus has devices which use both TTL and CMOS

levels pull-up resistors are required. The IOM output signi-

fies whether the processor is on a memory or an I/O cycle

and is used along with the RD and WR outputs to strobe bus

data.

This processor allows control of the bus to be passed to an

I/O device, using the BRQ (bus request) input and BACK

(bus acknowledge) output. On this board the DMA is the

only device which may request control of the bus.

When the EASI issues a DMA request the DMA signals that

it needs control of the bus by issuing a BRQ. The processor

acknowledges this by issuing BACK, and then drives the

bus and all related control signals to their high impedance

state. The MM74HCT373 must TRI-STATEÉ its outputs; the

output enable is driven by the DMA signal AEN (address

enable), which it asserts when it has control of the bus. At

the end of its operations the DMA releases AEN (enabling

the latch outputs) and negates BRQ. The processor de-as-

serts BACK and retakes control of the bus by enabling its

outputs. To prevent spurious signals being generated when

the bus is not driven the control signals must have pull-up

resistors.

The NSC800 provides five hardware interrupts of which only

RSTA is used. The others are tied inactive. RSTA is driven

by the EASI interrupt output, with an inversion between

them to allow for the difference in active levels. An interrupt

on this pin causes a software reset to a particular address in

memory (more details of interrupt servicing will be given in

the diagnostic software section).

The system clock is generated using an 8 MHz crystal, with

the frequency divided by two for use by the processor and

the DMA. There is also power-on reset circuitry, which re-

sets the processor, and causes a reset output to the other

devices when power is first applied.

2.1.3 DMA Controller

The 9517 and 8237 are compatible direct memory access

devices, controlled by setting internal registers. These regis-

ters are selected using a chip select, with the particular reg-

ister selected by the lower nibble of the address bus, and

data strobed by IOR (I/O read) or IOW (I/O write). These

registers control the type of data transfer, the number of

bytes transferred and the memory address the transfer is

to/from.

The two modes of transfer used are single mode and block

mode. In single mode the DRQ (DMA request) input and the

DACK (DMA acknowledge) output are used to ‘‘handshake’’

every byte of data transferred. In block mode, after an initial

DRQ, DACK must be active until after the last byte has been

transferred. The rate of transfer is controlled by the READY

input.

Another device required in conjunction with the DMA is an

MM74HCT74 ‘D’ type flip-flop. This is used to overcome the

metastability problem introduced by the asynchronous

READY signal driving a synchronous device. The flip-flop

synchronizes the input with the system clock.

The DMA supplies all the necessary control signals to move

data from memory to EASI or vice-versa. When all data has

been transferred the DMA drives EOP (end of process) ac-

tive. EOP can also be used as an input to the DMA, prema-

turely terminating any transfer. It is configured as an open-

drain driver, so requires a pull-up resistor, of an advised

value of 4.7 kX.

As in the processor the DMA has a multiplexed address and

data bus, also requiring an MM74HCT373 to latch the ad-

dress. In this case it is the upper byte of the address bus

which is multiplexed with the data bus. The strobe signal is

similar to ALE but is generated in the DMA and called

ADSTB (address strobe). The TRI-STATE for this latch is

driven by the inverse of AEN, since the device must drive

the bus only when the DMA has control.

2

2.0 Hardware (Continued)

The 9517 and 8237 have four DMA channels, of which only

one is used. The DRQ inputs for the other three channels

are tied inactive. The RESET input causes the control regis-

ters to be cleared and the DRQ inputs to be masked.

2.1.4 EASI

The EASI is controlled by setting internal registers, written

by an IOW and chip select, read by an IOR and chip select.

The particular register selected is determined by the lowest

three bytes of the address bus. The EASI has an eight bit

microprocessor data bus, and on the PLCC part a micro-

processor bus parity pin. However the NSC800 does not

support parity checking so this bit is tied low. The other

microprocessor controlled pin is the RESET. This causes

the EASI to clear all registers and therefore reset all logic.

The DRQ output and DACK input ‘‘handshake’’ single mode

DMA, while the READY output is used to control the speed

of a block mode transfer. EOP is an input which terminates

DMA, and can be used to cause an interrupt. This interrupt

output INT can interrupt the microprocessor if the EASI de-

tects an error, or has completed some task.

SCSI uses an eight bit data bus with a parity bit; which must

support odd parity during all bus transactions except arbitra-

tion. Other SCSI signals are the bus selection control sig-

nals SEL and BSY, phase control signals MSG, C/D and

I/O, data transfer handshakes REQ and ACK and the mes-

sage flag ATN. Further details on the use of these signals

will be given in the software sections of this document. The

SCSI reset RST is similar to a chip reset, but generates an

interrupt.

The EASI interfaces directly to the SCSI bus using high-cur-

rent open-drain drivers. This bus is a 50-way ribbon cable

(maximum length 6.0 meters) on which all SCSI devices are

daisy-chained. The devices at the end of this cable must

terminate the SCSI signals i.e., a 220X resistor to power,

and a 330X to ground. This power can be VCC or

TERMPWR (terminator power).

TERMPWR is VCC fed through a Schottky barrier diode.

This can be fed to pin 26 of the connector allowing the SCSI

device at one end of the bus to be powered down without

affecting the bus. Since the terminators are receiving power

the bus can operate effectively. To make this optional

TERMPWR is fed to the connector through a jumper link.

The Schottky diode must be included to prevent backflow of

power into the printer controller board.

Other manufacturers CMOS devices can not be used in

a configuration like this, as they pull the bus low when

not powered. The DP5380 and DP8490 have a special

input protection to overcome this problem.

All other pins on the connector should be tied to ground,

except pin 25 which must be left floating.

2.1.5 PIO

The printer controller uses a NSC831 PIO to interface be-

tween the processor and the printer. The NSC831 has 20

individually programmable I/O bits which are arranged as

three ports; A, B and C. As it is part of the NSC800 family

the NSC831 has a compatible multiplexed address and data

bus with an ALE input, to strobe the address into an internal

latch. This eight bit address can then be used to access an

internal register, in conjunction with an IOR or IOW and chip

select. The device has two chip selects, one of which is tied

active (low), with the other coming from the address decode

PALÉ. The RESET input causes the three ports to become

all inputs.

In this application the three ports are set up so that each

port is all input or all output. Port A is an output, which drives

the printer data bus through an MM74HCT241 octal buffer.

Port B is an input, with the lower nibble coming from the

printer outputs, driven by half an MM74HCT240 octal invert-

ing buffer. The pull-down resistors on the ERROR and PE

(paper error) inputs give a proper error signal if the printer is

unconnected i.e., the same as when the printer is off-line.

The upper three bytes of Port B are connected to switches,

which are used to set the board’s SCSI I.D. This will be

further explained in the SCSI diagnostics section. Only three

bytes of Port C are used, all as outputs, driven by the same

device used by Port B. Bits 0 and 2 are printer outputs, while

bit 3 drives a LED. This displays the ‘health’ of the board

i.e., when the board is operational the LED is on, when non-

operational it is off and when there is a known hardware

error a message is ‘flashed’.

The printer connector is a standard IBMÉ 25 way ‘D’ range,

with all unused pins grounded, except 13.

2.2 PAL EQUATIONS

2.2.1 Introduction

PAL’s are used in this board to generate chip selects, over-

come potential timing problems and to invert signals for de-

vices with different active levels. The PAL’s used are Na-

tional Semiconductor’s PAL16L8. The equations are written

in a form compatible with PLAN (Programmable Logic Anal-

ysis by National) Ver. 2.00.

2.2.2 Decode PAL

The decode PAL supplies the five main devices with their

chip selects.

Memory is split into two 32k byte blocks, each of which

represents one device. These devices are an EPROM, at

the base of memory, and RAM in the upper half. Thus the

memory map and chip select equations are as follows:

FFFFh

RAM

8000h

7FFFh

EPROM

0000h

/EPROMZ e /A15*BACKZ*/IOMZ

/RAMZ e A15*BACKZ*/IOMZ a A15 * AEN

EPROMZ (the Z at the end of the name shows it is active

low) can only be selected by the processor, while RAMZ is

available to the DMA.

3

2.0 Hardware (Continued)

The DMA, PIO and EASI fit into the I/O map shown, which

results in the equations following. These equations show

that the devices can only be selected by the microprocessor

on an I/O cycle.

FFh

A0h

PIO

80h

40h

DMA

20h

EASI

00h

/EASIZ e /A7 * /A6 * /A5 * IOMZ * BACKZ

/DMAZ e /A7 * /A6 * A5 * IOMZ * BACKZ

/PIOZ e A7 * /A6 * /A5 * IOMZ * BACKZ

The other three outputs are used as inverters:

/BRQZ e HRQ

/AENOZ e AEN

/HLDA e BACKZ

The two spare inputs are tied low.

2.2.3 Control PAL

The NSC800 uses IOM to distinguish between memory and

I/O cycles. This allows IOR and IOW, for processor cycles

to be generated.

/IORZ e /RDZ * IOMZ

IORZ.TRST e BACKZ

/IOWZ e /WRZ * IOMZ

IOWZ.TRST e BACKZ

The second line of these equations shows that the output is

TRI-STATE when the processor relinquishes control of the

bus.

