Interfacing A Serial
EEPROM to the National
HPC16083

ABSTRACT

This application note describes how to interface the
HPC16083 High-Performance microController to a MI-
CROWIRE™ serial EEPROM (Electrically Erasable Pro-
grammable Read-Only Memory) device. The technique uses
interrupt-driven scheduling from one of the eight on-chip
timers, and so can run in the “background”, sharing the
HPC gracefully with other control applications running at the
same time. Source code is included.

1.0 INTRODUCTION

It is often the case in control-oriented applications that a
piece of equipment, on being installed, must be set up with
certain semi-permanent configuration mode settings. In the
past, jumpers and switches have been the methods used,
but in recent years these have been largely supplanted by
EEPROM devices, which hold more information and are not
prone to mechanical problems. In addition, the presence of
an EEPROM allows certain information about the status of
the equipment (for example, in printers, a page or character
count for monitoring the ‘“age” of the cartridge or print
head) to be stored to assist in maintenance.

The most cost-effective type of EEPROM device is one with
a serial interface, such as the 256-bit NMC9306 (COP494)
or the 1024-bit NMC9345 (COP495). These reside in an

National Semiconductor
Application Note 552
Brian Marley
September 1988

8-pin DIP package, and require only four connections (be-
sides Vg and Ground). These connections are provided by
the HPC family of High-Performance Microcontrollers, on a
serial port called the MICROWIRE/PLUS™ Interface.

Because one of the HPC’s strong suits is Concurrent Con-
trol applications (applications in which several control tasks
are executing simultaneously, scheduled by interrupts), the
code given in this exercise is written to be completely inter-
rupt-driven as well. Instead of timing events with software
loops, interrupts from HPC Timer T5 are used both to signal
the end of each MICROWIRE transfer and to time the
ERASE and WRITE pulse durations for the EEPROM.

2.0 CONNECTIONS AND COMMANDS

The connection between the HPC and the EEPROM device
is a completely traditional MICROWIRE connection, as
shown in Figure 1. The Sl (Serial Input), SO (Serial Output)
and SK (Serial Clock) signals of the HPC connect directly to
the DO, DI and SK pins of the EEPROM, respectively. The
EEPROM’s required Chip Select signal (CS: active high)
could come from any port bit of the HPC, but the P1 pin of
Port P was chosen because Port P pins present zeroes on
reset (instead of floating), and this will automatically dese-
lect the EEPROM.

Py EAS Chip Select (Active High)
v
erial Data to 3,
so}86_Serial Data to EEPROM o s
(16083 (BS) .
pinout sk 65 Serial Clock 2: sk EEPROM

shown) (B6)
Sl ¢

9 Serial Data from EEPROM 4

DO

(15)

FIGURE 1. MICROWIRE/PLUS Connections

MICROWIRE™ and MICROWIRE/PLUS™ are trademarks of National Semiconductor Corporation.

TL/DD/9978-1

©1995 National Semiconductor Corporation TL/DD/9978

RRD-B30M105/Printed in U. S. A.

€8091LOdH leuoneN ayi o0} NOHd33 lel4as v buloejiajul

C¢GS9-NV

To communicate with the EEPROM, the signal CS (pin P1)
is set high, and then each 8-bit serial transfer is triggered by
writing a value to the HPC’s eight-bit SIO register, which is
effectively just a shift register. The data placed into the SIO
register is shifted out, most-significant bit first, and eight
clock pulses are presented on the SK pin corresponding to
each shift. Serial data is simultaneously accepted from the
Sl pin, and at the end of the eight clock pulses the SIO
register has been changed to reflect the value presented by
the EEPROM (if any). The timing involved in a single MI-
CROWIRE transfer is shown in Figure 2.

While reading from the EEPROM, the value written to SIO
doesn’t matter, since it is ignored by the EEPROM. The CS
signal must be active throughout a command (which may
involve more than one eight-bit transfer), and it must be set
inactive between commands for at least one microsecond.
Also, the time between an ERASE or WRITE command and
the following command (as measured by the amount of time
the CS signal remains low between them) determines the
length of the corresponding ERASE or WRITE pulse within
the EEPROM chip. These pulse widths have strict limits
which, if exceeded, can damage some EEPROMs.

EEPROM commands are 8-bit values. However, they must
start with an additional “1”” bit (the Start bit), and READ
commands require a trailing “pad” bit, to provide timing

control for the access. Since HPC MICROWIRE transfers
must consist of integral numbers of 8-bit transfers, at least
two such transfers must be used per command.

Note that the formats shown below (with 6 address bits)
support an EEPROM with up to 1K bits (64 16-bit words). To
use a 256-bit EEPROM, one would not specify an address
greater than binary 001111, because the two most-signifi-
cant address bits are ignored by the EEPROM.

2.1 Read Commands

Reading a 16-bit word from the EEPROM is accomplished
with a single READ command. For the READ command, the
format is:

00000011 0OAAAAAADO
- - - - || |
| start bit pad bit
leading zeroes
(ignored)
where the bits marked “A” constitute the address of the
EEPROM word to be accessed. These two command trans-
fers are followed by two additional 8-bit transfers, in which
the 16 bits of data from the addressed EEPROM word are
read by the HPC (most significant bit first).

s [_Sad m@mmmmm\\\\\

*This bit becomes valid immediately when the transmitting device loads its SIO register. The HPC guarantees it to be valid for at least 1 full SK period before the
rising edge of the first SK pulse presented.

T Arrows indicate points at which Sl is sampled.

TL/DD/9978-2

FIGURE 2. MICROWIRE/PLUS Transfer

Master presents eight pulses on SK pin; each pulse transfers one bit in and out.

2.2 Write Commands

To write data into the EEPROM, a sequence of commands
is entered:

an EWEN command (Erase/Write Enable):
00000O0O01 00110000
an ERASE command:
00000O0O01 11AAAAAA
("A" = Address bits,
most-significant bit first)

a pause of 16 to 25 milliseconds, with CS
low,

a WRITE command:
00000O0O01
DDDDDDDD

("A" = Address bits,

"D" = Data bits,
most-significant bit first)

a pause of 16 to 25 milliseconds, with CS
low,

and, finally, an EWDS command (Erase/Write
Disable) :

0000O0O0O0T1

OlLAAAAAA
DDDDDDDD

0000O0O0O0O

3.0 LISTING AND COMMENTARY

The listing provided shows three necessary segments of a

program to access the EEPROM device:

1) initialization of the MICROWIRE/PLUS port on the HPC,

2) two program fragments of a Main Program which would
initiate a Read or a Write operation,

3) an interrupt service routine (attached to Timer T5) which
actually performs the transfers.

3.1 Initialization

On receiving a Reset signal, the HPC begins execution at
the label “start”. It loads the PSW register (to select 1 Wait
state), and then removes all interrupt enables.

At label “sram”, all RAM within the HPC is initialized to zero.

