The HPC as a Front-End
Processor

ABSTRACT

This application note covers the use of the National Semi-
conductor HPC46083 High-Performance microController as
a front-end processor to collect and block data from RS-232
(serial) and Centronics (parallel) ports for a Host CPU (a
typical application being an intelligent graphics-oriented
printer). This application note builds on Application Note
AN-550 (UPI Port); the result being a program that imple-
ments a versatile front-end processor for a National
NS32CG16 CPU.

1.0 INTRODUCTION

In Application Note AN-550, “A Software Driver for the HPC
Universal Peripheral Interface Port”, we saw how a National
Semiconductor HPC46083 microcontroller can be connect-
ed and programmed to perform intelligent peripheral func-
tions for a host CPU; our example being an application con-
necting an NS32CG16 CPU through the HPC to a typical
front panel.

In this application note, we will expand on the hardware and
the driver software presented there in order to implement a
very useful function for a high-performance microcontroller:
that of a front-end processor for data collection. To demon-
strate a real-world application for this kind of function, we
implement here an intelligent interface to a Centronics-style
parallel input port and an RS-232 serial port, typical of a
graphics-oriented printer.

2.0 THE FRONT-END PROCESSOR FUNCTION

As systems start to support higher data rates, one of the
ever-present challenges is to minimize the interrupt pro-
cessing load on the CPU, which can become intolerable if
the CPU must process each character received in a sepa-
rate interrupt. Since the character transfer task is typically
so simple (reading a character from an input port and plac-
ing it into a memory buffer), it is often the case that the
unavoidable context switch time associated with the inter-
rupt outweighs the time spent processing the input charac-
ter. In addition, the communication task may not be the
CPU’s highest priority: for example, in band-style laser print-
ers the CPU must keep up with the paper movement; it can
neither rerun an image nor stop the paper. The communica-
tion rate therefore suffers; even printers running from a Cen-
tronics-style parallel port are typically unable to accept data
faster than 4k characters per second.

The traditional technique for overcoming this obstacle is to
implement Direct Memory Access (DMA) for the communi-
cation ports. This is, however, quite a large investment in
hardware, requiring an external DMA controller chip and
more sophisticated bus structures to support it. In other
words, it may be acceptable for a computer system, but it is
overly expensive for an embedded controller application.
Also, the response time required of the CPU can still be
stringent, especially in implementing flow control to pace
the character rate from the external system presenting the
data.

The HPC46083 microcontroller, however, allows a much
more cost-effective approach to the problem. As a peripher-
al, it interfaces to the CPU much as any peripheral controller

MICROWIRE/PLUS™ is a trademark of National Semiconductor Corporation.

National Semiconductor
Application Note 551
Brian Marley

April 1992

would. In the application documented here, it buffers up to
128 characters before interrupting the CPU, thus dropping
the CPU input interrupt processing frequency by over two
orders of magnitude, while allowing a character input rate of
over 20 kb/sec.

2.1 Data Transfer Technique

The benefit provided by a front-end processor is derived
from the efficiency it adds to the process of getting data into
the CPU’s data buffer; that is, how much of the CPU’s pro-
cessing time gets dedicated to this task.

The efficiency is provided by two means:

1. Reduction of interrupt overhead. By interrupting the CPU
only once every 100 characters, the overhead per char-
acter becomes virtually negligible.

2. Elimination of error testing overhead. If the CPU were
communicating with a UART directly, it would have to poll
for error conditions on each character. In our implementa-
tion, there are two interrupt vectors for data transfer: one
for good data (which transfers a block of data), and one
for bad data (which transfers one character and its error
flags). The good data interrupt routine, then, which is in-
voked almost exclusively, contains a very simple inner
loop. After reading the character count from the HPC, all
that the CPU needs to do is:

— Move a character from the HPC’s OBUF register to the
current destination address. No time is wasted polling the
HPC status; the hardware synchronization technique de-
scribed in Application Note AN-550 handles this.

— Increment the destination address. (Checking against
buffer limits could be done here, but is more efficiently
handled outside the inner loop).

— Decrement the character count and test it; loop if non-
zero.

The HPC firmware also supports this technique by guar-
anteeing that the reporting of character errors (and
BREAK conditions) is synchronized with good data, so
that the CPU can tell exactly where in the data stream
the error occurred.

2.2 Logic Replacement

Front-end processing tasks by no means use up the HPC’s
capabilities in a system. In our application, the HPC also
serves as the CPU’s only interrupt controller, allowing
a large number of vectors with no additional hardware. It
performs additional control tasks such as dynamic RAM re-
fresh request timing, front panel control and real-time clock
functions given in Application Note AN-550 with inexpensive
interfacing. In a single 4 kbyte program developed in our
group, we were also able to add an interface to an inexpen-
sive serial EEPROM device (connected directly to the MI-
CROWIRE/PLUS™ port of the HPC) and to a laser-printer
engine for non-imaging control functions, and we also im-
plemented a higher-resolution event timing feature. (These
are topics for future application notes, however, and are not
dealt with here.)

To summarize, then, the HPC not only can provide front-end
processing functions, but can pay for itself by replacing oth-
er logic in the system.

©1995 National Semiconductor Corporation TL/DD/9977

RRD-B30M105/Printed in U. S. A.