Before examining the next five equations it is important to

fully understand the relative signal sequencing involved in a

DMA transfer. When the transfer is initiated the EASI issues

a DRQ, causing the DMA to respond with DACK, and take

control of the bus by asserting BRQ. The processor asserts

BACK and allows the bus and relevant control signals to go

TRI-STATE. The DMA then asserts AEN, to show it is in

control of the bus, causing the microprocessor address

latch to TRI-STATE its outputs and the DMA latch to enable

its outputs.

For single mode each byte transferred must have a DRQ

and a DACK. For block mode DRQ returns inactive after the

DMA responds with a DACK, but the DACK must remain

active until the transfer is complete. The READY line con-

trols the rate of block mode DMA transfer i.e., when READY

is low the byte transfer is ‘frozen’, until READY returns high

(Figures 2.1a and 2.1b).

The READY signal is asynchronous but the DMA is synchro-

nous, testing the READY signal on the negative edge of

each clock. For this reason the READY input must be syn-

chronized, using a flip-flop which updates its output on the

positive edge of the clock.

When READY is detected as being inactive on the negative

edge of the clock an extra cycle is inserted to the read and

write.

While data is being transferred a register keeps track of how

many bytes are left. When this reaches zero an EOP signal

is generated, concurrent with the last read and write, caus-

ing the EASI to set an EOP flag.

TL/F/10082–2

FIGURE 2.1a

TL/F/10082–3

FIGURE 2.1b

*Note:

Of these read and write signals, one will refer to memory the other I/O, depending on the direction of data transfer.

4

2.0 Hardware (Continued)

The tranfer is now complete so BRQ, AEN and DACK are all

driven inactive. AEN going inactive causes the address

latches to swop back over; the microprocessor latch out-

puts are driven, the DMA latch outputs are TRI-STATE.

When the microprocessor detects that BRQ is inactive it

deasserts BACK and retakes control of the bus. The micro-

processor then clecks flags in the EASI to determine the

success, or otherwise, of the transfer.

The other form of DMA available is pseudo-DMA; that is the

EASI ‘thinks’ it is a proper DMA transfer but the processor is

still in control of the bus. To do this the microprocessor

must set the DMA to mask off any DRQ, initialize the EASI

for single mode DMA and monitor the EASI flags for DRQ

going active. At this point the processor must generate an

IOR or an IOW and a DACK, to properly simulate DMA. This

can be done by causing an I/O read or write at a certain

address, to generate a DACK, and if wanted an EOP. The

particular address does not matter since during DMA the

EASI ignores the address bus.

The following equations generate pseudo-DMA signals,

while allowing the true DMA signals to operate normally:

/DACKOZ e /IORZ * BACKZ * /A7 * A6
a /IOWZ * BACKZ * /A7 * A6
a /DACKIZ

/EOP2 e /IORZ * BACKZ * /A7 * A6 * /A5
a/IOWZ * BACKZ * /A7 * A6 * /A5
a/EOP1 * EREADY

DACKIZ is the DACK from the DMA, which the output nor-

mally follows. The rest of the equation generates the pseu-

do-DMA DACK.

EOP2 is the input to the EASI, EOP1 is the output from the

DMA. The first two lines of this equation generate an EOP

for the pseudo-DMA cycle, on the lower half of the address

space that also generates the pseudo DACK. This means

the final I/O map now is as follows:

FFh

A0h

PIO

80h

pseudo-DMA

60h

pseudo-DMA & EOP

40h

DMA

20h

EASI

00h

The third part of the EOP1 equation is to overcome a prob-

lem that occurs during a block mode DMA transfer. On the

last byte the READY signal from the EASI (this will be called

EREADY to distinguish it from the READY into the DMA,

DREADY) may be driven low to freeze the transfer. Howev-

er DACK, EOP and IOR or IOW will all be active causing a

valid EOP condition. This is not a problem until we consider

the next equation.

/DREADY e /EREADY * /INT * /DACKIZ

This equation causes the DMA READY input to go high if

any of EREADY, SCSI interrupt INT or DACKIZ go high. This

overcomes a potential bus lockup, caused by an error oc-

curring during a block mode DMA transfer. On a phase or

parity error the EASI will stop the transfer and generate an

interrupt. If DREADY is left inactive the DMA will keep con-

trol of the microprocessor bus. This equation holds

DREADY high on interrupt, allowing the DMA to pass con-

trol of the bus back to the microprocessor.

Although this equation prevents an error it also introduces a

problem in the EOP2 equation. As explained previously, dur-

ing the last byte of a block mode transfer although READY

is low a valid EOP condition may exist, which will cause an

interrupt. This interrupt will then cause DREADY to be driv-

en high, allowing the DMA to finish the transfer, but lose the

last byte since the EASI is not ready. To overcome this the

EOP2 equation gates EOP1 with EREADY, so the EASI

does not see a valid EOP condition until it is able to transfer

the last byte. This problem does not occur in MODE E

since it generates a true end of DMA interrupt.

Another problem is introduced by the DREADY equation. If

an error occurs during a DMA transfer the EASI will gener-

ate an interrupt and DREADY will be forced high. This al-

lows the DMA to ‘run free’, writing garbage into MEMORY,

and wasting SCSI bus time. To prevent this an external EOP

must be applied to the DMA on error. The next equation

does this:

/EOP1 e /DACKIZ * /EREADY * INT

EOP1.TRST e /DACKIZ * /EREADY * INT

EOP1 is an I/O pin which normally acts as input from the

DMA, so the output is TRI-STATE unless DACKIZ and

EREADY are low, with INT active. When this error condition

occurs an EOP is output to the DMA, terminating the data

transfer. A prerequisite of this equation working properly is

the existence of the DREADY equation, since an externally

applied EOP will have no effect on the DMA if READY is

held low.

The next equation is also required to prevent a fault occur-

ring during a block mode DMA transfer:

/EASIWRZ e /IOWZ * BACKZ
a/IOWZ * EREADY * /BACKZ

When the processor is in control of the bus a straightfor-

ward IOW can write to the EASI, but if the DMA is in control

EREADY must be high to allow the write. The inclusion of

EREADY is required because during DMA the EASI is a

flowthrough latch; an IOW passes the data from the proces-

sor bus onto the SCSI bus. Therefore if the DMA reaches its

next byte before the data on the SCSI bus has been trans-

ferred, the DMA will overwrite the data. To prevent this

EASIWR can only be allowed when EREADY is high.

The final PAL output is used to invert the SCSI interrupt

signal, to make this active high output compatible with the

processor’s active low input.

/SCSIINTZ e INT

3.0 Diagnostic Software
3.1 INTRODUCTION

The diagnostic software resides at the base of RAM, with

the purpose of checking and initializing the printer controller

board after power up and every hard reset. It must be at

location zero, since after any hardware reset the program

counter is cleared. The interrupt service routine is included

here, since it must exist at an exact location in memory.

5

3.0 Diagnostic Software (Continued)

The software uses the NSC800 instruction set (fully Z80É
compatible) which makes the required low level board oper-

ations faster, and allows the exact positioning of code in

memory. The assembler and linking loader are from Micro-

tec Research.

3.2 DEVICE CHECKING AND INITIALIZATION

This section will refer to the diagnostic software PRIN-

TER.SRC and the files PRNSYM.SRC and EASISYM.SRC

which contain the constants used. A full listing of all pro-

grams described in this document are available on floppy

disk.

3.2.1 Memory Check and Interrupt Servicing

An ‘org’ statement can be used to position this program at

the base of ROM, address 0. After a jump to the ROM

check, the next byte stores a label defining which version of

the software is installed. On an EPROM the version number

can be read from address 0002h. The upper and lower nib-

bles should be considered as two numbers i.e., ‘10’ defines

version 1.0.

The interrupts are disabled, since the service routines are

not initialized, and the EPROM is checked; simply consisting

of reading the same address twice and ensuring the same

value returns both times. If this test fails the system halts

since a drastic error must have occurred. If the EPROM

passes the test the program jumps to the RAM check.

On interrupt the NSC800 stops before its next instruction,

pushes the program counter onto the stack and loads it with

a new address, depending on the highest priority interrupt

channel active. Interrupt A, the only channel used, causes a

jump to location 003Ch. The interrupt service routine at this

location pushes all of the processor registers onto the

stack, and tests for a SCSI reset. SCSI reset must be

checked, as this is a special condition, causing the board to

be reset by a general restart routine (this routine is in EA-

SIO.SRC and explained in section 3.5).

If the interrupt is not a SCSI reset the software makes a call

to the bottom of RAM, where a jump command should be

followed by a public variable RESETA. This variable can be

loaded with the starting address of the routine to service the

interrupt. On return from this routine the processor registers

are popped back off the stack, and program control returns

from the interrupt. Since RESETA is public any external

software may use it, and therefore control which routine

services an interrupt. RAM must be verified before this jump

table is set up.

The RAM test simply checks each BIT can contain a zero

and a one, then clears every byte. Once RAM has been

verified the stack pointer may be initialized, allowing call

statements to be included. It should be remembered that

although the interrupt routine is between the ROM and RAM

tests, when the program runs it will jump straight from the

ROM test to the RAM test. Since the interrupt jump table is

in volatile RAM the code for a jump instruction must be writ-

ten into RAM after every reset.

3.2.2 PIO Initialization

The file PRNSYM.SRC contains the port addresses for all of

the I/O devices. The upper nibble contains the location the

device takes within the I/O map, the lower nibble selects

the register within the device to be accessed.