At “suwire”, the MICROWIRE/PLUS interface pins are ini-
tialized. The MICROWIRE/PLUS interface is then set to the
CKI/128 bit rate (125 KHz clocking at 16 MHz crystal fre-
quency). The internal interface is not completely cleared by
the Reset signal, so the firmware must set it up and wait (at
label “suwlp”) for the interface to become ready. Once this
has been done, a byte of all zeroes is sent to the EEPROM
to terminate any Write operation that might have been in
progress when the Reset was received.

At “tminit”, the timers T1-T7 are stopped and any inter-
rupts pending from timers TO-T7 are cleared. The individual
timer interrupt enables are then cleared.

The program then continues to label “minit”, which initializ-
es the variables in the HPC’s on-chip RAM to their proper
contents.

At label “runsys”, the necessary interrupt is enabled (from
the timers), and execution continues to the body of the Main
Program.

There follow now two fragments of illustrative main program
code which can be used to trigger the process of reading
and writing the EEPROM.

3.2 Reading

The main program and interrupt routines given here enable
reading from one to eight bytes from the EEPROM, starting
at the beginning of any word.

At label “rnvr”’, an EEPROM READ command is construct-
ed from the EEPROM starting address and placed in the
variable “nvrcmd”. The number of bytes to be transferred is
placed in the variable “nvrnum”. Control is then transferred
to the label “nvrx”, where Timer T5 is set up to generate
scheduling interrupts for reading data from the EEPROM.

The variable “nvrs” indicates the state of an EEPROM ac-
cess from one interrupt to another: its top bit (“nvravl”)
shows whether the EEPROM is already being used, bit 6
(“nvrwr”’) shows whether it is being written or read, and the
low-order 4 bits hold a state number, which is used to trans-
fer control to the appropriate code within the Timer T5 inter-
rupt service routine.

On each Timer T5 interrupt (see labels “tmrint”, “t5poll”,
“t5int”), the timer is stopped, a check is made to determine
whether the EEPROM is being read or written (T5 interrupts
are used for both), and then a multiway branch (jidw) is per-
formed based on the state number in the variable “nvrs”.
The state number is incremented on each interrupt. On a
Read transfer, five states are entered, at the following la-
bels:

t5rd0 activates the chip select to the EEPROM and initi-
ates the MICROWIRE transfer to send the first
byte of a READ command. Timer T5 is started to
time out the MICROWIRE transfer.

t5rd1 sends the second byte of the READ command.
Timer T5 is started to time out the MICROWIRE
transfer.

t5rd2 initiates the MICROWIRE transfer to read the first
byte of data from the current EEPROM word. Tim-
er T5 is started to time out the MICROWIRE trans-
fer.

t5rd3 accepts the first byte of the data into the high-or-
der byte of the variable “nvword”, and initiates the
transfer to read the second byte of the current
EEPROM word. Timer T5 is started to time out the
MICROWIRE transfer.

t5rd4 accepts the second byte from the EEPROM into
the low-order byte of the variable “nvword”, and
then moves the word into the EEPROM string buff-
er, called “nvrbuf”, using a pointer called “nvrptr”.
It then checks whether the requested number of
bytes has been read (by decrementing the
“nvrnum” variable). If so, it leaves Timer T5
stopped, disables its interrupt and returns. This
would also be the proper place to set a semaphore
flag to acknowledge to the main program that the
reading is complete. (Code for this is not included
here; it would vary from system to system.) If the
requested number of bytes has not yet been read,
it increments the address field of the READ com-
mand in “nvrcmd”, resets the state field in “nvrs”
to zero, leaves Timer T5 interrupts enabled, and
jumps directly to the “t5rd0” routine to continue.

3.3 Writing

At label “wnvr”, an EEPROM ERASE command is con-
structed from the word address supplied by the CPU. The
16-bit value to be written is placed in the variable “nvword”.
As in the READ-NVR command above, the “nvrs” variable
is initialized to select the first state of an EEPROM write
operation, and Timer T5 is used to provide the interrupts

that schedule the steps. There are 13 states involved in
writing a word to the EEPROM, at the following labels:

towr0 activates the chip select signal to the EEPROM,
and sends the first byte of an EWEN command to
enable ERASE and WRITE commands. Timer T5
is started to time out the MICROWIRE transfer.

t5wri sends the second byte of the EWEN command.
Timer T5 is started to time out the MICROWIRE
transfer.

tswr2 removes the chip select signal briefly (to signal the
beginning of a new command), then sends the first
byte of an ERASE command. Timer T5 is started
to time out the MICROWIRE transfer.

t5wr3 sends the second byte of the ERASE command,
from the variable “nvrecmd”. Timer T5 is started to
time out the MICROWIRE transfer.

téwr4 removes the chip select signal, then sets up the
Timer T5 interval to 20 milliseconds, to time the
duration of the EEPROM’s internal Erase pulse.

t5wr5 (entered 20 milliseconds after “t5wr4”) re-asserts
the chip select signal to the EEPROM, and trans-
fers the first byte of a WRITE command. Timer T5
is started to time out the MICROWIRE transfer.

t5wré alters the command in “nvrcmd” to a WRITE com-
mand, then transfers it as the second command
byte to the EEPROM. Timer T5 is started to time
out the MICROWIRE transfer.

t5wr7 transfers the first byte of data to be written. Timer
T5 is started to time out the MICROWIRE transfer.

t5wr8 transfers the second byte of data to be written.
Timer T5 is started to time out the MICROWIRE
transfer.

t5wr9 removes the chip select signal, then sets up the
Timer T5 interval to 20 milliseconds, to time the
duration of the EEPROM’s internal Write pulse.

t5wr10 (entered 20 milliseconds after “t5wr9”) re-asserts
the chip select signal to the EEPROM, and trans-
fers the first byte of an EWDS command (Erase/
Write Disable). Timer T5 is started to time out the
MICROWIRE transfer.

tswr11 transfers the second byte of the EWDS command.
Timer T5 is started to time out the MICROWIRE
transfer.

tswr12 removes the chip select signal to the EEPROM,
keeps Timer T5 stopped, disables its interrupt, and
returns. This would also be the proper place to set
a semaphore flag to acknowledge to the main pro-
gram that the writing is complete. (Code for this is
not included here; it would vary from system to
system.)

3.4 Source Listing

NSC ASMHPC, Version E2 (Nov P2 15:51
HPC-Based Driver for NMC93P6/9345

;
;

WOONANHUWN =

NSC ASMHPC, Version E2 (Nov §2 15:51 1987)

HPC-Based Driver for NMC9396/9345

TIMCON = 19999

1987) EEPROM

.title EEPROM,'HPC-Based Driver for NMC9386/9345'

This code is written to drive either the 256-bit NMC93P6 (COP494)

or the 1824-bit NMC9345 (COP495) MICROWIRE(tm) EEPROM.

NOTE: Timing values assume that the HPC is running at 16MHz

crystal frequency. For correct programming pulse
widths, one shoultd not deviate far from this without
adjusting the timing constant below.

; 200PB counts at 1 usec = 2§ msec.

; Timing constant for ERASE and WRITE
; pulse widths.