10SS990.d pu3-juo.4 e se 9dH ayl

SS-NV

3.0 HARDWARE

The following sections refer to the schematic pages includ-
ed. We will discuss here only the portions involving the Cen-
tronics Parallel and RS-232 Serial ports. See Application
Note AN-550 for details of the other connections shown
(the UPI port and front-panel functions).

3.1 The Centronics Parallel Port

The Centronics port was implemented on the connector
designated J5. Most of the interface is diagrammed on
Sheet 4 of the schematic.

3.1.1 Control Inputs

Pin 1 of the J5 connector receives the Data Strobe
(STROBE) input, which signals the presence of valid data
from the external system. On Sheet 4, in area C5, this signal
appears from the connector. It is filtered using a Schmitt
trigger (a spare 1488 RS-232 receiver chip), and is then
presented to the HPC (Sheet 3) as interrupt signal 14.

Pin 31 is the Input Prime signal (PRIME), which is asserted
low by the external system in order to reset the interface. It
appears on Sheet 4 in area D5, and is filtered in a similar
manner. It is then gated with the signal ENPRIME from the
Centronics Control Latch, and the resulting signal is pre-
sented to the HPC on pin *EXUI, which is the External
UART Interrupt input. The gating is used to prevent confu-
sion between UART and PRIME interrupts: while the Cen-
tronics port is selected, only PRIME causes interrupts, and
while the RS-232 port is selected, this gating keeps PRIME
interrupts from being asserted.

3.1.2 Data Inputs

Eight data bits, from J5 pins 2 through 9, appear in areas B8
and C8 of Sheet 4. They are latched into a 74LS374 latch
on the leading edge of the STROBE signal (note the inver-
sion through the Schmitt receiver on STROBE). The latch is
enabled to present data to the HPC’s Port D pins by the
signal ENCDATA, which comes from HPC pin B12. Note
that Port D is also used for inputting pushbutton switch data
from a front panel.

3.1.3 Control Outputs

The Centronics control and handshake signals are present-
ed by loading the Centronics Control Latch (Sheet 4, area
B4) from the HPC’s pins A8 through A15 (Port A Upper)
using as a strobe the signal CCTLCLK from HPC pin P2.

Pin 10 of connector J5 is the Centronics Acknowledge
(CACK) pulse, which is used to signal the external system
that the HPC is ready for the next byte of data. This is one of
the two handshake signals used to pace data flow. It is ini-
tialized high by the HPC, and is pulsed low when required.

Pin 11 is the Centronics Busy (CBUSY) signal, which is gen-
erated by the flip-flop on Sheet 4, area C3. It is set directly
by a STROBE pulse, and is also loaded from the Centronics
Control Latch whenever the HPC finishes reading a byte of
data (rising edge of ENCDATA). This will clear CBUSY un-
der normal conditions, allowing the external system to send
another byte of data.

Five additional signals, whose functions vary significantly
from printer to printer, are presented on connector J5 from
the Centronics Control Latch. These are:

Pin 13, which generally indicates that the printer is select-
ed.

Pin 12, which indicates that the printer needs attention
(for example, that it is out of paper).

Pin 32, which indicates a more permanent or unusual
problem (lamp check or paper jam).

Pins 33 and 35, which vary more widely in use.

These five pins are manipulated by commands from the
CPU; the HPC simply presents them as commanded.

3.1.4 Other Signals

Pin 18 of the Centronics port connector receives a perma-
nent +5V signal (area B2 of Sheet 4), and a set of other
pins (middle of Sheet 2) are connected permanently to
ground.

3.2 The RS-232 Serial Port

The serial port (on connector J6) makes use of the HPC’s
on-chip UART and baud rate generator; very little off-chip
hardware is required. The entire RS-232 circuit appears on
Sheet 3 of the schematic.

This port is implemented in a way typical of printers, and so
there are no sophisticated handshaking connections. The
interface looks like an RS-232 DTE device: Connector J6
pin 2 is transmitted data (out) and pin 3 is received data (in).

The RS-232 data input appears in area B8 of Sheet 3, as
signal RXD. After the RS-232 receiver, it is presented on the
HPC’s UART input pin (I6). Note that this pin can be moni-
tored directly as a port bit; this enables the HPC to check
periodically for the end of a BREAK condition without being
subjected to a constant stream of interrupts for null charac-
ters.

The Data Set Ready signal (DSR) is received from pin 6 of
J6, and presented on HPC pin |7, where it can be monitored
by the HPC firmware.

The Request to Send signal (RTS) is a constant high level
placed on J6 pin 4.

Transmitted data (TXD) is presented from the HPC’s UART
output pin (BO), through a buffering gate, to an RS-232 driv-
er, and then out on J6 pin 3. The buffering gate would be
unnecessary if the CMOS 14C88 driver were being used,
but the gate was a spare and allowed cost savings using the
less expensive TTL 1488 chip.

Data Terminal Ready (DTR) is simply presented from a pro-
grammable port pin of the HPC (pin B1). It is buffered
through a spare inverter, and then presented to RS-232
connector J6 pin 20 through an RS-232 driver. As with the
UART output, the buffering would be unnecessary with the
14C88 type of RS-232 driver; however, note that the HPC
firmware would have to be modified slightly due to the re-
sulting polarity difference on the pin.

