
TL/DD/9978

In
te

rfa
c
in

g
A

S
e
ria

l
E
E
P
R

O
M

to
th

e
N

a
tio

n
a
l
H

P
C

1
6
0
8
3

A
N

-5
5
2

National Semiconductor
Application Note 552
Brian Marley
September 1988

Interfacing A Serial
EEPROM to the National
HPC16083

ABSTRACT

This application note describes how to interface the

HPC16083 High-Performance microController to a MI-

CROWIRETM serial EEPROM (Electrically Erasable Pro-

grammable Read-Only Memory) device. The technique uses

interrupt-driven scheduling from one of the eight on-chip

timers, and so can run in the ‘‘background’’, sharing the

HPC gracefully with other control applications running at the

same time. Source code is included.

1.0 INTRODUCTION

It is often the case in control-oriented applications that a

piece of equipment, on being installed, must be set up with

certain semi-permanent configuration mode settings. In the

past, jumpers and switches have been the methods used,

but in recent years these have been largely supplanted by

EEPROM devices, which hold more information and are not

prone to mechanical problems. In addition, the presence of

an EEPROM allows certain information about the status of

the equipment (for example, in printers, a page or character

count for monitoring the ‘‘age’’ of the cartridge or print

head) to be stored to assist in maintenance.

The most cost-effective type of EEPROM device is one with

a serial interface, such as the 256-bit NMC9306 (COP494)

or the 1024-bit NMC9345 (COP495). These reside in an

8-pin DIP package, and require only four connections (be-

sides VCC and Ground). These connections are provided by

the HPC family of High-Performance Microcontrollers, on a

serial port called the MICROWIRE/PLUSTM Interface.

Because one of the HPC’s strong suits is Concurrent Con-

trol applications (applications in which several control tasks

are executing simultaneously, scheduled by interrupts), the

code given in this exercise is written to be completely inter-

rupt-driven as well. Instead of timing events with software

loops, interrupts from HPC Timer T5 are used both to signal

the end of each MICROWIRE transfer and to time the

ERASE and WRITE pulse durations for the EEPROM.

2.0 CONNECTIONS AND COMMANDS

The connection between the HPC and the EEPROM device

is a completely traditional MICROWIRE connection, as

shown in Figure 1. The SI (Serial Input), SO (Serial Output)

and SK (Serial Clock) signals of the HPC connect directly to

the DO, DI and SK pins of the EEPROM, respectively. The

EEPROM’s required Chip Select signal (CS: active high)

could come from any port bit of the HPC, but the P1 pin of

Port P was chosen because Port P pins present zeroes on

reset (instead of floating), and this will automatically dese-

lect the EEPROM.

TL/DD/9978–1

FIGURE 1. MICROWIRE/PLUS Connections

MICROWIRETM and MICROWIRE/PLUSTM are trademarks of National Semiconductor Corporation.

C1995 National Semiconductor Corporation RRD-B30M105/Printed in U. S. A.



To communicate with the EEPROM, the signal CS (pin P1)

is set high, and then each 8-bit serial transfer is triggered by

writing a value to the HPC’s eight-bit SIO register, which is

effectively just a shift register. The data placed into the SIO

register is shifted out, most-significant bit first, and eight

clock pulses are presented on the SK pin corresponding to

each shift. Serial data is simultaneously accepted from the

SI pin, and at the end of the eight clock pulses the SIO

register has been changed to reflect the value presented by

the EEPROM (if any). The timing involved in a single MI-

CROWIRE transfer is shown in Figure 2.

While reading from the EEPROM, the value written to SIO

doesn’t matter, since it is ignored by the EEPROM. The CS

signal must be active throughout a command (which may

involve more than one eight-bit transfer), and it must be set

inactive between commands for at least one microsecond.

Also, the time between an ERASE or WRITE command and

the following command (as measured by the amount of time

the CS signal remains low between them) determines the

length of the corresponding ERASE or WRITE pulse within

the EEPROM chip. These pulse widths have strict limits

which, if exceeded, can damage some EEPROMs.

EEPROM commands are 8-bit values. However, they must

start with an additional ‘‘1’’ bit (the Start bit), and READ

commands require a trailing ‘‘pad’’ bit, to provide timing

control for the access. Since HPC MICROWIRE transfers

must consist of integral numbers of 8-bit transfers, at least

two such transfers must be used per command.

Note that the formats shown below (with 6 address bits)

support an EEPROM with up to 1K bits (64 16-bit words). To

use a 256-bit EEPROM, one would not specify an address

greater than binary 001111, because the two most-signifi-

cant address bits are ignored by the EEPROM.

2.1 Read Commands

Reading a 16-bit word from the EEPROM is accomplished

with a single READ command. For the READ command, the

format is:

0 0 0 0 0 0 1 1 0 A A A A A A 0

l- - - - - l l l
l start bit pad bit

leading zeroes

(ignored)

where the bits marked ‘‘A’’ constitute the address of the

EEPROM word to be accessed. These two command trans-

fers are followed by two additional 8-bit transfers, in which

the 16 bits of data from the addressed EEPROM word are

read by the HPC (most significant bit first).