EEPROM

Declarations: Register Addresses
}5 .form '‘Declarations: Register Addresses'
[}
17 ppco psw = X'CP:w ; PSW register
18 p@c8 at = x'C8:b ; Low byte of Accumulator.
19 @pco ah = x'C9:b ; High byte of Accumulator.
29 gpcc bl = Xx'CC:b ; Low byte of Register B.
21 goCD bh = x'CD:b ; High byte of Register B.
22 PBCE xl = x'CE:b ; Low byte of Register X.
23 PpCF xh = X'CF:b ; High Byte of Register X.
24
25 P09 enir = x'D@:b
26 @PD2 irpd = x'D2:b
27 P904 ired = X'Db:b
28 @906 sio = x'D6:b
29 9908 porti = x'D8:b
30 PREQ obuf = X'E@:b ; (Low byte of PORTA.)
31 99E1 portah = X'E1:b ; High byte of PORTA.
32 pgE2 portb = X'E2:w
33 poE2 portbl = X'E2:b ; Low byte of PORTB.
34 PPE3 portbh = x'E3:b ; High byte of PORTB.
35 PPES upic = X'E6:b
36 PPFP ibuf = Xx'FP:b ; (Low byte of DIRA.)
37 99F1 dirah = x'F1:b ; High byte of DIRA.
38 9OF2 dirb = X'F2:w
39 ppF2 dirbl = x'F2:b ; Low byte of DIRB.
40 POF3 dirbh = x'F3:b ; High byte of DIRB.
41 POFL bfun = X'Fb:w
42 PRFL bfunl = X'F4:b ; Low byte of BFUN.
43 POFS bfunh = x'F5:b ; High byte of BFUN.
44
45 P14 portd = x'@104:b
46 D129 enu = x'9129:b
47 122 enui = x'9§122:b
48 P124 rbuf = x'P124:b
49 p126 tbuf = x'0126:b
59 p128 enur = x'9128:b
51
52 @149 té4 = x'P149:w
53 9142 r4 = X'@142:w
54 P144 t5 = x'P144:w

$3-May-88 19:53
PAGE

1

TL/DD/9978-3

93-May-88 19:53

PAGE 2

TL/DD/9978-4

NSC ASMHPC, Version E2 (Nov P2 15:51 1987) EEPROM
HPC-Based Driver for NMC9396/9345
Declarations: Register Addresses
55 P146 r5 = x'Pi46:w
56 9148 té = x'0148:w
57 P14A ré = X'P14A:w
58 p14C t7 = X'@14C:w
59 PI4E r7 = X'P14E:w
6P 2159 pwmode = X'@150:w
61 9158 pwmdl = x'P15@:b ; Low byte of PWMODE.
62 9151 pwmdh = x'@151:b ; High byte of PWMODE.
63 9152 portp = x'8152:w
64 152 portpl = x'8152:b ; Low byte of PORTP.
65 9153 portph = x'8153:b ; High byte of PORTP.
6«; p15¢C eicon = x'P15C:w
6
68 9182 t1 = x'P182:m
69 p184 r1 = x'P184:w
79 9186 r2 = x'$186:w
71 p188 t2 = x'9188:w
72 P18A r3 = X'D18A:w
73 918C t3 = x'818C:w
74 P18E divby = X'P18E:w
75 P18E divbyl = x'@18E:b ; Low byte of DIVBY.
76 P18F divbyh = x'918F:b ; High byte of DIVBY.
77 9199 tmmode = X'0190:w
78 9199 tomdl = x'2199:b ; Low byte of TMMODE.
79 8191 tmndh = x'8191:b ; High byte of TMMODE.
8% 8192 tfcon = x'9192:b
8
82
NSC ASMHPC, Version E2 (Nov @2 15:51 1987) EEPROM
HPC-Based Driver for NMC9396/9345
Declarations: Bit Positions
83 .form ‘'Declarations: Bit Positions'
84
85 ; Name Position Register(s)
86 Pttt mmmeees eeeeeeeees
87
88 9pPR gie = [} ; enir
89 PpRP ip = 2 ; porti only
90 PpR2 i2 = 2 ; enir, irpd, ired
91 9993 i3 = 3 ; enir, irpd, ircd
92 PpRL it = 4 ; enir, irpd, ircd
93 29P5 tmrs = 5 ; enir, irpd
94 99P6 vart = 6 ; enir, irpd
95 PpR7 ei = 7 ; enir, irpd
96
97 #9p1 uwmode = 1 ; ired
98 2209 uwdone = '] ; irpd
99
199 2009 tbmt = ? ; enu
191 9901 rbfl = 1 ; enu
192 0904 b8or9 = 4 ; enu
103 2095 xbit9 = 5 ; enu
194 Pp@2 wakeup = 2 ; enur
195 9903 rbit9 = 3 ; enur
106 996 frmerr = 6 ; enur
107 9p97 doeerr = 7 ; enur
198 9pA% eti = ') ; enui
199 9901 eri = 1 ; enui
119 9992 xtelk = 2 ; enui
111 93 xrelk = 3 ; enui
112 98P97 b2stp = 7 ; enui
113
114 9009 wrrdy = [i upic
115 gep1 rdrdy = 1 ; upic
116 90p2 tag = 2 ; upic
117 9903 upien = 3 ; upic
118 PPR4 b8or16 = 4 ; upic
119
120 pp@P thtie = [; tmmdl
121 g8R1 tppnd = 1 ; tmmdt
122 PR3 tPack = 3 ; tmmdl

$§3-May-88 19:53
PAGE 3

TL/DD/9978-5

§3-May-88 1@:53
PAGE 4

TL/DD/9978-6

NSC ASMHPC, Version E2 (Nov #2 15:51 1987) EEPROM @3-May-88 19:53
HPC-Based Driver for NMC93P6/9345 PAGE 5
Declarations: Bit Positions

123 9P04 titie = 4 ; tmndl

124 0995 tipnd = 5 ; tmmdl

125 9006 tistp = 6 ; tmmdl

126 9097 tlack = 7 ; tmmdl

127 0009 t2tie =] ; tmmdh

128 @001 tepnd = 1 ; tmmdh

129 ppe2 t2stp = 2 ; tomdh

139 9993 t2ack = 3 ; tmmdh

131 9004 t3tie = 4 ; tmmdh

132 9905 tipnd = 5 ; tmmdh

133 0006 t3stp = 6 : tmmdh

134 pRR7 t3ack = 7 5 tmmdh

135

136 PPPR titie = [} ; pwmdl

137 pop1 tépnd = 1 ; pwmdl

138 po@2 t4stp = 2 ; pwmdl

139 p@3 téack = 3 ; pwmdl

149 P94 tStie = 4 ; pwmdl

141 PeR5 tSpnd = 5 ; pwmdl

142 P06 t5stp = [; pwmdl

143 9097 tSack = 7 ; pwmdl

144 000P tétie = '] ; pwmdh

145 901 tépnd = 1 ; pwmch

146 9092 téstp = 2 ; pwmdh

147 9093 téack = 3 ; pwmdh

148 popsd t7tie = 4 ; pwmdh

149 9005 t7pnd = 5 ; pwmdh

150 9906 t7stp = 6 ; pwmdh

151 P9PR7 t7ack = 7 ; pwndh

152

153 9pPQ téout = ['] ; portpl

154 9903 tétfn = 3 ; portpl

155 @904 tSout = 4 ; portpl

156 9997 t5tfn = 7 ; portpl

157 9909 téout = [; portph

158 20@3 tétfn = 3 ; portph

159 2PQ4 t7out = 4 ; portph

169 9997 t7tfn = 7 ; portph

161

162 9ppg eipol = [} ; eicon

TL/DD/9978-7

NSC ASMHPC, Version E2 (Nov §2 15:51 1987) EEPROM $3-May-88 19:53
HPC-Based Driver for NMC9396/9345 PAGE 6
Declarations: Bit Positions