The PIO has five types of registers which control data trans-

fers through the device:

1. Data RegisterÐEach port has an eight bit data register

containing the data passed between the PIO and the

processor. These are either read or write registers, de-

pending on whether the port bits are inputs or outputs.

2. Data Direction RegistersÐEach port also has a data

direction register which controls whether each of the 20

bits is an input or an output (an input is defined by a zero,

an output by a one).

3. Mode RegisterÐThere is one three bit mode register

which selects which of the four modes the device is in.

This board will always require the PIO to be in Mode 0

which is the basic I/O mode. The alternatives use Port C

for handshaking.

4. Bit Clear RegisterÐEach port has an eight bit, bit clear

register which clears any output bit whose corresponding

bit in this register is high.

5. Bit Set RegisterÐThese are similar to the above, but

allow the output bits to be set.

The PIO is set for Mode 0, with Ports A and C outputs and

Port B an input. Port A drives the printer data bus, while

Ports B and C read and write the printer control signals. The

four printer outputs, to the Port B input, are ACK, BUSY, PE

and ERROR. ERROR goes low when there is no paper, the

printer is off-line or an error occurs; PE goes high when the

printer is out of paper; BUSY goes high to show the printer

can accept data; ACK pulses low to acknowledge data after

a byte has been transferred. Since BUSY and ACK are both

handshake signals the user must decide which to use. This

software will use BUSY.

The top three bytes of Port B are used to read in the SCSIID

from a block of switches. The SCSIID is the boards identifier

on the SCSI bus, used in selection and arbitration, consist-

ing of a single active bit. This is read in as a three bit num-

ber, converted to the correct bit pattern and stored in a

public variable called SCSIID.

Port C is an output, driving the printer signals INIT and

STROBE. A low pulse on INIT of 50 ms causes the printer to

be initialized; a 500 ns low pulse on STROBE causes the

printer to read the data on the bus. The highest bit of Port C

drives a LED, which is on during board operation, and can

display an error message by occulting a fixed code. Errors

are displayed by the routineERROR, a public function which

displays the error number as a four bit code. It does this by

occulting the LED for 1 second to show a 1, (/2 a second for

a 0.

Since none of the PIO registers are true read/write the de-

vice cannot be tested, only initialized.

3.2.3 DMA Test and Initialization

The DMA consists of address, word-count and control regis-

ters for four channels, of which only one is used. There

follows a description of the registers used, with the address-

es shown in PRNSYM.SRC.

1. Word-Count RegistersÐThere are two word-count reg-

isters; a sixteen bit write only base word-count register

and a sixteen bit read only current word-count register. As

with all sixteen bit registers in this device the two bytes of

data are accessed by two successive selections of the

same address. An internal flip-flop determines which byte

is read or written, with the lower byte selected first after a

reset. To transfer the correct number of bytes the word-

count register must be written with the number of bytes to

be transferred minus one.

6

3.0 Diagnostic Software (Continued)

2. Address RegistersÐThe address registers are also six-

teen bit, and called base and current. The base address

register is written with the address the transfer must start

at, while the current address register contains the next

address to be written or read. The DMA is tested by writ-
ing a value to the base address and reading it back from
the current address .

3. Control RegistersÐThere are three types of control reg-

ister which will be discussed only in the way they are used

by this software. The master clear register (DMAMCL) is

the software equivalent of a hardware reset; all registers

are cleared and DRQ is masked off. Masking of DRQ is

controlled by the parallel mask register (DMAMSK), in

this case always used to allow DRQ on Channel 0 and

mask off the others. The final type of register used is the

mode register (DMAMOD) which controls whether a

transfer is block or single mode, memory read or memory

write. Each of the four channels has a six bit mode regis-

ter, all at the same address, with the bottom two bits of

the data bus determining which is selected.

The DMA test program initializes the device for a one byte,

block mode, memory write, to an address TSTBYT. The

DMA is initialized in this particular manner for use in the

EASI loopback DMA test routine.

An error in DMA test will cause error signal 0.

3.3 EASI TEST AND INITIALIZATION

3.3.1 Introduction

This document will show how the registers within the

DP5380 and DP8490 are used in an application. For a full

register description refer to the DP5380 and DP8490 data-

sheets. Register names and their locations are given in

PRNSYM.SRC.

3.3.2 DP8490 and DP5380 Test

The DP5380 and DP8490 are completely pin and hardware

compatible, and also software compatible until the en-

hanced mode bit is set in the DP8490. The DP8490 powers

up in normal mode (MODE N which is software compatible

with the 5380) and is in MODE N after any chip reset. The

initial test is therefore the same for both devices, writing to

the Mode Register 2 (EASIMR2) and reading back the data.

The EASIMR2 is selected since it has the most read/write

bits that do not directly affect the bus.

An error in EASI test will cause error signal 1.

For the DP5380 testing is now complete, but the DP8490

enhanced mode offers a loopback test facility, where the

SCSI drivers are disabled and the SCSI I/O’s looped back

inside the EASI. Using this feature the user can fully

check the device, and by doing a DMA transfer fully

check the board.

At this stage it is therefore neccessary to determine which

device is inserted. In the DP5380 bit 6 of the Initiator Com-

mand Register (EASIICR) selects the ‘test mode’, which dis-

ables all output drivers on the device, making it invisible to

the system. Although the device can still be written to no

data can be read back, making applications very limited. In

the DP8490 this bit selects the enhanced mode (MODE E)

of the device.

In MODE E addresses 0–6 access the same registers as in

MODE N, but address 7 is different. Instead of accessing

the Reset Parity/Interrupt (EASIRPI) and Start DMA Initiator

receive (EASISDI) registers, address 7 directly accesses the

Enhanced Mode Register (EASIEMR) and indirectly access-

es the Interrupt Mask Register (EASIIMR) and Interrupt

Status Register (EASIISR). The only other difference to reg-

isters occurs in the Target Command Register (EASITCR)

where one of the previously unused bits becomes a flag

(explained in section 3.3.4).

To test which device is inserted EASI test sets the en-

hanced/test mode bit, writes data to address 7 and reads

back from the same address. If the device is a DP5380 it will

be in ‘test mode’ and the data read will be 0FFh due to the

pull-up resistors on the data bus. If it is a DP8490 the data

read back will be the data written, providing the only bits set

are read/write. For a DP5380 the program jumps to initiali-

zation for selection; if it is a DP8490 loopback testing fol-

lows.

3.3.3 DP5380 Initialization for Selection

The DP5380 initialization involves programming the device

to respond to a selection. First, the public variable DP8490

(which other programs should treat as a constant) is set

FALSE to indicate that a DP8490 is not inserted. For the

DP5380 to be selected it must have the SCSIID of the de-

vice in its Select Enable Register (EASISER) and parity

must be enabled. The processor must enable its interrupts

and set up the jump table; intA is an external routine which

sets the processor’s interrupt mask to only allow interrupts

on A, and enables the interrupts (see EASIO.SRC); mainÐ
is an external program which responds to a SCSI selection

(further explained in the Run-time software section).

If BSY is inactive for a bus settle delay (400 ns), SEL is true

and the bit on the data bus corresponding to the SCSIID is

active, a SCSI selection interrupt is generated. This causes

a processor interrupt, taking the program from the continu-

ous ‘jr Now’ instruction to the interrupt service routine, and

through the jump table tomainÐ. WhenmainÐ has finished

servicing the interrupt it will return to the interrupt servicing

routine and then return from the interrupt. Thus the board’s

‘idle’ state is to continually execute the ‘jr Now’ instruction.

3.3.4 DP8490 Loopback Test

The loopback test mode of the DP8490 allows all signals to

be fully tested, including a DMA transfer, without affecting

the SCSI bus. To allow this DMA transfer loopback allows

the user to drive both initiator and target signals simulta-

neously.

After setting the DP8490 flag true all initiator signals, and

then target signals, are asserted and checked. This includes

a check on the data bus by writing a test value to it and

reading it back. The data bus test value has an odd number

of bits, and since the specified SCSI parity is ODD, the parity

bit must be inactive. One of the new features offered in

MODE E is programmable SCSI parity, which is tested by

ensuring the parity bit becomes active when EVEN parity is

enabled, and inactive when a test value with an even num-

ber of active bits is written. Parity is then returned ODD, and

the parity bit should become active.

An error in Loopback testing causes error signal 2.

The next test in loopback mode is a DMA target receive

transfer to a location in memory, TSTBYT. This not only

tests the EASI, but also the interrupt servicing, the DMA and

memory. Although the device is in loopback the software

must carry out the transfer as it would normally i.e., the bus

phase must be correct, BSY must be active and the SCSI

bus must be asserted. The EASIMR2 must be properly set

7

3.0 Diagnostic Software (Continued)

up for block mode DMA, with interrupt on EOP or parity

error. Since this test is interrupt driven the interrupt jump

table must be loaded with the address of the routine which

will service the DMA loopback test, and the interrupts must

be enabled. The DMA has already been initialized for this.

Before enabling interrupts the SCSI interrupts should be re-

set, which in MODE N would involve reading address 7.

Since the EASIEMR is now at this address the resetting of

interrupts, and the start of DMA initiator receive are initiated

by writing to function bits of the EASIEMR.