J6 pins 1 (Frame Ground) and 7 (Signal Ground) are, of
course, grounded, as shown in this sheet also.

3.3 Schematic Sheets
Sheet 1

CENTRONICS
| ierrace [8
PANEL LCD'S, LED'S,
4—>| \eRrece [PUSHBUTTONS,
SPEAKER
SERIAL
0 NS32C616 HPC46083
CPU GROUP microcoNTRoLLER [€ R4 Nraease > 6
TL/DD/9977-1
Power and Ground Distribution
Sheet 2
+5
>
16
120 11D
LP2951 8 100K
v+ ! ~ XRESET/
3 vour | 3
SD SENSE po— 1D
; ERR |2 1N914A
FB TP o " 4
= V- e
+_L ¢t +_L 2 " 00k ' 11D
22 0.1 ;%0 st 0.47
T T ')
[FeR=cnp> + * . + P4 —
POWER FAIL RESET ! RESET SWTCH) POWER ON RESET $
0 W/W PROTOTYPE
¢ ONLY)
bt ecacaacaaeaead
| CENTRONICS PORT
GROUND PINS
> * » Hz,
Jo Lo
22 0.1
PR=R> *
o Lo
2 0.1
T T T
=1 >

Notes: (Unless otherwise specified)

1. All capacitance values in microfards, 50V.

2. All resistor values in Ohms, /4W, 5%.

TL/DD/9977-2

€-./66/Ad/1L

Sheet 3

Zi-
zi+
A ED
-A GND #A
A
98 7-ar]
93 s — ||oD E]
m 7"
sy o} s 0‘ o
6
axt =o'} 5 0D| g T
¥
410 {oz=or'} OA
€ ¢ JOVAYIINI Z€2-SY
Y0ST0L
s8r1 a0s
208
(UYMLIOS NI L¥IANI) ¢
¥3AI¥0 9807
HUIM 03033N 310N el o] o
$31¥9 ONI¥314N8 cant
YIAINQ 889F L 262
AN HLIM Q3033N LON — s m_
131¥9 ONI¥344NE oo © S
az
ySTSTE] Sova
BRRGER]
7Aasaan
Y o afslsleleloledelzlels]=ls] |
FEEEEEL L LI L
%ol %0t GrmmoofRNPORUAN=S d /1353
asz asz o N z Gl s 10y,
al o g I3 WO n - o—)
—z]us QTHs/A0Y O 29 94T
P Pyps 135Tds 9T THAZ09YEI =, A
s s 91z 9Lz g
pu— 0I5 :% A s ¥%a
£008-0008 57 bl 0—)
103 [
o | o
N 63
v 25 /HIND
o (TEEN]
v ENETN]
o En 3908159
9y H6T
Mo N £80950dH L
- 52 b EELT]
“eovivod_1v] o, 101404 .
[oovisod Ly]
QIviiod _ov} 701804 alzlelclvlclz
[1IVIN0d _6¢ _N__a £0140d O A _-or] usa
Ziviod —se] 2V 73304 LY UL S B }
o [emod el 30 SQL0d 3ss8sssS 687l
[vIvIiod _9¢] (v 901¥0d i
[yiviiod o |
S o o 701304 —TeTsoe=o=o=o=-
3323 & wou 't
982

G1Y140d-80V1¥0d

434338 \
TaNYd z
0l)
sosw, MO
0z
ATILDD
7H¥ 89 ONINIL HS3d133

£01404=-00140d

¥=-,,66/Qd/1L

A11L00

0/1 9dH
G1V1Y0d=80V140d
¥3TIOHINGD 097 01 <
/sd /sd
HOLYT TOMINOD -
110 TOINOD SIINOMINID SOINOMINZD ~
0 4
y
wm & [—sovivod
i e
A4 VINod]
0s s ET
g a8 ¥ivod)
Ty Eeld v YIi0d)
81 SIvId0d
72552
182
_w: /V1¥QON3
bost ~ NI VLY SOINOALNID
0 4
oL al =
NN (00140 ve s =
1Q130d 2
20150 og o ae =
d
oy ar
o cam0d A
} ¥a1¥0d
[L b9 a9
- SQ130d o e
—o @ b sam04 el 12
9 s V701504 g
— 1° . °; v1SSWL o] el e]| 2] o]s|v]<c]z
162 4 e ad
YSWL ¥ :
9% 0} I !
¥0ST7L H ey yem gy
e S ost
y 362
JMM _n_..f; /SLLSYN3
P - Oy 1-Cr'] /38041
oy IR W_ 4
b T00 A 12
262 d
H 2050 og - ae
= o NI TOMINOD SOINONINID [c0d or av < SIHOLIMS TINVd
JHIND 1) 70 a6z \|«mHMOn bs as NOLLNGHSNd WO¥4
00STPL . . Ho v @
291 4 S L oL a
iy O0-W\—0 15=Cr'] /3nIyd 901404 b8 a8 | D3
¢ ok 001 . V701504 3
asz) CISSTHL
262 wy or
91
o+ -