163 0901 eimode = 1 ; eicon

}215. 9092 eiack = 2 ; eicon

166 20RP txd = '] ; portbl, dirbl, bfunl

167 9903 t2in = 3 ; portbl, dirbl

168 905 so = 5 ; portbl, dirbl, bfunl

}gg 20096 sk = 6 ; portbl, dirbl, bfunl

171

TL/DD/9978-8

NSC ASMHPC, Version E2 (Nov §2 15:51 1987)
HPC-Based Driver for NMC93p6/9345
Space Declarations

EEPROM P3-May-88 19:53
PAGE

7

172 .form ‘'Space Declarations’®

173 2009 .sect DSECT,BASE,REL

174

175 ;WORD-ALIGNED VARIABLES

176

177 2099 stackb: .dsw 16 ; Space for 16 words.

178 9929 nvrbuf: .dsw 4 ; EEPROM String Buffer.

179 pp28 nvrptr: .dsw 1 ; Pointer into EEPROM Data buffer.

180 P92A nvword: .dsw 1 ; Scratch location for gathering EEPROM data as words.

181

182 sBYTE-ALIGNED VARIABLES

183

184 pp2C nvremd: .dsb 1 ; Current EEPROM command.

185 #P20 nvenum: .dsb 1 ; Byte count for current EEPROM Read command.

186 9P2E nvrs: .dsb 1 ; EEPROM status byte: phase number for sequencing MICROWIRE
187 s transfers.

188

189 ;BIT DEFINITIONS

199

191 ; NVRS byte: Status of EEPROM MICROWIRE transfers.

192 H Contains phase (step number) of current EEPROM command
193 H in low-order 4 bits. Top two bits are as follows:
194 pPO7 nvravi= 7 ; When set, indicates that no EEPROM command is in progress.
195 #PR6 nvrwr= 6 ; P means an EEPROM Read is in progress; 1 means EEPROM Write.
196

197

NSC ASMHPC, Version E2 (Nov $2 15:51 1987)
HPC-Based Driver for NMC9396/9345
Code Section

198 .form
199 9pop .sect
200

201 PRP@ B7PPR8CH start: Ud
202 9ppL 979009 td
203

294

205 pop7 sram:

206

207 §PA7 BDPPBE ld
208 PPPA 99 sraml1: clr
209 pPP8 E1 XS
218 9pRC 62 ip
211

212

213 9PPD A7P1CAPIFE ud
214 9012 99 sramt2: clr
215 9913 E1 xs
216 §p14 62 ip
217

218 P15 suwire:

219

220

221

222

223 P15 Q6F4LPD sbit
224 PP18 96F2PD sbit
225 PP1B 96E21E rbit
226 PPIE 96F2PE sbit
227 9921 96FLPE sbit
228 Pp24 96D4P9 sbit
229 PP27 872225@18EAB ld
239

231 P@2D 960219 suwlp: ifbit
232 9939 41 ip
233 P31 64 ip
234

235 pp32 snvri:

236 P@P32 B6P1520C sbit
237 PR36 979R06 td

TL/DD/9978-9

EEPROM 93-May-88 19:53
PAGE

8

'Code Section!

CSECT,ROM16,REL ; Code space.

psw, #x198 ; Set one WAIT state.
enir,#x'00 ; Disable interrupts
; individually.
; Clear all RAM locations.

; Basepage bank:
BK, #x'9P00, #x' @PBE ; Estabtish loop base and limit.
A
A, [B+].w
sraml1

; Non-basepage bank:
BK, #x'91CQ, #x'P1FE ; Establish loop base and limit.

A, [B+].w
sraml2
; MICROWIRE setup.
; (EEPROM is automatically
; deselected on reset, since
; Port P is cleared.)
so,bfunt ; Enable SO output.
so,dirbl
sk,portbl ; Set up SK output.
sk,dirbl
sk,bfunt
uwmode, ircd Set Master Mode.

divby, #x'2225 Set MICROWIRE frequency.

uwdone, irpd ; Wait until MICROWIRE
snvri ; interface ready (UWDONE
suwlp ; bit set).

; Cancel any EEPROM Write in progress:
t5out, portpl ; Set EEPROM Chip Select active.
sio,#9 ; Send a byte of zeroes.

TL/DD/9978-10

INSC ASMHPC, Version E2 (Nov P2 15:51 1987)
HPC-Based Driver for NMC9386/9345
Code Section

238 PP39 960219 suwlpl: ifbit

239 p93C 41 ip
249 P30 64 ip
241 PP3E B6R1521C snvr2: rbit
242

243 P42 83p8p19288 tminit: ld
244 PPLT BT444DP19PAB \d
245 PP4D B355P18EAB td
246

247 PP52 87CCCBR19PAB id
248

249

250 PP58 8744449150AB]
251 POSE 49 nop
252 PPSF 4P nop
253 PP6P 87CCCCP15PAB ud
254

255

256

257 PR66 BTFFFFP146AB td
258

NSC ASMHPC, Version E2 (Nov §2 15:51 1987)
HPC-Based Driver for NMC9396/9345
Main Program Initialization

259 .form
269

261 @p6C minit:

262 PP6C 978P2E R ld
263 PP6F B7PR2228 R td
264

265 9973 runsys:

266

267 PR73 96DPPD sbit
268

269

279 PA76 96098 sbit
271

272

EEPROM
uwdone, i rpd ; Wait until MICROWIRE
snvrg ; interface ready (UWDONE
suwlpl ; bit set).
t5out,portpl ; Remove EEPROM Chip Select.

tBcon, #x'@8
tmmode , #x ' 4448
divby, #x' 9055

Stop timers T1, T2, T3,
MICROWIRE frequency set
to CK1/128.

Clear and disable timer
T9-T3 interrupts.

tmmode, #x ' CCC8

pwmode, #x'4444 ; Stop timers T4-T7.
; Wait for Pending bits to
; trickle through before clearing them.
pwmode, #x'CCCC ; Clear and disable
; interrupts from all
; PwM timers.
r5,#x FFFF ; No modulus for EEPROM timer.
EEPROM

'Main Program Initialization'
nvrs,#x'8p ; Set EEPROM available.
nvrptr,#nvrbuf ; Set EEPROM pointer to start of buffer.
; Enable timer interrupts, and go to main.
tmrs,enir ; Enable timer interrupts. (Done here
; to allow engine commands without an
X X ; INITIALIZE command first.)
gie,enir ; Enable interrupt system.