When the Start DMA Target receive (EASISDT) register is

written the EASI will issue a REQ to show it is ready to

receive data on the SCSI bus. At this point the device at the

other end of the bus would normally assert ACK to show it

has data available. In this case there is no other device so

the user must wait for REQ to go active and then assert

ACK. Thus both initiator and target signals must be asserted

simultaneously. The user waits for REQ to go inactive, and

deasserts ACK to show the bus transfer is complete.

The program then goes into a continuous loop awaiting a

SCSI interrupt. This interrupt will occur because the EASI

will have issued a DRQ, when ACK went active, and the

DMA wil have transferred the last test byte written to the

EASI to TSTBYT, finishing with an EOP. On interrupt the

program will jump to address 003Ch, where all the proces-

sor registers are pushed onto the stack, a call is made to

the base of RAM, and from there it will jump to the subrou-

tine DIAGA.

One of the problems with DMA in a DP5380 is that end of

DMA is flagged when DACK, EOP and IOR or IOW are

simultaneously active; although the data may not yet have

been transferred on the SCSI bus. To overcome this the

software must examine the SCSI handshake signals REQ

and ACK, both of which must be inactive on three succes-

sive samples for a true end of DMA. This is more fully ex-

plained in the DP5380 and DP8490 datasheets. MODE E of

the DP8490 detects true end of DMA, after ACK goes

inactive, before generating an interrupt.

DIAGA responds to the interrupt after the loopback DMA by

checking all the correct flags have been set. The DP5380

only uses four bits of EASITCR so MODE E uses the free bit

7 as a flag, to show true end of DMA. This is the first flag

checked. Address 7 not only directly addresses the

EASIEMR it also indirectly addresses the EASIIMR and

EASIISR. After writing the correct code to the function bits

of the EASIEMR the next access of address 7 will be to the

EASIISR, if it is a read, or the EASIIMR, if it is a write. The

advantage of the EASIISR over the DP5380 registers is

that all interrupt information is available in one register,

and every interrupt is flagged. To check DMA the user

need only read the EASIISR and ensure that the only flag

active is end of DMA. The user should note that SCSI reset

causes the device to revert to MODE N, from which the

EASIISR can not be read, so is not flagged.

The final EASI flag test is the ‘conventional’ end of DMA

flag in the Bus and Status Register (EASIBSR). This flag,

the interrupt flag and the flag to show no phase mismatch

has occurred must be the only bits active. The final loop-

back DMA test is to ensure that memory location TSTBYT

contains the correct data.

An error in Loopback DMA test causes error signal 3.

3.3.5 DP8490 Initialization for Selection

The DP8490 initialization is very similar to that of the 5380,

even calling the same routine, mainÐ , to respond to selec-

tion. However, this device stays in MODE E and uses these

enhancements to only allow interrupts on selection and par-

ity by setting the EASIIMR. Selection and parity are the only

valid interrupts at this point.

At the end of the DIAGA routine program control returns to

the ‘jr Here’ instruction, which it will continually enact until a

parity or selection interrupt causes a jump to mainÐ.

3.4 ERROR HANDLING

Throughout all software for this board the error handling is

the same for errors considered non-recoverable, which in-

cludes all errors in diagnostics. On error the board continu-

ally displays an error number, as a four bit binary code, us-

ing the LED. The subroutine ERROR carries out this func-

tion.

On error register ‘I’ should be loaded with the error number

and routine ERROR called. This routine then occults the

LED for (/2 second to display a zero, 1 second to display a

one, with the LED on for (/2 second between flashes. The

four bits, most significant bit first, are repeatedly displayed

between 2 second intervals, during which time the LED is

on. The timing delays are generated using a routineDELAY,

which gives a number of (/4 second delays, the number of

delays being determined by the value in the ‘I’ register.

The following list shows the possible errors in diagnostics.

The run-time software section contains a similar listing of its

error codes.

Error 0

The DMA can not be accessed.

Error 1

The EASI can not be accessed.

All other diagnostic errors concern a DP8490

Error 2

An error has occurred in the assertion of SCSI signals in

loopback test mode.

Error 3

An error has occurred during the loopback DMA transfer.

3.5 EASIO.SRC

This file contains public assembly language routines, which

can be called by either the diagnostics or run-time software,

to implement low level commands. As these routines may

need to be called by routines written in ‘C’ any variables

passed to the routines are passed in the ‘hl’ register pair,

then in ‘de’, then ‘bc’ and then on the stack. ERROR and

DELAY both use the ‘I’ register to pass a variable. Data

passed back to the calling routine is returned in the accumu-

lator.

Functions ‘read’ and ‘write’ implement general purpose I/O

register accesses, while ‘dmaread’ and ‘dmawrite’ handle

the special case of the 16-bit DMA registers. These require

two accesses of the same address. ‘intA’ initializes the

processor interrupt mask, with a ‘pseudo’ I/O write, which

selects a register internal to the processor, setting the mask

to only allow interrupts on RSTA. This function also enables

the interrupts, which can be done by ‘eni’, with ‘dsi’ dis-

abling interrupts.

‘IDtest’ is used by the run-time software, during selection, to

read the number of bits active on the bus. This routine

checks the number of high bits in the byte passed in the ‘I’

register, returning the value in the accumulator.

8

3.0 Diagnostic Software (Continued)

Function ‘restrt’ is a general purpose reset routine, which

can be called on an error condition. This causes every de-

vice on the board to be reset, and the diagnostics to be re-

run, thus clearing all memory and reinitializing the stack.

4.0 Run-Time Software
4.1 INTRODUCTION

Following the diagnostic software must be a program which

will control all SCSI bus transfers, beginning with selection.

This program is written in ‘C’, using a PARAGON ‘C’ cross

compiler for an NSC800. The relevant files for this section

are SCSI.C, COMMAND.LIB, PROCESS.LIB, DMA.LIB,

PRINT.LIB, ARBITRAT.LIB, SYM.H, CONST.H and COM-

MANDS.H, all of which are on the supplied floppy disk.

SCSI.C contains the main program, called ‘main’ by ‘C’ and

‘mainÐ’ by assembler. The ‘.LIB’ files contain the functions

called by main and the ‘.H’ files contain the constant values

used by all of these files.

4.2 MANDATORY PHASES

This section outlines all the bus phases and transfers which

a target must support. It would be perfectly legal for a target

to respond to a selection, fetch a command block from the

initiator, and then returns status and message bytes before

releasing the bus. Although no process would be actuated

this would be a legal sucession of events.

4.2.1 Selection Response

main() is the program jumped to when an interrupt is gener-

ated as the program circles the continuous loop at the end

of diagnostics. This routine should only be entered after a

selection interrupt, if any other interrupt is active it is consid-

ered an error. The function select() checks an interrupt to

ensure it is valid.

The type of device installed is checked by reading the

‘DP8490’ flag, and this determines how the interrupt is veri-

fied. In a DP5380 a selection interrupt is determined by the

absence of any other interrupt, with SEL active. The user

must check the EASIBSR to ensure that no error flags are

active, only the INT and PHSM (phase match) bits.

Any other flag will cause error number 4 to be displayed.

After reading the EASIBSR and finding no interrupt flags the

user knows the interrupt should be a selection. The only

other unflagged interrupt is a reset, which would have been

handled by the low level interrupt service routine. Therefore

the EASICSB register must also be read, and if SEL is inac-

tive an error condition exists.

This causes error number 5 to be displayed.

In MODE E the user need only read the EASIISR to de-

termine which interrupt is active, including selection. All

interrupts, other than parity and selection, should be

masked off, so any error concerns only these two flags.

A SCSI parity error is displayed as error number 8, if the

selection flag is not active error number 9 is displayed.

The common tests for MODES E and N both concern the

EASICSD; error 6 shows that the correct SCSIID bit was not

active on the bus; error 7 shows there was more than two

bits active on the bus. During selection an initiator is only

allowed to assert two bits on the bus, its own ID and the

target ID.

The target must assert BSY to show it has recognized the

selection, then when the initiator deasserts SEL the selec-

tion phase is complete.

4.2.2 Command Phase

A selection phase is followed by a command phase, where

the target reads a command block from the initiator. This

command block specifies the actions the initiator requires

the target to execute, plus the length of any data transfers

requested. This board only allows six byte command blocks,

which are transferred into the target by function fetchÐ
cmd() .

The command block is transferred using programmed I/O;

that is each byte is individually handshaken under processor

control. The bus phase must be Command Out (out and in

always refer to the initiator, so Command Out is a command

block sent by the initiator), bus phase being set in the

EASITCR. To transfer a byte (seeFigure 4.1) the user must

assert REQ, then wait for ACK to go active to show data is

available. On ACK the target can read the data on the bus,

then deassert REQ to show it has received the data. When

the initiator deasserts ACK the byte transfer is complete.

4.2.3 Status Phase

The target must send a status byte to the initiator during the

status phase, at the termination of each command. A list of

status codes is given in COMMANDS.H. status() is the

function which enters a Status In phase, and transfers the

code.

The EASITCR must be written with the Status In phase and

the EASIODR with the status code. This code should be

asserted onto the bus, remembering to keep BSY asserted,

and if neccessary the MODE E bit. REQ is then asserted to

show data is available. The initiator should assert ACK when

it has read the data, allowing the target to deassert REQ

and take the data off the bus. The transfer is complete when

the initiator deasserts ACK (See Figure 4.2).