£QL40d-04140d

Sheet 4

Sheet 5

G-/2/66/ad/1L

MT10AT
a3
1l
ENA
< Z ww & BOVIE0d)
< Sloc o 60VL40d)
< o o 01VIN0d)
« 05 a5 ¥IH0d
< 09 @9 Yiiod
« oL a VINod
« 08 a8 7 VL0
N SIVIN0d)
‘ vLESTHL
STTTTT
2333333
N1OINd
1
~
0 4
« oL al y
7 3 ~ < oz az mmu$}
LSVAINOD 001 = > be ag TR
< 4
7 Y. ™~ < or ar CIETCER
8 VIN0d) p s Qs V104)
Z T V. N < 09 @9 TR
T 7 VI30d) < oL aL 7IVINOd)
9 » < g ag —
3 7 v GIVIN0d
8 8 vidod vLESTHL
192
SLV140d=0V140d
|
=y STE TYNOIS ASNE SIINOHINID "

W Tl ASNED)
39041S Sen evi B NTOINd
TINVd < s EAR

o /A L
z

4.0 PROTOCOL

The command and interrupt protocol is a superset of that
implemented for Application Note AN-550. The two com-
mands SELECT-CENT and SELECT-UART are added to
select and initialize each of the communication ports (Cen-
tronics or RS-232). The CPU can exercise control over data
buffering by the commands FLUSH-BUF, CPU-BUSY, CPU-
NOT-BUSY and SET-IFC-BUSY. It can set Centronics port
error flags and status using SET-CENT-STS, and it can test
for RS-232 status using the TEST-UART command. The
HPC also allows the CPU to send characters out on the RS-
232 port using the SEND-UART command.

New interrupts presented by the HPC are IDATA, which
transfers up to 128 bytes of buffered data to the CPU,
IPRIME and IUART-STATUS, which inform the CPU of port
status changes, and IDATA-ERR, which reports in detail any
error ocurring in characters received. The interrupt |ACK-
UART is presented to the CPU to acknowledge that the
SEND-UART command has been completed.

Note that the command codes for the front panel functions
have been changed. Their formats, however, have not
changed, nor have their functions, except that the INITIAL-
IZE command now performs a disconnection function on
the RS-232 and Centronics ports.

4.1 Commands

The first byte (command code) is sent to address FFFCOO,
and any argument bytes are then written to address
FFFE00. The CPU may poll the UPIC register at address
FDO0000 to determine when the HPC can receive the next
byte, or it can simply attempt to write, in which case it will be
held in Wait states until the HPC can receive it. Except
where noted, the CPU may send commands continuously
without waiting for acknowledgement interrupts from previ-
ous commands.

00 INITIALIZE This command has two functions.
The first INITIALIZE command after
a hardware reset (or RESET-HPC
command) enables the !IRTC and
IBUTTON-DATA interrupts. Both
data communcation ports are set to
their “Busy” states until a “SELECT”
command is sent. The INITIALIZE
command may be re-issued by the
CPU to de-select both communica-
tion ports, and to either start or stop
the IRTC interrupts. There is one ar-
gument:

RTC-Interval: One-byte value. If
zero, IRTC interrupts are disabled.
Otherwise, the IRTC interrupts occur
at the interval specified (in units of
10 ms per count).

Select the Centronics port and set it
ready, using the timing sequence
specified by the supplied ACK-Mode
argument. Data from the port is en-
abled, and the !PRIME interrupt is
also enabled. Arguments:

01 SELECT-CENT

02 SELECT-UART

ACK-Mode: one byte in the format:

|x|x|x|x|x|L| Timing

where the Timing field is encoded as:

00 = BUSY falling edge occurs after
ACK pulse.

01 = BUSY falling edge occurs dur-
ing ACK pulse.

10 = BUSY falling edge occurs be-
fore ACK pulse.

and the L bit, when set, requests
Line Mode. It suppresses the remov-
al of BUSY and the occurrence of
the ACK pulse when the buffer is
passed to the CPU. To fully imple-
ment Line Mode, this mode should
be used with Pass-Count = 1 and
Stop-Count = 1, and the CPU must
use the SET-CENT-STS command to
acknowledge each character itself.
Pass-Count: Number of characters
in buffer before the HPC passes
them automatically to CPU. One
byte.

Stop-Count: Number of characters
in buffer before HPC tells the exter-
nal system to stop. One byte.

Note that the buffer is a maximum of
128 bytes in length, in this implemen-
tation.

Requires INITIALIZE command first.
Select Serial port and set it ready,
according to supplied arguments.
Requires INITIALIZE command first.
Arguments are:

Baud: Baud rate selection. One Byte
containing.

0 = 300 baud
1 = 600 baud
2 = 1200 baud
3 = 2400 baud
4 = 4800 baud
5 = 9600 baud

6 = 19200 baud
7 = 38400 baud
8 = 76800 baud

Frame: One byte, selecting charac-
ter length, parity and number of stop
bits.

Value

Data Bits

Parity Stop Bits

NOOhAWN = O

8

NNNSN®®®

Odd
Even
None
None
Odd
Even
Odd
Even

DN = =2 N = =

Flow: One byte, bit-encoded for
control

handshaking and flow

modes:
0000|XON|DTR|DSR|
7 6 5 4 3 2 1 0

03 (reserved)
04 FLUSH-BUF

05 CPU-BUSY

06 CPU-NOT-BUSY

07 SET-IFC-BUSY

DSR: 1 = the HPC disables the
UART receiver while the DSR input is
inactive.