P3-May-88 19:53
PAGE

p3-May-88 19:53
PAGE

9

TL/DD/9978-11

12

TL/DD/9978-12

NSC ASMHPC, Version £2 (Nov @2 15:51 1987)
HPC-Based Driver for NMC9306/9345
Main Program Fragments

273 .form
274

275 H

276

277

278

279 9099 nvradr =
289 ABCD nvrdta =
281 0p94L nvrbyt =
282

283 ; Read Fragment:
284

285 9979 9028 ravr: ld
286 9978 993F and
287 997D E7 sht
288 PP7E 8B2C R st
289 9082 9094 td
299 9982 882D R st
291 9p84 979P2E R ud
292

293 9@87 B79p2028 R ld
294 9P88 4E jmpl
295

296

297 ; Write Fragment
298

299 9P8C B7ABCD2A R wnvr: id
300 2090 9909 td
301 9092 993F and
392 9994 882C R st
303

304 9996 9T4P2E R d
305

306 9999 4P jmpl
397

308

399

318
311 9P9A nvrx:
312

NSC ASMHPC, Version E2 (Nov @#2 15:51 1987)
HPC-Based Driver for NMC9306/9345
Main Program Fragments

313 PPPA 87FFFFP146AB

314

315 PPAR 839PP144AB

316

317 @PAS B6P1500C
318 PPAP B6P1501E

td
\d
sbit
rbit

"R
*hk
"rw

w
~N
ER N 0

PRAD 69 ip

EEPROM

P3-May-88 19:53
PAGE 11

'Main Program Fragments'

These values are declared as constants;
contained within variables.
then be deleted in the instructions referencing them.

[
X 'ABCD
4

reads up to 4
A, #nvradr

A, #x'3F

A

A, nvremd

A, #nvrbyt

A, nvrnum
nvrs,#9

nvrptr, #nvrbuf
nvrx

more typically they would be
Note that the pound-sign character must

; EEPROM address: change to suit your application.
; Written data:
; Number of bytes to read (1-8):

change to suit.
change to suit.

words (8 bytes) from EEPROM.

Get NVR starting address.

Truncate to legal limit.

Create NVR READ command.

Place it in memory.

Get number of bytes requested.

Save byte count in memory.

Set up NVR access status flags:

Read transfer in progress, first phase.
Reset buffer pointer to beginning.

Go start up transfer.

: writes one word to EEPROM.

nvword, #nvrdta
A, #nvradr

A, #x'3F

A, nvremd
nvrs,#x'49

nvrx

EEPROM

r5, #x FFFF
t5,#9

t5tie, pwndt
t5stp, pwndt

Get data word.
Get EEPROM address.
Mask it for proper range.
Store it in Command byte in memory.
(Opcode = @@ at this point.)
Set up NVR access status flags:
Write transfer in progress, first phase.
Go start up transfer.

; Common routine, performed by both READ and WRITE.

; Start interrupts from Timer TS5 to schedule
: accesses to EEPROM.

TL/DD/9978-13

§3-May-88 1p:53
PAGE 12

; Interrupts are not repetitive; give R5 a
; high value.

; Set Timer 75 to interrupt (almost)
; immediately when started.

; Enable interrupt from Timer TS.

; Start Timer T5.

*** One could replace the following instruction with one that
Looks for an appropriate semaphore bit to be set, indicating
that the requested operation has been completed.
comments beginning with "¥wxu,

See other

; Stops HPC, except for interrupt service.

END OF MAIN PROGRAM FRAGMENTS.

TL/DD/9978-14

10

NSC ASMHPC, Version E2 (Nov 92 15:51 1987) EEPROM
HPC-Based Driver for NMC9396/9345

Timer Interrupt Handler

P3-May-88 18:53
PAGE 13

329 .form 'Timer Interrupt Handler'
330
331 H The Timer TS interrupt service routine does all the work. Each
332 H interrupt sequences the next step of the READ or WRITE
333 H operation in progress.
334
335 FFF4 AEQP R .ipt 5,tmrint ; Declare entry point for Timer Interrupt.
336
337 PPAE AFC8 tmrint: push A ; Save context.
338 ppPBP AFCP push PSW.W ;
339
349 PPB2 B6P1SP1S tSpoll: ifbit tSpnd, pwndl s Polt for Timer T5 interrupt (EEPROM Timing
341 P86 41 jmpl t5int ; Interrupt).
342
342 PPB7 69 jp . ; Otherwise, error. Stop KPC.
34
345 PPB8 B6P15PPE tSint: sbit t5stp, pwmdl ; Stop Timer T5.
346 PPBC B6R1SPAF sbit tSack, pwmdl ; Clear interrupt request. (Doing this
347 ; immediately is acceptable here.)
348 PACP 962E16 R ifbit nvrwr,nvrs ; Check whether Read or Write operation is
349 ; is in progress.
358 9BC3 9483 jmpl tSwr ; If Write, go perform
351 ; Enable/Erase/Write/Disable operation.
352 pacs tSrd: ; Else, program is reading from EEPROM.
353 @aCS 882E R td A,nvrs ; Get phase info.
354 PPC7 892E R inc nvrs ; Increment memory value for next TS5 interrupt.
355 P9CY 99PF and A, #x'QF ; Extract phase number.
356 P9CB E7 shl A ; Jump based on this number.
pace 49
357 pacD .odd
358 #0CD EC jidw
359 PACE PAPQ .ptw t5rdg, t5rd1, t5rd2, t5rd3, tSrds
P00P 1809
PPD2 289D
9eD4 3599
PPD6 4509
369
361 PPD8 B6P1528C t5rd@: sbit t5out,portpl ; Set chip select signal to EEPROM.
362 PADC 979306 ld sio, #x'@3 ; Send first part of NVR Read command.
363 Format is: 1/19/A5-A9/9 , TL/DD/2978-15
NSC ASMHPC, Version £2 (Nov P2 15:51 1987) EEPROM P3-May-88 1@:53

HPC-Based Driver for NMC9386/9345

Timer Interrupt Handler

364

365

366

367

368

369 QPDF

379 PRESL

371 PPE8

372

373 PPEB

374

375 POEE

376 PPF3

377 PRF7

378

379 POFA

38p PRFD

381 9192

382 196

383

384 9199

385 p1AC

386 P19F

387 9114

388 9118

389

399 8118

391 911E

392 @122

393 @124
394 9127
395 9129
96

3

397 @128
398 p12c
399 p120
490

4

492 P12F
493 P31

835Ap144A8
B6P1581E
B4P151

8C2CD6

835A9144AB
B6Q1591E
B4P142

970906
835AP144A8
B6P1501E
B4P133

8cDé28
979006
835AB144A8
B6@1501E
B4@121

B8CD62A
B6@1521C

A928
8A2D

41
45
A928

8A2D
4A

DOWIO B

t5rdl:

t5rd2:

t5rd3:

tSrdé:

t5rdh:

PAGE 14

where first bit is start bit (always '1'),

next two bits are operati

on (1@=read),

next 6 bits are EEPROM address,
last bit is "padding" for access time.

ld t5,#90

rbit t5stp, pwmndl
jmpl tmrret

; Start Timer T5.
; Return from interrupt.

td sio,nvrcmd
eight bits).

ld t5,#99

rbit t5stp, pwmndl

jmpl tmrret

; Start Timer T5.
; Return from interrupt,

; Start reading MSB of EEPROM data.