Data Out

TL/F/10082–4

FIGURE 4.1

Data In

TL/F/10082–5

FIGURE 4.2

9

4.0 Run-Time Software (Continued)

4.2.4 Message Phases

A selection must be terminated by the target entering the

Message In phase, and sending a relevant message code

(as listed in COMMANDS.H). The target follows the Status

phase with the Message In phase, usually to send the COM-

MAND COMPLETE message. This indicates valid status ex-

ists, so the target can release BSY to free the bus.messin()
enters the Message In phase and sends the message using

programmed I/O, as in status() .

The only message which must be supported is COMMAND

COMPLETE. If a device on the bus supports other mes-

sages it indicates this by responding to or asserting ATN. An

initiator asserts ATN if it has a message for the target. It is

common for an initiator to assert ATN during selection and,

if the target responds by entering a Message Out phase, it

sends the IDENTIFY message. This establishes whether

the target can respond to a greater set of messages, and

whether the initiator supports disconnection. It shows this

by setting bit 6 of the message. In a disk controller IDENTI-

FY would also establish the path by including a Logical Unit

Number (LUN), but the printer controller uses all LUN’s at

this SCSIID.

getmes() enters a Message Out phase and fetches a mes-

sage using programmed I/O. Although this software only

supports single byte messages it must be prepared to ac-

cept messages from the initiator of up to the maximum

length, 256 bytes. If an initiator wishes to send further bytes

after the first it must keep ATN asserted, only deasserting

after the final byte has been transferred. getmes() will

handshake up to 256 bytes, after which if ATN is asserted it

will be considered an error. Only the first byte is used in

determining the message sent.

The use of messages during disconnection, arbitration, re-

selection and in error handling will be discussed in those

sections of this document.

4.2.5 Command Termination

After sending status and message codes to the initiator, the

target should then release BSY to free the SCSI bus. How-

ever, before allowing a bus free phase the target must ini-

tialize itself for the next selection, as in function reset() .

The interrupt jump table is loaded with main() and the

EASISER with the SCSIID. For a MODE E device the inter-

rupt mask is set. For both types of device the interrupts

must be reset, and BSY deasserted. Interrupts are disabled

at the start of this function, so must be enabled after calling

reset() .

4.3 COMMAND PROCESSING

After the command block has been fetched the command

has to be determined and executed. The printer command

set is shown in COMMANDS.H.

processÐcmd() reads the first byte of the command block

which contains the operation code. This determines what

actions are taken. If a command has been sent which this

software does not recognize, a status of CHECK CONDI-

TION is returned, with sense set to ILLEGAL REQUEST.

4.3.1 Test Unit Ready

TEST UNIT READY will be sent by an initiator before a print

to ensure the printer is on, on-line, has paper and is not in

an error condition. On this command the function ckÐprint-
er() is called to read the printer signals through Port B of

the PIO and check for errors.

If the error line is not high the printer is operational, so the

status is GOOD, and the sense is set to NO SENSE (no

error). If there is an error the paper error line must be

checked. If this is low (active low input) the printer is out of

paper and status of CHECK CONDITION is returned, with

sense set to MEDIUM ERROR. If it is not a paper error the

printer is assumed to be off or off-line, so status is CHECK

CONDITION with sense UNIT ATTENTION.

4.3.2 Request Sense

An initiator will send a REQUEST SENSE command after

the target has returned a status of CHECK CONDITION.

The sense data is sent to the initiator in an effort to under-

stand an error condition, and if possible recover from it. Byte

4 of this command block contains the length of an extended

sense message, which must not be greater than 4, or sense

is set to ILLEGAL REQUEST and CHECK CONDITION

status returned. This software only supports four bytes of

sense data.

Sense data is sent to the initiator using single mode DMA.

The DMA is initialized by sendÐsense() ; it is reset by a

master clear, the mode set, the DMA mask written and the

address and word-count loaded. The function singleÐ
dmaÐin() (explained in section 4.4.1) enters the correct

phase (Data In) and transfers the data.

4.3.3 Reserve Unit

In a multi-initiator system a printer controller must be re-

served before a print commences, or the data from two dif-

ferent initiators may be mixed. This command stores the

initiator’s ID in a variable called ‘reserved’, and on subse-

quent selections only this initiator may execute commands.

Any initiator wishing to reserve the unit must put its own ID

on the bus during selection, along with the target’s ID, so

this software knows which initiator is reserving the unit. If

the initiator’s ID is not on the bus it can not reserve the unit,

and since this is a prerequisite of printing, it cannot use the

printer.

If an initiator attempts to reserve this unit without making its

ID available sense is set to ILLEGAL REQUEST and status

of CHECK CONDITION returned. If another device attempts

to reserve the board when it is already reserved status re-

turned is RESERVATION CONFLICT.

4.3.4 Release Unit

This is the reciprocal command to the previous, freeing the

printer for other initiators after a print has been completed. If

an initiator other than the reserver attempts this command a

status of RESERVATION CONFLICT is returned; if this is

attempted when there is no reservation current the returned

status is CHECK CONDITION with sense set to ILLEGAL

REQUEST.

10

4.0 Run-Time Software (Continued)

4.3.5 Print

Since transferring data to a printer is a very slow process,

typical Epson Fx range 80 cps–160 cps, the print command

transfers the data to a buffer, leaving it to be printed later.

Bytes 2, 3 and 4 of the command block contain the data

length, byte 2 the most significant. The use of three bytes to

define the size means that in theory block transfers of up to

16 MB are allowed. This software could support blocks of

up to 64 kB, bytes 3 and 4 are read, but blocks are limited to

a size BUFFLIM, which will be determined in section 4.4.3.

Possible errors in a print occur when the unit is not re-

served, the data length is set to zero, or the block size is too

large. The block size is too large if byte 2 of the command

block is active or if the data length is greater than BUFFLIM.

In response to an error the transfer is cancelled and status

of CHECK CONDITION is returned with sense set to ILLE-

GAL REQUEST.

The data is not transferred unless sense is set to NO

SENSE. If an error has occurred in the printer sense will

have been set to indicate the error source. The error condi-

tion must be rectified and TEST UNIT READY sent to reset

the sense data.

printÐcmd() is the function which transfers data into a buff-

er using block mode DMA. The print buffer is a circular

queue, allowing the user to take data off the front and put

data on the rear (see Figure 4.3).

Top

EMPTY

rear

ACTIVE QUEUE

front

EMPTY

Bottom

FIGURE 4.3

front points to the next byte to be printed, rear points to the

next available byte for entering data. When front equals rear

the queue is empty, when rear is one less than front the

queue is full.

The buffer limits are called top and bottom. When either the

front or rear pointers reach the top the next increment takes

them to the bottom. Thus the queue may look like Figure
4.4.

Top

ACTIVE QUEUE

front

EMPTY

rear

ACTIVE QUEUE

Bottom
FIGURE 4.4

When printÐcmd() is first called after a reset it must set up

the queue, defining top and bottom, and setting front equal

to rear equal to bottom. Before any transfer the data length

must be checked to ensure that the DMA will not take rear

past top. If it would the data must be transferred in two

blocks; one to the top of the queue, and one starting at the

bottom of the queue. This routine should not be called un-

less there is sufficient free space for the size of transfer.

Function dmaÐdata() sets up the EASI and DMA for a

block mode transfer, enters the Data Out phase and calls

dma() to handle the transfer. This will be more fully ex-

plained in section 4.4.

4.3.6 Flush Buffer

The purpose of this command is to allow an initiator to ter-

minate an unwanted print. An initialization pulse is sent to

the printer, in case it has its own buffer, and the SPC buffer

is cleared. This is done by setting front equal to rear equal

to bottom.

4.4 DATA TRANSFERS

This section is concerted with the way in which software

controls DMA transfers, both block and single mode, and

how the print data block length is determined.

4.4.1 Single Mode DMA

The four bytes of sense data are sent to the initiator using

single mode DMA. sendÐsense() sets up the DMA to

transfer four bytes of data from the sense buffer to the

EASI, leaving function singleÐdmaÐin() to complete the

transfer.

The phase, which in this case is Data In, is determined by

the calling function, and the EASIMR2 initialized for a single

mode transfer. Parity checking is enabled with interrupt on

EOP or parity error. The data bus is asserted and the routine

dma() is called to handle the transfer.

Since both single and block mode DMA transfers, either in

or out of the initiator, have large portions of code that are

common, a function can be written for general purpose

DMA handling. This function, dma() , sets up the interrupt

response and makes a write to the register which initiates

the required type of transfer, which could be target receive

or target send etc. dma() checks the success of the trans-

fer when the transfer is complete.

11

4.0 Run-Time Software (Continued)

In MODE E the interrupt mask can be set to only allow pari-

ty, EOP and DMA phase mismatch interrupts. The interrupt

jump table is loaded with the starting address of a service

routine, which sets a flag to show an interrupt has occurred.

The program can then sit in a loop waiting for this flag to go

active.

After the interrupt the cause has to be checked to ensure

the transfer was successful, but this checking depends on

the device installed. For a DP8490 the user can read the

EASIISR and if any flag other than end of DMA is active an

error has occurred. On such an error, status is set to

CHECK CONDITION with a sense of ABORTED COM-

MAND. The interrupt mask can be reset, masking off end of

DMA and DMA phase mismatch, and the DMA mode in the

EASIMR2 disabled. The interrupt service routine is set to

jump to the general interrupt handler genÐint() . The inter-

rupt must then be reset and the processor’s interrupts en-

abled.