DTR: Polarity of DTR output, and
whether it is used as a flow-control
handshake.

00 = Permanently low (negative
voltage).

01 = Permanently high (positive
voltage).

10 = Handshaking: low means
ready.

11 = Handshaking: high means
ready.

XON: 1 = the HPC performs

XON/XOFF flow control.

Pass-Count: Number of characters
in buffer before the HPC passes
them automatically to CPU. One
byte.

Stop-Count: Number of characters
in buffer before HPC tells the exter-
nal system to stop. One byte.

Note that the buffer is a maximum of
128 bytes in length, in this implemen-
tation.

Requires INITIALIZE command first.

No arguments. Flush HPC data com-
munication buffer to CPU. Any data
in the buffer is immediately sent to
the CPU (using the IDATA interrupt).
This command triggers the IDATA in-
terrupt only if the buffer contains at
least one byte. Requires INITIALIZE
command and SELECT command
first.

No arguments. Indicates that the
CPU cannot accept any more data
(the CPU’s data buffer is full). This
suppresses the IDATA and IDATA-
ERR interrupts. Requires INITIALIZE
command and SELECT command
first.

No arguments. This undoes a previ-
ous CPU-BUSY command, and indi-
cates that the CPU can now accept
more data from the HPC. Requires
INITIALIZE command and SELECT
command first.

“Set Interface Busy”. No arguments.
Commands the HPC to immediately
signal the external system to stop

08 SET-CENT-STS

sending characters. This status is re-
moved only by performing a SELECT
command. Requires INITIALIZE
command and SELECT command
first.

“Set Centronics Port Status”. Loads
Centronics latch from the supplied
argument byte. Argument is eight
bits, which must be encoded as fol-
lows:

[ENPRIME| ox2| FAULT | cALL | sELECT |BUSY | oX1] ACK]

09 SET-CONTRAST

OA SEND-LCD

0B SEND-LED

0C BEEP

The ACK bit should always be a “1”.
The CPU must use the BUSY bit to
generate an ACK pulse: if the BUSY
bit is zero, the ACK signal will be au-
tomatically pulsed low, then high, (re-
gardless of the previous states of
BUSY and ACK).

Requires INITIALIZE command and
SELECT-CENT command first.

The single argument is a 3-bit num-
ber specifying a contrast level for the
LCD panel (0 is least contrast, 7 is
highest contrast). There is no re-
sponse interrupt. Does not require
INITIALIZE command first.

This writes a string of up to 8 bytes to
the LCD panel. Arguments are:
flags: A single byte, containing the
RS bit associated with each byte of
data. The first byte’s RS value is in
the least-significant bit of the FLAGS
byte.

#bytes: The number of bytes to be
written to the LCD display.
byte[1]-byte[#bytes]: The
bytes themselves.

The HPC determines the proper de-
lay timing required for command
bytes (RS = 0) from their encodings.
This is either 4.9 ms or 120 us.

The response from the HPC is the
IACK-SEND-LCD interrupt, and this
command must not be repeated until
the interrupt is received. This com-
mand does not require an INITIAL-
IZE command first.

The singe argument is a byte con-
taining a “1” in each position for
which an LED should be lit.
There is no response interrupt, and
this command does not require the
INITIALIZE command first.

No arguments. This beeps the panel
for approximately one second. No re-
sponse interrupt. If a new BEEP
command is issued during the beep,
no error occurs (the buzzer tone is
extended to one second beyond the
most recent command). Does not re-
quire INITIALIZE command first.

data

0D SEND-UART

OE TEST-UART

A5 RESET-HPC

4.2 Interrupts

The single one-byte argument is sent
on the UART port. An acknowledge-
ment interrupt [ACK-UART occurs on
completion. This command must not
be repeated until the interrupt is
received. Requires INITIALIZE and
SELECT-UART commands first.

Triggers a IUART-STATUS interrupt.
This command must not be repeated
until the interrupt is received. No ar-
guments. Requires INITIALIZE and
SELECT-UART commands first.

Resets the HPC if it is written to ad-
dress FFFCOO. It may be written at
any time that the UPI port is ready for
input; it will automatically cancel any
partially-entered command. The
CPU’s Maskable Interrupt must be
disabled before issuing this com-
mand.

After issuing this command, the CPU
should first poll the UPIC register at
address FD00OO to see that the HPC
has input the command (the least-
significant bit [Write Ready] is zero).
It must then wait for at least 25 us,
then read a byte from address
FFFE00. The HPC now begins its in-
ternal re-initialization. The CPU must
wait for at least 80 us to allow the
HPC to re-initialize the UPI port.
Since part of the RESET procedure
causes Ports A and B to float briefly
(this includes the CPU’s Maskable
Interrupt input pin), the CPU should
keep its maskable interrupt disabled
during this time. It also must not en-
ter a command byte during this time
because the byte may be lost.

The HPC interrupts the CPU, and provides the following val-
ues as the interrupt vectors for the CPU hardware. The CPU
then reads data from the HPC at address FFFE0O. All data
provided by the HPC must be read by the CPU before re-
turning from the interrupt service routine, otherwise the HPC
would either hang or generate a false interrupt. The CPU
may poll the UPIC register at address FD000O to determine
when each data byte is ready, or it may simply attempt to
read from address FFFEOQO, and it will be held in Wait states
until the data is provided by the HPC.