;
;
;
:- This phase sends top two bits of command.
;
;
;

; Set up for interrupt after MICROWIRE transfer.

Send second part of NVR Read command (bottom

H
:- Set up for interrupt after MICROWIRE transfer.
:
;

td sio,#0 :

(d t5,#98 ; Set up for interrupt after MICROWIRE transfer.
rbit t5stp, pwmdl ; Start Timer T5.

jmpl tmrret ; Return from interrupt.

td nvword+1.b,sio ; Accept MSB of EEPROM data to word buffer.

td sio, ; Start reading LSB of EEPROM data.

id 5,499 ; Set up for interrupt after MICROWIRE transfer.
rbit t5stp, pwndl ; Start Timer T5.

jmpl tmrret ; Return from interrupt.

(to signal that a whole word was input to

buffer).

decsz nvrnum ; Check whether done.

td nvword.b,sio ; Accept LSB of EEPROM data to word buffer.
rbit t5out, portpl ; Remove EEPROM chip select signal.
\d A, nvword ; Get EEPROM data word.
st A, (nvrptrl.w ; Store in EEPROM buffer for CPU.
inc nvrptr ; Increment EEPROM buffer pointer once.
decsz nvrnum ; Check whether both bytes of the word were
; requested.
ip t5rdh ; Yes: continue.
ip t5rddn ; No: done with reading.
inc nvrptr ; Increment EEPROM buffer pointer a second time
;
;
;
H

p t5rnxt

No: Initiate another Read command.

TL/DD/9978-16

1

NSC ASMHPC, Version E2 (Nov P2 15:51 1987)
HPC-Based Driver for NMC9306/9345

Timer Interrupt Handler

494
495 §132 B6PISPIC
496 P136 962EPF
497

408

499 P139 B4P1PP
419

411 P13C

412

413 p13C 97002€

414 913F 892C
415 9141 892C
416

417 143 962C1F
418

419 9146 9581

429

421

422

423 9148

424 9148 882E

425 P14A 892E

426 14C 992F

427 P14E E7

428 P14F

429 914F EC

439 9150 1Ap@
§152 2AR9
8154 3600
2156 48P

431 9158 5B0Q
$15A 6999
815C 7909
915€ 8899

432 @168 9400
9162 ApP@
9164 AEQR
9166 BDPR

433 9168 C8pp

434

o >ox

t5rddn:

tSrnxt:

t5wr:

rbit
sbit

impl

id
inc
inc
rbit

impl

.ptw

.ptw

EEPROM

tStie, pwmdl
nvravl,nvrs
;*** Here you'll want to set a semaphore bit saying that the READ
;*** transfer is done.

tmrret

nvrs, #x'99

nvremd
nvremd

7,nvremd
t5rd

A,nvrs
nvrs

A, #x'9F
A

’
v
H
i
’
’
’
H
7
v

p3-May-88 19:53
PAGE 15

Yes: Terminate and pass data to CPU.
Disable Timer 15 interrupts.
Set NVR available for more commands.

Return from interrupt.

Here, more data needs to be read from the
EEPROM. Initiate another read cycle.

Set up new transfer phase = 8.

Increment address field of NVR command.
(Two increments are needed: field starts
in Bit 1.)

; Prevent increments from altering operation

field. This allows addresses to roll over.
Rather than triggering a Timer T5 interrupt,
just jump to T5 Read interrupt service again.

EEPROM Write sequence starts here.

.

Get phase info.

; Increment memory value for next T5 interrupt.

H
i

Extract phase number.

; Jump based on this number.

t5wrd, tSwr1, t5wr2, tSwrl

t5Wré, t5WrS, t5wrb, twr?

t5wr8, tSwr9, tSwr1d, tSwr1t

t5wr12

TL/DD/9978-17

12

NSC ASMHPC, Version E2 (Nov 82 15:51 1987) EEPROM P3-May-88 18:53
HPC-Based Driver for NMC93P6/9345 PAGE 16
Timer Interrupt Handler

435 P16A B6@1520C tSwr@: sbit t5out, portpl ; Set chip select signal to EEPROM.

436 P16E 978106 td sio, #x'P1 ; Send start bit of EWEN command.

437 9171 835AP144AB td t5,#99 ; Set up for interrupt at end of MICROWIRE
438 ; transfer.

439 P176 B6P15B1E rbit t5stp, pwmdl ; Start timer T5.

440 P17A 94CQ jmpl tmrret ; Return from interrupt.

441

442 P17C 973906 tSwri: Ud sio,#x'30 ; Send body of EWEN command.

443 P17F 835AP144AB ld t5,#90 ; Set up for interrupt at end of MICROWIRE
444 ; transfer.

445 P184 B6P15B1E rbit t5stp, pwmdl ; Start timer T5.

446 P188 9482 jmpl tmrret ; Return from interrupt.

447

448 P18A B6P1521C t5wr2: rbit t5out, portpl ; Remove EEPROM select momentarily to signal
449 P1BE 4P nop ; end of EWEN command, then:

459 P18F B6P1520C sbit tSout, portpl

451 p193 97p1D6 id sio, #x'B1 ; Send Start Bit for ERASE command.

452 P196 B35AP144AB id t5,#99 ; Set up for interrupt at end of MICROWIRE
453 ; transfer.

454 9198 B6P15P1E rbit t5stp, pwmdl ; Start timer TS.

455 P19F 9498 jmpl tmrret ; Return from interrupt.

456

457 P1A1 82CA2CDA R tSwr3: or nvremd, #x¢CP ; Change NVR Command byte to ERASE command.
458 P1A5 8C2CD6 R td sio,nvrcmd ; Send to EEPROM.

459 P1A8 835AR144AB (d t5,#98 ; Set up for interrupt at end of MICROWIRE
469 ; transfer.

461 @1AD B6P15SPIE rbit tSstp, pwmdl ; Start timer T5.

462 P1B1 9489 jmpl tmrret ; Return from interrupt.

463

464 P1B3 B681521C t5wr4: rbit t5out, portpl ; Remove EEPROM chip select signal, starting
465 ; ERASE pulse inside EEPROM.

466 9187 B74E1FP144AB ld t5,#TIMCON ; Set up for delay of 2@

467 ; milliseconds (erase pulse width).

468 918D B6P1SPIE rbit t5stp, pwmdl ; Start timer T5.

469 91C1 9479 jmpl tmrret ; Return from interrupt.

479

471 P1C3 B6@1520C t5wr5: sbit t5out, portpl ; Set EEPROM chip select signal again, ending
472 ; the ERASE pulse inside EEPROM.