In MODE E true end of DMA is detected, but in MODE N the

end of DMA interrupt is generated when EOP, DACK and

IOR or IOW are active concurrently. True end of DMA, after

the transfer is complete, must be detected by software.

REQ and ACK must both be inactive on three successive

samples for true end of DMA. This additional code makes

the MODE N DMA routine slower. After detecting this the

user can check the end of DMA flag is active in the EA-

SIBSR, giving status CHECK CONDITION and setting sense

ABORTED COMMAND if it is not. The DMA bit is then reset

and genÐint() called to ensure there was no parity or

phase errors, and to reset the interrupt service routine.

On return to the function singleÐdmaÐin() it will deassert

the SCSI bus and return to the calling routine.

4.4.2 Block Mode DMA

blkÐdmaÐin() is the equivalent routine to singleÐdmaÐ
in() initiating a block mode transfer to the initiator. sendÐ
sense() could call this routine, after setting the DMA for

block mode, and transfer the data using block mode, with

no difference to the other software. The only difference be-

tween these two routines is the setting of the EASIMR2 BLK

mode bit.

printÐcmd() is used to transfer the data to be printed from

the initiator. This function checks that the transfer will not

exceed the constraints of the queue and calls dmaÐdata()
to initiate a block mode transfer. dmaÐdata() sets the EASI

and DMA registers for a block mode target receive, with the

data size set by printÐcmd() and the destination starting

address equal to rear. dma() is again used to handle the

interrupts.

4.4.3 Determination of Data Block Length

The block of data to be transferred for a print has been

specified as a maximum length of BUFFLIM, but the value

of this constant has to be evaluated. The two main consid-

erations in this are the latencies of the bus and the SPC.

Since this board is a printer controller it will be of a very low

priority. Thus the device should not hold the bus for too

great a time per transfer, as this would slow down initiator’s

accesses of a high priority peripheral. The second consider-

ation is the time that the target takes from selection to en-

tering a data phase, the data block must take longer than

this to transfer, or the command is inefficient. Measure-

ments taken on various models of personal computers

showed that, with an Advanced Storage Concepts

ASC-88TM SCSI Host Adaptor, the time taken from the ini-

tiator asserting SEL to the target commencing the data

transfer is approximately 3 ms.

The block mode DMA rate was measured as between

200 kB/s and 500 kB/s limited by the DMA in the PC. A

block length of 2 kB was selected, since this would take

between 4 ms and 10 ms to transfer. Thus the data transfer

time is greater than the selection to data phase time, but the

overall time on the bus in not too long.

4.5 PRINTING DATA

Due to the inherent slowness of printers data can not be

printed while the controller is in command of the SCSI bus.

To prevent tying up the bus data is stored in a buffer and

printed after BSY has been released. The function printit()
handles the transfer of data to the printer.

printit() checks the printer is not in an error condition, and

transfers the byte of data at address front to the printer. The

data is transferred through Port A of the PIO with BUSY and

STROBE used to handshake the data. BUSY must be high

and STROBE pulsed low a minimum of 0.5 ms for the printer

to accept data. front is incremented, to point to the next

byte to be transferred. To print out the queue printit() is

called until front equals rear.

If the function does detect an error it sets sense to the

appropriate value, and implements any outstanding recon-

nection. The printer is continually polled to determine when

it comes back on-line, at which time the print continues.

While the board is printing it must still be available for selec-

tion. An initiator can reset every device on the SCSI bus if a

target does not respond to a selection within a Selection

Timeout, normally 250 ms. The interrupt service routine has

been set to jump to main() , but the program is currently in

main() , so this function must be re-entrant.

main() is written in such a way that it will only process com-

mands if it is unreserved and not printing, or reserved by the

current initiator but not printing. If the board is reserved, but

not by the current initiator, a status of RESERVATION CON-

FLICT is returned. If the board is printing, and the reserving

initiator attempts to send it another command a status of

BUSY can be returned.

However, the controller has a 30 kB print buffer, of which

only 2 kB would be used at a time. It would be much more

efficient to continue executing commands until the buffer is

full. One method of achieving this can be seen in outbuf() .
In this function a flag, called next, is set if the free space in

the queue is greater than BUFFLIM. If a selection occurs

while a print is on, this flag is checked and the command

processed if it is active. If it is inactive a status of BUSY is

returned. This method has the disadvantage that the initia-

tor must continually poll the SPC to determine when it is

ready to accept data. This ‘loads’ the SCSI bus and slows

down the print, since the SPC will be responding to selec-

tion. It also restricts other device’s use of the bus. The alter-

native method of utilizing the buffer space is to use discon-

nection and reconnection.

12

4.0 Run-Time Software (Continued)

4.6 DISCONNECTION AND RECONNECTION

4.6.1 Disconnection

If an initiator sends the IDENTIFY message to the target, it

can indicate that it supports disconnection by setting bit 6 of

this message. If this bit is not set, or the message not sent,

the initiator is assumed not to support disconnection, and

no disconnection is attempted. This software uses discon-

nection in two places; 1) the board is reserved, currently

printing and selected by the reserving initiator; 2) the board

has been released, but not finished printing.

If the board is busy printing it can be advantageous to dis-

connect from the reserved initiator after reading in the com-

mand block, and then reconnect having ensured that the

command can be implemented i.e., there is enough free

space in the queue. For any other initiator the response is

the same as before, the status of RESERVATION CON-

FLICT is returned until the unit is released. After this the

controller will disconnect from any initiator attempting to se-

lect it, until it has enough free space in its buffer.

disconnect() is the routine which carries out the disconnec-

tion procedure. This can only take place after the command

phase and before the data phase, with an initiator that sent

the IDENTIFY message with the disconnection bit set. The

target follows the Command Out phase with a Message In

phase and sends the DISCONNECT message, after which it

can drop BSY, to release the bus. If the DISCONNECT mes-

sage is not sent the initiator will treat the deasserting of BSY

as an illegal termination of command. Before releasing BSY

exchange() is called to store the ID of the initiator and the

command it wants to execute. reset() is again used to ini-

tialize the interrupts and release BSY.

disconnect() stores in a variable, reconÐdata, the amount

of print buffer which will be required to execute the com-

mand. For a print, this depends on the length of data to be

transferred, for any other command the amount is zero. re-

conÐdata is used to determine when the target can recon-

nect to the initiator i.e., once there is enough space free in

the buffer.

After disconnection the program will return to printing, at

which point it may be selected by another initiator. As it can

only disconnect from one initiator at a time it must return a

status of BUSY.

In outbuf() it can be seen that reconnection takes place

when the free space in the print buffer is greater than the

number of bytes to be transferred. reconnect() calls the

functions which action the correct reconnection procedure,

beginning with arbitration.

4.6.2 Arbitration

Arbitration requires two functions, one for MODE E another

for MODE N, due to the fundamental difference in their

methods of arbitration i.e., MODE E is interrupt driven,

MODE N is polled. These two functions, Narbitrate() and

Earbitrate() , carry out the same basic operation, arbitrate

for the bus until successful, but do so in distinctly different

ways.

To arbitrate for the bus a device must wait for a Bus Free

Phase, when BSY is continuously inactive for 400 ns with

SEL inactive. After a Bus Free Delay of 800 ns the SCSI

device should assert BSY, and assert its SCSIID bit on the

bus. After a further 2.2 ms Arbitration Delay the data bus

should be examined, and the device with the highest priority

SCSI ID bit asserted wins arbitration.

In MODE N the EASIODR should be written with the SCSIID

and the arbitration bit in the EASIMR2 set. The interrupts

must be initialized to cause a jump to routine servn() . The

EASI will wait for a Bus Free Phase then, after a Bus Free

Delay, it will assert BSY, and put the contents of the

EASIODR onto the bus. The user must poll the AIP bit of the

EASIICR to determine when arbitration has begun and

check the LA bit to ensure that arbitration has not been lost.

The LA bit is set if another initiator asserts SEL during arbi-

tration. If AIP is active and LA inactive the user must exam-

ine the EASICSD to determine whether it is the highest pri-

ority device arbitrating. If arbitration is lost the arbitration bit

in the EASIMR2 must be reset and the whole procedure

begun again. The device shows it has won arbitration by

asserting SEL. An interrupt during MODE N arbitration is

treated as a selection, soservn() enables parity, since there

is no parity checking during arbitration, and calls main() .

In MODE E arbitration is interrupt driven, allowing the

board to continue printing while waiting to arbitrate.

For a busy SCSI bus typically many milliseconds, and

potentially many seconds, can be taken up arbitrating.

In MODE E this time can be utilized, thus increasing the

system throughput. For this application the time gained

is used to continue printing, in other applications, such

as a disk controller, it could be used in data cacheing,

overlapped seeks, etc.

In MODE E arbitration the EASIODR must be written with

the SCSIID and parity checking cancelled in the EASIMR2.

The interrupts are set to allow selection and arbitration inter-

rupts, with the jump table loaded with serva() . This sets a

flag to show an interrupt has occurred. The enhanced arbi-

tration is initiated, with a write to the arbitration bit of the

EASIEMR. This causes the EASI to wait for a Bus Free

Phase; delay a Bus Free Delay; assert BSY and the EA-

SIODR; delay an Arbitration Delay then interrupt the proces-

sor. The interrupt causes the flag to be set that shows the

state of arbitration should be examined. While waiting for

this interrupt the printer carries on printing out data, until

front equals rear.