Note: All CPU interrupt service routines, including the NMI interrupt rou-
tines, must return using the “RETT 0” instruction. Do NOT use

“RETI”.

Vector

00-

10

11

12
13

14
15
16
17

18

OF (none)

IDATA

IRTC

(reserved)
IPRIME

(reserved)
(reserved)
(reserved)
IACK-SEND-LCD

IBUTTON-DATA

(Reserved for CPU internal traps
and the NMlI interrupt.)

Buffer data is being transferred to
CPU. This will happen either auto-
matically, at a point defined by the
most recent SELECT command,
or as the result of a
FLUSH-BUF command. It is fol-
lowed by a one-byte Length (num-
ber of characters: current HPC
firmware has a range of 1-128),
then that number of characters.
Enabled by SELECT command af-
ter at least one INITIALIZE com-
mand.

Real-Time Clock Interrupt. No

data returned. Enabled by INI-

TIALIZE command if interval value

supplied is non-zero.

Note: This version of HPC firmware issues
a non-fatal !DIAG interrupt if the
CPU fails to service each IRTC inter-
rupt before the next one becomes
pending.

Centronics INPUT PRIME signal
has become active. No data re-
turned. Enabled by SELECT-
CENT command after at least one
INITIALIZE command.

This is the response to the SEND-
LCD command, to acknowledge
that data has all been written to
Panel LCD display. No other data
is provided with this interrupt. Al-
ways enabled, but occurs only in
response to a SEND-LCD com-
mand.

Pushbutton status has changed:
one or more buttons have been ei-
ther pressed or released. The new
status of the switches is reported
in a data byte, encoded as fol-
lows:

Any pushbutton that is depressed
is presented as a “1”. All other bit
positions, including unused posi-
tions, are zeroes. The pushbut-
tons are debounced before being
reported to the CPU. This interrupt
is enabled by the first INITIALIZE
command after a reset.

19 IUART-STATUS

1A IDATA-ERR

UART status has changed. This
interrupt occurs only while the
UART is selected. A data byte
shows the UART’s new state:

Bit Condition

0 (LSB) New state of DSR sig-
nal. This causes an in-
terrupt only if DSR moni-
toring was requested in
the last SELECT-UART
command. The UART
receiver is automatically
enabled and disabled by
the HPC, so no CPU ac-
tion is required on re-
ceiving this interrupt. If a
SELECT-UART com-
mand is entered, re-
questing DSR monitor-
ing, and DSR is inactive,
a IUART-STATUS inter-
rupt occurs immediately.

1 This bit is set if a UART
BREAK has just ended.

2-7 (unused)

Note 1: If the CPU has issued a CPU-NOT-
READY command, this BREAK in-
terrupt may be seen before the
IDATA-ERR interrupt that an-
nounces the start of the BREAK
(and its position in the data
stream).

Note 2: The DSR and UART input (BREAK)
signals are sampled every 10 ms.
An error has been encountered in
data coming from the currently-se-
lected communication port. It is
enabled by the first SELECT com-
mand after the first INITIALIZE
command. Two data bytes are re-
turned:
errchr: One byte containing the
character on which the error was
seen (this character is NOT
placed in the data buffer).
errfgs: Error flags, detailing the
error seen:

Bit Error Seen

0 (LSB) (unassigned)

1 (unassigned)

2 UART BREAK condition

detected. This may be
preceded by one or two
framing errors.

3 Error Overflow: More
errors occurred than
HPC could report (the
HPC has no FIFO for er-
ror reporting).

4 Buffer Overflow: Flow
control failed to stop the
external system, and the
buffer overflowed.

1B !ACK-UART

1C (reserved)
1D IDIAG

5 Parity Error: Serial Port
only.

6 Framing Error: Serial
Port only.

7 (MSB) Data Overrun: Serial
Port only.

If bit 2, 3 or 4 is set, the communi-
cation port has been automatically
shut down by the HPC. The CPU
must issue a new SELECT com-
mand to re-enable the port.

When a character is received with
an error, all characters appearing
before it in the buffer are automat-
ically flushed before this interrupt
occurs. This is done to preserve
the error character’s position in
the data stream. If the CPU de-
cides to ignore the presence of an
error, the character may be simply
appended by the CPU to the data
already in its data buffer. Please
note: If the CPU has issued a
CPU-NOT-READY command, the
flush cannot occur, and this inter-
rupt will not be issued until the
flush has occurred.

A CPU character has been sent
on the UART, and the UART is
ready for another. No data is re-
turned with this interrupt. It is al-
ways enabled, but occurs only in
response to the SEND-UART
command.

Diagnostic Interrupt. This inter-
rupt is used to report failure condi-
tions and CPU command errors.
There are five data bytes passed
by this interrupt:

Severity

Error Code

Data in Error (passed, but con-
tents not defined)

Current Command (passed, but
contents not defined)

Command Status (passed, but
contents not defined)

The Severity byte contains one bit
for each severity level, as follows:

Lx] x] x|

Flxlx]e|n]

N (Note): least severe. The CPU
missed an event; currently only
the IRTC interrupt will cause this.
C (Command): medium severity.
Not currently implemented. Any
command error is now treated as
a FATAL error (below).