TL/DD/9978–2

*This bit becomes valid immediately when the transmitting device loads its SIO register. The HPC guarantees it to be valid for at least 1 full SK period before the

rising edge of the first SK pulse presented.

² Arrows indicate points at which SI is sampled.

FIGURE 2. MICROWIRE/PLUS Transfer

Master presents eight pulses on SK pin; each pulse transfers one bit in and out.

2



2.2 Write Commands

To write data into the EEPROM, a sequence of commands

is entered:

an EWEN command (Erase/Write Enable):

0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0

an ERASE command:

0 0 0 0 0 0 0 1 1 1 A A A A A A

(‘A‘ e Address bits,

most-significant bit first)

a pause of 16 to 25 milliseconds, with CS

low,

a WRITE command:

0 0 0 0 0 0 0 1 0 1 A A A A A A

D D D D D D D D D D D D D D D D

(‘A‘ e Address bits,

‘D‘ e Data bits,

most-significant bit first)

a pause of 16 to 25 milliseconds, with CS

low,

and, finally, an EWDS command (Erase/Write

Disable):

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

3.0 LISTING AND COMMENTARY

The listing provided shows three necessary segments of a

program to access the EEPROM device:

1) initialization of the MICROWIRE/PLUS port on the HPC,

2) two program fragments of a Main Program which would

initiate a Read or a Write operation,

3) an interrupt service routine (attached to Timer T5) which

actually performs the transfers.

3.1 Initialization

On receiving a Reset signal, the HPC begins execution at

the label ‘‘start’’. It loads the PSW register (to select 1 Wait

state), and then removes all interrupt enables.

At label ‘‘sram’’, all RAM within the HPC is initialized to zero.

At ‘‘suwire’’, the MICROWIRE/PLUS interface pins are ini-

tialized. The MICROWIRE/PLUS interface is then set to the

CKI/128 bit rate (125 KHz clocking at 16 MHz crystal fre-

quency). The internal interface is not completely cleared by

the Reset signal, so the firmware must set it up and wait (at

label ‘‘suwlp’’) for the interface to become ready. Once this

has been done, a byte of all zeroes is sent to the EEPROM

to terminate any Write operation that might have been in

progress when the Reset was received.

At ‘‘tminit’’, the timers T1–T7 are stopped and any inter-

rupts pending from timers T0–T7 are cleared. The individual

timer interrupt enables are then cleared.

The program then continues to label ‘‘minit’’, which initializ-

es the variables in the HPC’s on-chip RAM to their proper

contents.

At label ‘‘runsys’’, the necessary interrupt is enabled (from

the timers), and execution continues to the body of the Main

Program.

There follow now two fragments of illustrative main program

code which can be used to trigger the process of reading

and writing the EEPROM.

3.2 Reading

The main program and interrupt routines given here enable

reading from one to eight bytes from the EEPROM, starting

at the beginning of any word.

At label ‘‘rnvr’’, an EEPROM READ command is construct-

ed from the EEPROM starting address and placed in the

variable ‘‘nvrcmd’’. The number of bytes to be transferred is

placed in the variable ‘‘nvrnum’’. Control is then transferred

to the label ‘‘nvrx’’, where Timer T5 is set up to generate

scheduling interrupts for reading data from the EEPROM.

The variable ‘‘nvrs’’ indicates the state of an EEPROM ac-

cess from one interrupt to another: its top bit (‘‘nvravl’’)

shows whether the EEPROM is already being used, bit 6

(‘‘nvrwr’’) shows whether it is being written or read, and the

low-order 4 bits hold a state number, which is used to trans-

fer control to the appropriate code within the Timer T5 inter-

rupt service routine.

3



On each Timer T5 interrupt (see labels ‘‘tmrint’’, ‘‘t5poll’’,

‘‘t5int’’), the timer is stopped, a check is made to determine

whether the EEPROM is being read or written (T5 interrupts

are used for both), and then a multiway branch (jidw) is per-

formed based on the state number in the variable ‘‘nvrs’’.

The state number is incremented on each interrupt. On a

Read transfer, five states are entered, at the following la-

bels:

t5rd0 activates the chip select to the EEPROM and initi-

ates the MICROWIRE transfer to send the first

byte of a READ command. Timer T5 is started to

time out the MICROWIRE transfer.

t5rd1 sends the second byte of the READ command.

Timer T5 is started to time out the MICROWIRE

transfer.

t5rd2 initiates the MICROWIRE transfer to read the first

byte of data from the current EEPROM word. Tim-

er T5 is started to time out the MICROWIRE trans-

fer.

t5rd3 accepts the first byte of the data into the high-or-

der byte of the variable ‘‘nvword’’, and initiates the

transfer to read the second byte of the current

EEPROM word. Timer T5 is started to time out the

MICROWIRE transfer.

t5rd4 accepts the second byte from the EEPROM into

the low-order byte of the variable ‘‘nvword’’, and

then moves the word into the EEPROM string buff-

er, called ‘‘nvrbuf’’, using a pointer called ‘‘nvrptr’’.