After the interrupt is detected the EASIISR can be read to

determine the cause. If it is not an arbitration interrupt parity

checking is enabled and the interrupt treated as a selection,

by calling main() . If the interrupt is signalling the com-

mencement of arbitration, the procedure is the same as in

MODE N, with the LA bit of the EASIICR being examined,

and priority determined by reading the EASICSD. If arbitra-

tion is lost, interrupts must be reset, the arbitration bit in the

EASIEMR reset, and the whole procedure begun again. If

arbitration is successful the user asserts SEL.

Function printarb() is used to print data during arbitration in

the same way as printit() does normally. The difference

here is that the arbitration interrupt should be serviced as

quickly as possible.

This routine must be left if an interrupt occurs. Instead of

waiting for the printer to come on-line if an error occurs this

routine simply does not send the character.

13

4.0 Run-Time Software (Continued)

4.6.3 Reselection

When arbitration has been won the disconnected initiators

ID and command block must be restored, and the initiator

reselected. This reselection is carried out by function rese-
lect() .

The EASISER is cleared to stop it responding to the rese-

lection and the initiator ID bit written into the EASIODR

along with the SCSIID. I/O must be asserted to show this is

a reselection. The EASIODR is asserted onto the bus and

the relevant arbitration bit, depending on MODE reset. This

deasserts BSY. Parity checking is enabled, and the board

waits a selection timeout delay of 250 ms for the initiator to

respond, by asserting BSY. If it does not, RST is asserted,

resetting the whole SCSI bus.

If the initiator does respond, the target must assert BSY,

then deassert SEL and take the EASIODR off the bus. For

MODE E the interrupt mask can be set, and the arbitration

interrupt reset. Reselection is now complete.

4.6.4 Reconnection

After reselect() the IDENTIFY message is sent by the target

with the disconnect bit set. The command that was previ-

ously sent is processed, if this message is received suc-

cessfully. After processing the command status and the

COMMAND COMPLETE message are returned. reset() is

again used to set the interrupts and release BSY.

If a print was not current at the time of reconnection, and

the reconnected command was PRINT, this is handled with-

in reconnect() . As long as the status is GOOD the print is

carried out. However, reconnect() will be mostly called from

outbuf() , when the queue has enough free space to pro-

cess the outstanding command. Any reconnection missed

by outbuf() is captured in main() .

4.7 ERROR HANDLING

Throughout this document the handling of errors has been

discussed as the errors arose, but there are some remaining

to be discussed. These are phase or parity errors during

command transfers and message errors.

4.7.1 General Error Handling

While this board is connected to the SCSI bus, with BSY

active, genÐint() is generally used to handle interrupts.

This routine responds to an unexpected interrupt by check-

ing the parity and phase flags, in the EASIBSR for MODE N,

the EASIISR for MODE E. It then resets the interrupts, be-

fore setting appropriate flags. Sense is set to ABORTED

COMMAND with a status of CHECK CONDITION if an error

has occurred.

After calling select() , to respond to selection, main() then

calls function setÐup() , which sets the mask and jump ta-

ble to respond to an interrupt. This is also the routine which

checks to see if ATN is asserted. If it is getmes() is called to

enter the Message Out phase and fetch the IDENTIFY mes-

sage. messout() processes the message. This is where the

target determines if the initiator supports disconnection.

If an error occurs during select() or set-up() , detected by

genÐint() , the board sends relevant status and a message

of COMMAND COMPLETE, before releasing the bus. No

attempt is made to recover from the error. Similarly, if a

phase error occurs during the command phase, status and

sense are returned. However, if a parity error occurs during

a command phase, the target can attempt a recovery by

sending the RESTORE POINTERS message. This message

instructs the initiator to reset the command pointer to the

beginning of the command block, allowing the target to re-

enter the Command Out phase and re-transfer the com-

mand block. If there is a parity error again, status is re-

turned, along with the COMMAND COMPLETE message. If

the second transfer is successful, the command execution

continues as normal.

4.7.2 Message Errors

If an initiator wishes to respond to a message sent by the

target it indicates this by asserting ATN, before releasing

ACK to finish the transfer. The target should then enter the

Message In phase, and transfer message bytes until ATN

goes inactive, up to 256 bytes. If the initiator attempts to

send more than this the target will send the MESSAGE RE-

JECT message and terminate the command with status of

CHECK CONDITION and sense set to ABORTED COM-

MAND. If a parity error occurs during the message transfer,

the target must wait until the transfer is complete, then in-

struct the initiator to resend all previous message bytes, by

asserting REQ before changing phase. If the parity error

occurs again the command will be terminated with status of

CHECK CONDITION and sense ABORTED COMMAND.

The relevant functions for message phases are messin() ,
getmes() and messout() . messin() is used to send a mes-

sage to the initiator, while getmes() fetches a message

from the initiator. messout() processes the message sent

by the initiator. The supported messages are now explained.

IDENTIFY: establishes the use of a greater message set,

indicates the ability to support, or not support, disconnection

and gives a LUN number, if necessary.

ABORT: if the reserving initiator sends this message to the

target it causes the board to be reset.

BUS DEVICE RESET: This is similar to ABORT, except any

initiator can implement it, resetting the board.

MESSAGE PARITY ERROR: On receiving this message the

target attempts to resend the last message sent, and if this

fails, terminates the command with status of CHECK CON-

DITION and sense set to HARDWARE ERROR.

MESSAGE REJECT: the targets response to this message

is determined by the message being rejected. If the last

message sent was COMMAND COMPLETE, the MESSAGE

REJECT is ignored, since the initiator must support the

mandatory message. A MESSAGE REJECT in reply to a

DISCONNECT causes the disconnection to be cancelled. If

it was in reply to a MESSAGE REJECT sent, the command

is terminated with a status of CHECK CONDITION and

sense set to HARDWARE ERROR. If the message sent was

IDENTIFY (during reconnection) the target immediately

goes to the Bus Free Phase and aborts the command. No

Status or Message In phases are attempted, though sense

is set to HARDWARE ERROR.

14

4.0 Run-Time Software (Continued)

It should be noted that messin() has been written to only

allow getmes() to be called, from inside messin() , once.

Alternatively on parity error the target and initiator could

eternally cycle, sending each other the MESSAGE PARITY

ERROR message.

4.7.3 Non-Recoverable Errors

The following are errors which occur during selection, so

severe that system operation is terminated, with an error

code displayed on the LED.

The first two concern a DP5380.

Error 4

Wrong interrupt flags active.

Error 5

SEL inactive.

These errors concern either a DP5380 or a DP8490.

Error 6

SCSIID bit not active on bus.

Error 7

More than two bits active on bus.

The final errors are for a DP8490 only.

Error 8

SCSI parity error.

Error 9

Select flag inactive.

5.0 User Guide
The SCSI Printer Controller (SPC) is a Small Computer Sys-

tem Interface target board, which can use either the

DP5380 Asynchronous SCSI interface (ASI) or DP8490 En-

hanced Asynchronous SCSI Interface (EASI). It can be se-

lected and used by an initiator as described in the

ANSX3.131-1986 SCSI standard as defined by the ANSI

X3T9.2 committee. This document will explain the installa-

tion of SPC, and show how it can be used in a system. By

way of example a description is given of how the SPC can

be used with an Advanced Storage Concepts ASC-88 IBM

PC-SCSI Manager IITM host adaptor.

5.1 INSTALLATION

This section explains how the board must be set up before

use, and the type of connectors required to interface to it.

Any reference made to an EASI also applies for an ASI.

5.1.1 POWER

The SPC can be installed in a Personal Computer (PC)

where it takes power from the backplane. There are two

connections to a5V and two to ground. These are the only

connections made to the backplane. Alternatively power

can be taken from the available connector block (Figure
5.1) .

When the board receives power the LED will come on, and

stay on if the board passes its self diagnostics. If it fails an

error message will be displayed by the LED, indicating the

source of error. This will be further explained in section

5.1.5. If the LED does not come on some fatal error has

occurred.

5.1.2 SCSI CONNECTOR

The SCSI bus should consist of a 50 way flat ribbon cable a

maximum of 6.0 meters long. Both ends of this cable should

have all SCSI lines terminated, with a 330X resistor to

ground and a 220X resistor to power. SCSI devices are

daisy chained along this cable, with SCSI signals common

to all devices.

The SPC contains sockets for two DP8490 or DP5380 de-

vices, one a PLCC socket the other DIL. Only one of these

sockets should contain a device.

To comply with the regulations on terminating resistors six

SIL resistor packs are available between the SCSI connec-

tor and the EASI DIL package (Figure 5.1) . If this board is

not to be used at the end of the SCSI cable all of these six

packs must be removed. The resistors have been socketed

for this purpose.

An option available in the SCSI standard is to supply termi-

nator power on the cable, so terminators at either end of the

bus can use the same power. If the device at one end of the

bus is unpowered its terminators can receive power from

the cable, and the bus will operate correctly. It should be

noted that other manufacturer’s CMOS devices will not work

in this configuration since if not powered they pull the SCSI

lines low. National Semiconductor’s DP5380 and DP8490

have special input protection to prevent this.