10

F (Fatal): highest severity. The
HPC has recognized a non-recov-
erable error. It must be reset be-
fore the CPU may re-enable its
Maskable Interrupt. In this case,
the remaining data bytes may be
read by the CPU, but they will all
contain the value 1D (hexadeci-
mal). The CPU must issue a RE-
SET command, or wait for a hard-
ware reset. See below for the pro-
cedure for FATAL error recovery.
The Error Code byte contains, for
non-FATAL errors, a more specif-
ic indication of the error condition:

(Reserved for COMMAND)

RTC = Real-Time Clock overrun:
CPU did not acknowledge
the RTC interrupt before
two had occurred.

The other bits are reserved for de-
tails of Command errors, and are
not implemented at this time.

The remaining 3 bytes are not yet

defined, but are intended to pro-

vide details of the HPC’s status
when an illegal command is re-
ceived.

Note: Except in the FATAL case, all 5
bytes provided by the HPC must be
read by the CPU, regardless of the
specific cause of the error.

Fatal Error Recovery:

When the HPC signals a IDIAG er-

ror with FATAL severity, the CPU

may use the following procedure
to recover:

1. Write the RESET command (A5
hex) to the HPC at address
FFFCO0.

2. By inspecting the UPIC register
at address FD000O, wait for the
HPC to read the command (the
WRRDY bit will go low).

3. Wait an additional 25 us.

4. Read from address FFFEO0O.
This will clear the OBUF regis-
ter and reset the Read Ready
status of the UPI port. The HPC
will guarantee that a byte of
data is present; it is not neces-
sary to poll the UPIC register.
This step is necessary because
only a hardware reset will clear
the Read Ready indication oth-
erwise (HPC firmware cannot
clear it).

Wait at least 80 us. This gives
the HPC enough time to re-ini-
tialize the UPI port.

After Step 5 has been complet-
ed, the CPU may re-enable the
Maskable Interrupt and start is-
suing commands. Since the
HPC is still performing initializa-
tion, however, the first com-
mand may sit in the UPI IBUF
register or a few milliseconds
before the HPC starts to pro-
cess it.

5.0 SOURCE LISTINGS AND COMMENTARY

5.1 HPC Firmware Guide

This section is intended to provide help in following the flow
of the HPC firmware. Discussion of features already docu-
mented in Application Note AN-550 are abbreviated here;
see that application note for details.

The firmware for the HPC is almost completely interrupt-
driven. The main program’s role is to poll mailboxes that are
maintained by the interrupt service routines, and to send an
interrupt to the CPU whenever a HPC interrupt routine re-
quests one in its mailbox.

On reset, the HPC firmware begins at the label “start”.
However, the first routine appearing in ROM is the Fatal
Error routine. This is done for ease of breakpointing, to keep
this routine at a constant address as changes are made
elsewhere in the firmware.

o

o

5.1.1 Fatal Error Routine

At the beginning of the ROM is a routine (label “hangup”)
that is called when a fatal error is detected by the HPC. This
routine is identical to that documented in Application Note
AN-550.

5.1.2 Initialization

At label “start”, entered on a Reset signal or by the RESET-
HPC command from the CPU, the HPC begins its internal
initialization. It loads the PSW register (to select 1 Wait
state), and then (at label “‘srfsh”), it starts the Refresh clock
pulses running for the dynamic RAM by initializing Timer T4
and starting it.

At “supi”, the UPI port is initialized for transfers between the
HPC and the CPU.

At label “sram”, all RAM within the HPC is initialized to zero.

At “sskint”, the stack pointer is initialized to point to the
upper bank of on-chip RAM (at address 01C0). The address
of the fatal error routine “hangup” is then pushed, so that it
will be called if the stack underflows.

At “tminit”, the timers T1-T3 are stopped and any inter-
rupts pending from timers TO-T3 are cleared. This step ar-
bitrarily initializes the UART baud rate to 9600, but this se-
lection has no effect.

At “scent”, the Centronics port is initialized and set up to
appear busy to the external system.

At “suart”, the HPC UART is initialized for serial data from
the external system. The RS-232 DTR signal is arbitrarily set
low, which generally means that the printer is not ready. The
state of DTR is not actually valid until the first SELECT-
UART command is received, which selects the handshaking
mode.

At “sled”, the LED control signals are initialized,and all LED
indicators are turned off.

At “stmrs”, all timers are loaded with their initial values, and
timers T5-T7 are stopped and any interrupts pending from
them are cleared.

At “slcd”, the LCD display is initialized to a default contrast
level of 5, then commands are sent to initialize it to 8-bit, 2-
line mode, with the cursor visible and moving to the right by
default. This section calls a subroutine “wrpnl” for each
character; the subroutine simply writes the character in the
accumulator out to the LCD display and waits for approxi-
mately 10 ms.

The program then continues to label “minit”, which initializ-
es the variables in the HPC’s on-chip RAM to their proper
contents.

At label “runsys”, the necessary interrupts are enabled
(from the timers, and from pin 13, which is the UPI port inter-
rupt from the CPU), and the program exits to the Main Pro-
gram at label “mainlp”. Interrupts from the Centronics and
UART ports are not enabled until the appropriate SELECT
command is received.