473 PI1C7 979106 id sio, #x'P1 ; Send Start bit for Write command.

474 PICA 835AP144AB td t5,#99 ; Set up for interrupt at end of MICROWIRE

TL/DD/9978-18

13

NSC ASMHPC, Version E2 (Nov P2 15:51 1987)
HPC-Based Driver for NMC9396/9345
Timer Interrupt Handler

475
476 PICF BOPISPIE rbit
477 9103 9467 mpl
478

479 P1D5 962C1F R tSwré: rbit
489 108 BC2CD6 R d
481 91DB 835AB144AB td
482

483 P1EP B6P1SPIE rbit
484 PIEL 9456 impl
485

486 P1E6 BC2BDG6 R tSwr7: (d
487 P1E9 835AR144AB ld
488

489 PIEE B6PISPIE rbit
499 P1F2 9448 jmpl
491

492 P1F4 BC2AD6 R tSwr8: Ld
493 P1F7 B35AB144AB \d
494

495 P1FC BOPISPIE rbit
496 P2pP 943A impl
497

498 9292 B6R1521C t5ur9: rbit
499

5p9 P2P6 BTLE1FRI44AB d
5p1

592 P20C BSP1SRIE rbit
503 P219 942A jmpl
504

505 9212 B6R1520C t5wr1P: sbit
506

597 216 9791D6 \d
508

599 219 B35AP144AB \d
519

511 P21E BERISPIE rbit
512 222 59 jmpt
513

514 9223 979PD6 t5wri1: Ld

NSC ASMHPC, Version E2 (Nov 92 15:51 1987)
HPC-Based Driver for NMC9396/9345
Timer Interrupt Handler

515 9226 835A@144A8 ud
516

517 9228 B6@15B1E rbit
518 P22F 4C jmpl
519

52p 0239 B6@1521C tSwr12: rbit
521 9234 B6@1591C rbit
522 P238 962EQF sbit

524 b

525 9238 49 jmpt
526

527 §23C 3FCP tmrret: pop
528 @23E 3FC8 pop
529 9249 3E reti
539

531 9241 .end

t5stp,
tmrret

7,nvre

EEPROM

pwmdl

md

sio,nvremd

t5,#9¢

t5stp,
tmrret

sio, nvword+1.b

5,499

t5stp,
tmrret

pwmd L

pwmdl

sio,nvword.b

t5,#99

tSstp,
tmrret

tSout,

pwmdl

portpl

tS, #TIMCON

t5stp,
tmrret

tSout,

pwmdl

portpl

sio, #x'91

t5, #99

tSstp,
tmrret

pwmd

sio, #x'9p

5,499

t5stp,
tmrret

tSout,
tStie,
nvravl

tmrret

pSW.W

start

EEPROM

pwmdl

portpl
pwmdi

,nvrs

P3-May-88 19:53
PAGE 17

transfer.

; Start timer T5.

e se e s e ne

SemeseseNe Sesenessve

Return from interrupt.

Create WRITE command in NVR Command byte.
Send to EEPROM.

Set up for interrupt at end of MICROWIRE
transfer.

Start timer T5.

Return from interrupt.

Send MSB of data to EEPROM.

Set up for interrupt at end of MICROWIRE
transfer.

Start timer T5.

Return from interrupt.

Send LSB of data to EEPROM.

Set up for interrupt at end of MICROWIRE
transfer.

Start timer T5.

Return from interrupt.

Remove EEPROM chip select, starting Write
pulse within EEPROM.

Set up for delay of 2@

milliseconds (write pulse width).

Start timer T5.

Return from interrupt.

Set EEPROM chip select signal, ending Write
pulse within EEPROM.

Send Start bit for EWDS command (Disable
Write/Erase).

Set up for interrupt at end of MICROWIRE
transfer.

Start timer T5.

Return from interrupt.

Send body of EWDS command.
TL/DD/9978-19

P3-May-88 19:53
PAGE 18

Set up for interrupt at end of MICROWIRE
transfer.

Start timer T5.

Return from interrupt.

; Remove EEPROM chip select signal.
; Disable Timer T5 interrupts.

’

R ; Set EEPROM Available.
523 ;*** Here you'll want to set a semaphore bit saying that the WRITE
transfer is done.

Restore context.

TL/DD/9978-20

14

NSC ASMHPC, Version E2 (Nov §2 15:51 1987) EEPROM 93-May-88 19:53
HPC-Based Driver for NMC9396/9345 PAGE 19
Timer Interrupt Handler

ah P@C9 Abs Byte
al #PC8 Abs Byte
b2stp @907 Abs Null
b8or16 9PP4 Abs Null
b8or9 9PP4 Abs Null
bfun PPF4 Abs Word
bfunh P@F5 Abs Byte
bfunl PPF4 Abs Byte
bh P0CD Abs Byte
bl P9CC Abs Byte
dirah @PF1 Abs Byte
dirb 9PF2 Abs Word
dirbh PPF3 Abs Byte
dirbl PPF2 Abs Byte
divby P18E Abs Word
divbyh @18F Abs Byte
divbyl P18E Abs Byte
doeerr P@@7 Abs Null
ei PRR7 Abs Null
eiack 9@P2 Abs Null
eicon P15C Abs Word
eimode 2991 Abs Null
eipol P9PP Abs Null
enir PADP Abs Byte
enu 212p Abs Byte
enui $122 Abs Byte
enur 9128 Abs Byte
eri 9931 Abs Null
eti 2999 Abs Null
frmerr @096 Abs Null
gie 2009 Abs Null

ip 2pPP Abs Null
i2 2902 Abs Nutl
i3 2903 Abs Null
it 2004 Abs Null

ibuf PBFP@ Abs Byte
ircd @§@D4 Abs Byte
irpd PPD2 Abs Byte
Lap @PP2 Abs Null
minit @P6C Rel Null ROM16

TL/DD/9978-21

NSC ASMHPC, Version E2 (Nov @2 15:51 1987) EEPROM 93-May-88 19:53
HPC-Based Driver for NMC9306/9345 PAGE 29
Timer Interrupt Handler

nvradr PPp@ Abs Null
nvravl @pp7 Abs Null
nvrbuf 9929 Rel Word BASE
nvrbyt 09p4 Abs Null
nvremd P@2C Rel Byte BASE
nvrdta ABCD Abs Null
nvrnum PP2D Rel Byte BASE
nvrptr 0928 Rel Word BASE
nvrs PP2E Rel Byte BASE
nvewr P9P6 Abs Null

nvrx PP9A Rel Null ROM16
nvword PP2A Relt Word BASE
obuf POEP Abs Byte
portah PPE1 Abs Byte
portb PPE2 Abs Word
portbh PPE3 Abs Byte
portbl PPE2 Abs Byte
portd P1P4 Abs Byte
porti P@D8 Abs Byte
portp @152 Abs Word
portph 0153 Abs Byte
portpl @152 Abs Byte

psw POCP Abs Word
pwndh 9151 Abs Byte
pwmdl 9159 Abs Byte
pwmode @158 Abs Word

r1 9184 Abs Word
r2 $186 Abs Word
r3 918A Abs Word
r4 @142 Abs Word
r5 9146 Abs Word
ré B14A Abs Word
r7 P14E Abs Word

rbfl 9001 Abs Null
rbit9 99P3 Abs Null
rbuf 9124 Abs Byte
rdrdy P@P1 Abs Null
rnvr PP79 Rel Null ROM16
runsys PP73 Rel Null ROM16
sio PPD6 Abs Byte