It then checks whether the requested number of

bytes has been read (by decrementing the

‘‘nvrnum’’ variable). If so, it leaves Timer T5

stopped, disables its interrupt and returns. This

would also be the proper place to set a semaphore

flag to acknowledge to the main program that the

reading is complete. (Code for this is not included

here; it would vary from system to system.) If the

requested number of bytes has not yet been read,

it increments the address field of the READ com-

mand in ‘‘nvrcmd’’, resets the state field in ‘‘nvrs’’

to zero, leaves Timer T5 interrupts enabled, and

jumps directly to the ‘‘t5rd0’’ routine to continue.

3.3 Writing

At label ‘‘wnvr’’, an EEPROM ERASE command is con-

structed from the word address supplied by the CPU. The

16-bit value to be written is placed in the variable ‘‘nvword’’.

As in the READ-NVR command above, the ‘‘nvrs’’ variable

is initialized to select the first state of an EEPROM write

operation, and Timer T5 is used to provide the interrupts

that schedule the steps. There are 13 states involved in

writing a word to the EEPROM, at the following labels:

t5wr0 activates the chip select signal to the EEPROM,

and sends the first byte of an EWEN command to

enable ERASE and WRITE commands. Timer T5

is started to time out the MICROWIRE transfer.

t5wr1 sends the second byte of the EWEN command.

Timer T5 is started to time out the MICROWIRE

transfer.

t5wr2 removes the chip select signal briefly (to signal the

beginning of a new command), then sends the first

byte of an ERASE command. Timer T5 is started

to time out the MICROWIRE transfer.

t5wr3 sends the second byte of the ERASE command,

from the variable ‘‘nvrcmd’’. Timer T5 is started to

time out the MICROWIRE transfer.

t5wr4 removes the chip select signal, then sets up the

Timer T5 interval to 20 milliseconds, to time the

duration of the EEPROM’s internal Erase pulse.

t5wr5 (entered 20 milliseconds after ‘‘t5wr4’’) re-asserts

the chip select signal to the EEPROM, and trans-

fers the first byte of a WRITE command. Timer T5

is started to time out the MICROWIRE transfer.

t5wr6 alters the command in ‘‘nvrcmd’’ to a WRITE com-

mand, then transfers it as the second command

byte to the EEPROM. Timer T5 is started to time

out the MICROWIRE transfer.

t5wr7 transfers the first byte of data to be written. Timer

T5 is started to time out the MICROWIRE transfer.

t5wr8 transfers the second byte of data to be written.

Timer T5 is started to time out the MICROWIRE

transfer.

t5wr9 removes the chip select signal, then sets up the

Timer T5 interval to 20 milliseconds, to time the

duration of the EEPROM’s internal Write pulse.

t5wr10 (entered 20 milliseconds after ‘‘t5wr9’’) re-asserts

the chip select signal to the EEPROM, and trans-

fers the first byte of an EWDS command (Erase/

Write Disable). Timer T5 is started to time out the

MICROWIRE transfer.

t5wr11 transfers the second byte of the EWDS command.

Timer T5 is started to time out the MICROWIRE

transfer.

t5wr12 removes the chip select signal to the EEPROM,

keeps Timer T5 stopped, disables its interrupt, and

returns. This would also be the proper place to set

a semaphore flag to acknowledge to the main pro-

gram that the writing is complete. (Code for this is

not included here; it would vary from system to

system.)

4



3.4 Source Listing

TL/DD/9978–3

TL/DD/9978–4

5



TL/DD/9978–5

TL/DD/9978–6

6



TL/DD/9978–7

TL/DD/9978–8

7



TL/DD/9978–9

TL/DD/9978–10

8



TL/DD/9978–11

TL/DD/9978–12

9



TL/DD/9978–13

TL/DD/9978–14

10



TL/DD/9978–15

TL/DD/9978–16

11



TL/DD/9978–17

12



TL/DD/9978–18

13



TL/DD/9978–19

TL/DD/9978–20

14



TL/DD/9978–21

TL/DD/9978–22

15



TL/DD/9978–23

TL/DD/9978–24

16



TL/DD/9978–25

17



A
N

-5
5
2

In
te

rf
a
c
in

g
A

S
e
ri
a
l
E
E
P
R

O
M

to
th

e
N

a
ti
o
n
a
l
H

P
C

1
6
0
8
3

Lit. Ý 100552

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor
Corporation Europe Hong Kong Ltd. Japan Ltd.
1111 West Bardin Road Fax: (a49) 0-180-530 85 86 13th Floor, Straight Block, Tel: 81-043-299-2309
Arlington, TX 76017 Email: cnjwge@ tevm2.nsc.com Ocean Centre, 5 Canton Rd. Fax: 81-043-299-2408
Tel: 1(800) 272-9959 Deutsch Tel: (a49) 0-180-530 85 85 Tsimshatsui, Kowloon
Fax: 1(800) 737-7018 English Tel: (a49) 0-180-532 78 32 Hong Kong

Fran3ais Tel: (a49) 0-180-532 93 58 Tel: (852) 2737-1600
Italiano Tel: (a49) 0-180-534 16 80 Fax: (852) 2736-9960

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.