Pin 26 on the SCSI connector is the terminator power pin,

which can be left floating by leaving the jumper in position 2,

seeFigure 5.2 . By moving the jumper to position 1 the termi-

nator power is supplied to this pin. Figure 5.3 shows the two

possible configurations. Terminator power is fed through a

Schottky barrier diode to prevent a backflow of power into

the board.

TL/F/10082–6

FIGURE 5.1

15

5.0 User Guide (Continued)

LINK

jumper X X

X X
jumper

X X

Position 1 Position 2
FIGURE 5.2

TL/F/10082–7

FIGURE 5.3

5.1.3 SWITCH BLOCK SETTINGS

The switch block is included to allow the user to select the

SCSI ID of the SPC. This is used to identify the board during

selection phases and determine its priority in arbitration.

The SCSI ID is read in as a three bit binary number and

converted in software to an eight bit pattern, with one bit

active. For an ID of 0 the least significant bit is active, for an

ID of 7 the most significant bit is active.

The three bit number is taken from the switch block (see

Figure 5.1), using switches 1, 2 and 3. 1 is the most signifi-

cant bit, 4 is unused. These switches should be set to give a

unique ID for this bus. An ID of 0 is suggested, making the

printer the lowest priority device on the bus. These switches

must be set up before power is applied, as they are only

checked during the board diagnostics.

5.1.4 PRINTER CONTROLLER

The printer connector is a standard IBM 25 way ‘D’ type

connector. The SPC software controls data transfers to the

printer using the BUSY and STROBE signals.

5.1.5 ERROR MESSAGES

Non-recoverable errors cause a four bit binary number to be

displayed by the LED. This indicates the source of error.

The LED displays the number by occulting for 1 second to

show a 1, (/2 second to show a 0. The code is displayed

most significant bit first, with the LED on for 1 second be-

tween bits. The error number is repeatedly displayed, be-

tween breaks of 2 seconds when the LED is on.

The error numbers, and their cause, are shown below. The

first four errors are generated during the board diagnostics,

the others occur when a selection fails. The SCSI controller

will be referred to as an EASI, unless the error is specific to

either a DP5380 or DP8490. These possible differences are

due to the DP8490’s more extensive testing, and because it

handles a selection differently.

Error 0

The DMA could not be accessed. This is possibly a dam-

aged device.

Error 1

EASI can not be accessed. Device could be damaged, or

not properly terminated.

Error 2

DP8490 has failed loopback test. Device could be dam-

aged.

Error 3

DP8490 has failed the loopback DMA test. In this test a

DMA transfer to memory from the DP8490 is attempted.

Failure here could indicate an error in memory, processor,

DMA, DP8490 or PALs.

These first four errors concern problems internal to the

board. The following errors indicate a bus problem that oc-

curred while the board was waiting for selection.

Error 4

DP5380 error flag active.

Error 5

DP5380 found select line inactive. Possible selection

timeout or bus error.

Error 6

EASI ID bit not active on bus. Possible selection timeout

or bus error.

Error 7

EASI detected more than two bits active on bus. During a

selection phase the initiator can only assert its own ID and

the targets ID on the bus. This indicates a bus error.

Error 8

DP8490 SCSI parity error. Error on bus.

Error 9

DP8490 select flag inactive. This is board hardware error,

possibly in DP8490 or PAL, possibly interrupt line.

For any of these problems the user should try switching the

device on and off again. For bus errors the cable and termi-

nators should be checked along with any other devices on

the bus.

16

5.0 User’s Guide (Continued)

5.2 DRIVER SOFTWARE

By way of example it will be shown how software can be

written to drive the SPC from an ASC-88 host adaptor, in-

stalled in a PC. The ASC-88, like many commercially avail-

able host adaptors, handles all low level SCSI signal con-

trols. The user controls the command to be implemented by

means of a Job Control Block, JCB, which is passed to it.

The software required to use an ASC-88 is on the supplied

floppy disk. This disk contains both the source code, ex-

plained later, and the executable code. This is called

printout.exe and can be implemented in the form:

printout filename

The filename supports the MS-DOS use of directories and

paths:

e.g., printout a: /ASC /ASC.C

The second executable command, called stoprint.exe , can

be used to terminate a print. When this command is execut-

ed the SPC flushes the print queue and initializes the printer.

5.2..1 SEQUENCE OF COMMANDS

Although the SPC requires no prescribed sequence of SCSI

commands an initiator must reserve the unit before a

print can take place. Otherwise the sequence of com-

mands specified here indicate how the SPC could be used.

Any print should begin with a TEST UNIT READY com-

mand. On receiving this command the SPC tests the printer

to ensure it has paper and is not in an error condition. If the

status of GOOD is returned the user should then attempt

RESERVE UNIT. If the command is successful the SPC will

only execute commands from this initiator. This prevents

print data from two or more sources being mixed.

The user then sends PRINT commands with a maximum

length of data per transfer of 2 kB. If the file to be printed is

larger than 2 kB the data must be sent in several blocks.

This limit, set to minimize bus latency, is more fully ex-

plained in Section 4.4.3.

These PRINT commands transfer the data to the SPC print

buffer. To check if an error occurred when the SPC attempt-

ed to transfer the data to the printer the user can send a

REQUEST SENSE command. If the returned data is NO

SENSE the printer is still operational. Any other sense indi-

cates an error.

The final command sent is RELEASE UNIT. This allows the

SPC to be used by other initiators.

5.2.2 ASC-88 SOFTWARE

All ASC-88 software is written for a MicrosoftÉ C compiler.

File ASC.C contains the main run-time software. ASC

STRUC.LIB sets up the structure which is used as a Job

Control Block, while ASCCOM.LIB defines the JCBs for par-

ticular SCSI commands. The routines used in ASC.C, other

than SCSI command calls, are in ASCROT.LIB and

UTIL.LIB. CONSTANT.H contains the constants used

throughout these files. If the user wishes the SCSI ID of the

target board to be anything other than zero they should

change the value of TARGETÐID in this file, and recompile

the code for both commands.

STDIO.H is a Microsoft library containing constants, macro

definitions and function declarations for I/O stream opera-

tions. This controls opening files, reading files, detecting file

ends and closing files. DOS.H, also a Microsoft library, han-

dles the interface to MS-DOSÉ. This allows the user to set

up registers and execute interrupts. The final Microsoft li-

brary CONIO.H allows the user to fetch information from the

keyboard.

The SCSI-BIOSTM EPROM in the ASC-88 is accessed by

generating interrupt number forty. The value in the ‘AH’ reg-

ister determines what SCSI-BIOS software is used. SCSI-

PROTM implements the SCSI command specified in the JCB

whose starting address is passed in the ‘BX’ and ‘ES’ regis-

ters.

ASC.C must be compiled and loaded to produce a file prin-

tout.exe. When executed this code opens the file specified

in the command line and instigates the sequence of com-

mands, outlined in the previous section, to print it out. After

these commands the file is closed.

If the printer enters an error state while communicating with

the initiator a message will be displayed on screen and the

user is given the option of terminating the print. If the print is

to be continued the user must correct the printer error and

press a key to restart the print. If an error occurs when the

SPC has already received all the data from the PC the board

will wait until the print error is corrected and continue print-

ing.

STOPRINT.C contains the run-time software required to ter-

minate a print. This uses the library CHECK.LIB, which

checks the success of a FLUSH BUFFER command. To

terminate an unwanted long print the user can: take the

printer off-line; press escape to leave printout ; send the

stoprint command.

17

Appendix A

T
L
/
F
/
1
0
0
8
2
–
8

D
IS

C
R

E
T
E

C
O

M
P
O

N
E
N

T
S

A
ll

p
u
ll-

u
p

a
n
d

p
u
ll-

d
o
w

n
re

s
is

to
rs

a
re

4
K

7

R
1

1
M

C
1

2
2

p
F

C
e
ra

m
ic

R
2

1
0
K

C
2

3
3

p
F

C
e
ra

m
ic

R
3

3
9
0
R

C
3

2
2

m
F

T
a
n
ta

lu
m

X
T

8
.0

0
0

M
H

z

18

Appendix A (Continued)

T
L
/
F
/
1
0
0
8
2
–
9

19

A
S
C

S
I
P
ri
n
te

r
C

o
n
tr

o
ll
e
r
U

s
in

g
E
it
h
e
r
th

e
A

N
-5

6
3

D
P
8
4
9
0

E
A

S
I
o
r
D

P
5
3
8
0

A
S
I
a
n
d

U
s
e
rs

G
u
id

e
Lit. Ý 100563

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor
Corporation Europe Hong Kong Ltd. Japan Ltd.
1111 West Bardin Road Fax: (a49) 0-180-530 85 86 13th Floor, Straight Block, Tel: 81-043-299-2309
Arlington, TX 76017 Email: cnjwge@ tevm2.nsc.com Ocean Centre, 5 Canton Rd. Fax: 81-043-299-2408
Tel: 1(800) 272-9959 Deutsch Tel: (a49) 0-180-530 85 85 Tsimshatsui, Kowloon
Fax: 1(800) 737-7018 English Tel: (a49) 0-180-532 78 32 Hong Kong

Fran3ais Tel: (a49) 0-180-532 93 58 Tel: (852) 2737-1600
Italiano Tel: (a49) 0-180-534 16 80 Fax: (852) 2736-9960

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