TL/DD/9978-22

15

NSC ASMHPC, Version E2 (Nov @2 15:51 1987) EEPROM 93-May-88 19:53
HPC-Based Driver for NMC9396/9345 PAGE 21
Timer Interrupt Handler

sk P9p6 Abs Null
snvr? PP32 Rel Null ROM16
snvr2 PP3E Rel Null ROM16
so 9005 Abs Null
sram 097 Rel Null ROM16
sramll @PPA Rel Null ROM16
sraml2 P12 Rel Null ROM16
stackb P9P@ Rel Word BASE
start 0990 Rel Null ROM16
suwire 0815 Rel Null ROM16
suwlp PP2D Rel Null ROM16
suwlpl 9039 Rel Null ROM16
TIMCON 4E1F Abs Null
tPack P@@3 Abs Null
tPcon @192 Abs Byte
tPpnd PPR1 Abs Null
tptie PPPR Abs Null
t1 P182 Abs Word
tlack PPP7 Abs Null
tipnd 8025 Abs Null
tistp @0PP6 Abs Null
titie PPR4 Abs Nuil
t2 2188 Abs Word
t2ack 9993 Abs Nutl
t2in 9923 Abs Null
t2pnd 9PP1 Abs Null
t2stp P8@2 Abs Null
t2tie PPPR Abs Nutl
t3 P18C Abs Word
t3ack PPA7 Abs Null
t3pnd @P@5 Abs Null
t3stp PPR6 Abs Null
t3tie PBP4 Abs Null
té4 P14@ Abs Word
téack PR3 Abs Null
t4éout PPOR Abs Null
tépnd P01 Abs Null
téstp @PR2 Abs Null
tétfn PPR3 Abs Null
tatie PPPP Abs Nutl

TL/DD/9978-23

NSC ASMHPC, Version E2 (Nov P2 15:51 1987) EEPROM §3-May-88 19:53
HPC-Based Driver for NMC9326/9345 PAGE 22
Timer Interrupt Handter

t5 P144 Abs Word
tSack @@P7 Abs Null
t5int PPB8 Rel Null ROM16
tSout @@@4 Abs Null
tSpnd P@P5 Abs Null
tSpoll PPB2 Rel Null ROM16
t5rd POCS Rel Null ROM16
t5rdd PPD8 Rel Null ROM16
t5rd1 POEB Rel Null ROM16
t5rd2 PPFA Rel Null ROM16
t5rd3 @199 Rel Null ROM16
t5rd4é P11B Rel Null ROM16
tSrddn 9132 Rel Null ROM16
tSrdh 12D Rel Null ROM16
t5rnxt @13C Rel Nyll ROM16
tSstp @PP6 Abs Null
t5tfn PPR7 Abs Nutl
tStie PPR4 Abs Null
t5wr $148 Rel Null ROM16
tSwr@ P16A Rel Null ROM16
tSwr1 P17C Rel Null ROM16
tSwr1@ 0212 Rel Null ROM16
t5wr11 223 Rel Null ROM16
tSwr12 9239 Rel Null ROM16
tSwr2 P18A Rel Null ROM16
tSwr3 @1A1 Rel Null ROM16
t5wré P1B3 Rel Null ROM16
tSwr5 P1C3 Rel Null ROM16
tSwré P1D5 Rel Null ROM16
t5wr7 P1E6 Rel Null ROM16
t5wr8 P1F4 Rel Null ROM16
t5wr9 9202 Rel Null ROM16
té 2148 Abs Word
téack PPP3 Abs Null
téout PPAP Abs Null
tépnd @PP1 Abs Null
téstp 2P@2 Abs Null
tétfn PPP3 Abs Null
tétie @PPR Abs Null
t7 P14C Abs Word

TL/DD/9978-24

NSC ASMHPC, Version E2 (Nov #2 15:51 1987) EEPROM p3-May-88 19:53
HPC-Based Driver for NMC9396/9345 PAGE 23
Timer Interrupt Handler

t7ack PP@7 Abs Null
t7out P9P4 Abs Null
t7pnd @RS Abs Null
t7stp #PP6 Abs Null
t7tfn PPR7 Abs Null
t7tie @PR4L Abs Nult
tbmt PP@AY Abs Null
tbuf 9126 Abs Byte
tminit @P42 Rel Null ROM16
tmmdh 9191 Abs Byte
tmmdl @19@ Abs Byte
tmmode @198 Abs Word
tmrint @PAE Rel Null ROM16
tmrret 923C Rel Null ROM16
tmrs 28p5 Abs Null
txd 29@2 Abs Null
uart 2096 Abs Nult
upic PPES Abs Byte
upien @P@3 Abs Null
uwdone PP@P Abs Null
uwmode PPA1 Abs Null
wakeup PPp2 Abs Null
wnvr P08C Rel Nuil ROM16
wrrdy P99 Abs Null
xbit9 PPP5 Abs Null
xh PACF Abs Byte
xl POCE Abs Byte
xrclk @@@3 Abs Null
xtclk @9@2 Abs Null

*¥** Errors: @, Warnings: [']

TL/DD/9978-25

Interfacing A Serial EEPROM to the National HPC16083

AN-552

LIFE SUPPORT POLICY

Lit. # 100552

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL
SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or

systems which, (a) are intended for surgical implant
into the body, or (b) support or sustain life, and whose
failure to perform, when properly used in accordance
with instructions for use provided in the labeling, can
be reasonably expected to result in a significant injury

to the user.

2. A critical component is any component of a life

support device or system whose failure to perform can
be reasonably expected to cause the failure of the life
support device or system, or to affect its safety or
effectiveness.

National Semiconductor
Corporation
1111 West Bardin Road

Arlington, TX 76017
Tel: 1(800) 272-9959
Fax: 1(800) 737-7018

National Semiconductor

Europe

Fax:
Email:
Deutsch Tel:
English Tel:
Francais Tel:
ltaliano Tel:

(+49) 0-180-530 85 86
cnjwge @tevmz2.nsc.com
(++49) 0-180-530 85 85
(+49) 0-180-532 78 32
(+49) 0-180-532 93 58
(+49) 0-180-534 16 80

National Semiconductor National Semiconductor
Hong Kong Ltd. Japan Ltd.

13th Floor, Straight Block, Tel: 81-043-299-2309
Ocean Centre, 5 Canton Rd. Fax: 81-043-299-2408
Tsimshatsui, Kowloon

Hong Kong

Tel: (852) 2737-1600
Fax: (852) 2736-9960

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