5.1.3 Main Program (UPI Port Output to CPU)

The Main Program is the portion of the HPC firmware that
runs with interrupts enabled. It consists of a scanning loop
at label “mainlp” and a set of subroutines (explained be-
low). It is responsible for interrupting the CPU and passing
data to it; the HPC is allowed to write data to the CPU only
after interrupting it. Unlike the simpler UPI/Front Panel inter-
face described in Application Note AN-550, this main loop
scans two separate variables in on-chip RAM that are set up
by interrupt service routines: a word called “alert”, and a
byte called “bstat” (for “Buffer Status”). Both variables are
used to determine whether any conditions exist that should
cause an interrupt to the CPU.

The “alert” word contains one bit for each interrupt that the
HPC can generate. If a bit is set (by an interrupt service
routine), the Main Program jumps to an appropriate subrou-
tine to notify the CPU. The subroutine checks whether the
UPI interface’s OBUF register is empty, and if not, it waits
(by calling the subroutine “rdwait”). It then writes the vector
number to the OBUF register. This has the effect of inter-
rupting the CPU (because the pin URDRDY goes low), and
the CPU hardware reads the vector from the OBUF register.

If there is more information to give to the CPU, the HPC
places it, one byte at a time, into the OBUF register, waiting
each time for OBUF to be emptied by the CPU. This tech-
nique assumes that the CPU remains in the interrupt service
routine until all data has been transferred: if the CPU were
to return from interrupt service too early, the next byte of
data given to it would cause another interrupt, with an incor-
rect vector.

(Note, however, that the CPU may be interrupted with a
Non-Maskable interrupt from a separate source. This simply
inserts a pause into the process of reading data from the
HPC. Since the HPC is running its main program at this
point, with interrupts still enabled, it will not lose data from
its communication port under these circumstances.)

The “bstat” byte represents a special case involving the
interrupt IDATA to the CPU. This byte shows the main pro-
gram whether the data communication buffer (which holds
data from the external system) is full enough to send its
contents to the CPU. If so, the main program calls the sub-
routine “snddta”, which interrupts the CPU, then sends one
data byte containing the number of characters to be trans-
ferred (currently as many as 128 are possible), and then the
characters themselves.

The CPU may, at any time, demand that the HPC transfer all
characters that are within its communication buffer. (This is
called a “flush” command, which sets one of the bits of the
“alert” word, described above.) The HPC, in response, will
empty the buffer to the CPU with a IDATA interrupt, even if
only one character is left. If the buffer is completely empty,
however, the flush command is ignored.

Subroutines called from the Main Program loop are:

sndrtc: sends a Real-Time Clock interrupt to the CPU. No
data is transferred; only the interrupt vector.

interrupts the CPU to acknowledge that a string of
data (from a SEND-LCD command) has been writ-
ten to the LCD display. No data is transferred for
this interrupt.

interrupts the CPU to inform it that a pushbutton
has been pressed or released. A data byte is
transferred from variable “swisnt”, which shows
the new states of all the pushbuttons.

performs a Flush operation. If there is data, it
jumps to the “snddta” routine to send the con-
tents of the buffer to the CPU. If there is no data,
however, this subroutine simply returns without
generating an interrupt.

sends data from the communication buffer to the
CPU. It may be entered for one of three reasons:

1. the communication buffer is full enough that it
must be sent automatically to the CPU.

2. a Flush command has been received from the
CPU. (The bit “aflush” in the ALERT word is
set.)

3. an error has been detected on a character re-
ceived from the external system. This causes
an internal Flush request, so that all good char-
acters are sent to the CPU before the bad char-
acter is reported. This case is also different be-
cause it does not flush the entire buffer, but only
up to the point of the error. The limit is held in
the variable “fshlim”.

sndlak:

sndbtn:

sndfsh:

snddta:

12

sndprm:

sndust:

The subroutine sends a “length” byte (from vari-
able “numout”, sampled from “numchr”, which is
maintained by the communication interrupt rou-
tines). This indicates how many characters will be
transferred. The subroutine next sends the char-
acters themselves. It then updates the buffer
status variables in on-chip RAM, to indicate how
many characters were removed.

Depending on other status of the selected com-
munication port, this subroutine may re-enable
communication on the port if it was stopped (for
example, if the buffer was too full to accept more
data until the “snddta” routine emptied it). This is
done at label “sdstp”.

interrupts the CPU because the INPUT PRIME sig-
nal on the Centronics parallel port was activated
by the external system. No data is transferred by
this interrupt.

interrupts the CPU to report a change in UART
status. This interrupt may also be triggered by the
CPU using the TEST-UART command.

snderr:

snduak:

sndiag:

interrupts the CPU to inform it that a character with
an error was received. The character and a byte
containing error flags are transferred to the CPU.
interrupts the CPU in response to a SEND-UART
command, to acknowledge that the requested
character has been sent on the UART transmitter,
and that it is ready to transmit another character.
interrupts the CPU to inform it of a IDIAG interrupt
condition, when it is of NOTE severity. (Other
IDIAG conditions are handled at label “hangup”.)

5.1.4 UPI Port Input from CPU (Interrupt I3)

This interrupt service routine, at label “upiwr”, accepts com-
mands from the CPU. Apart from the existence of additional
commands, the structure of this routine is identical to that of
Application Note AN-550. We document here the labels and
functions involved in this larger application.

13

INITIALIZE
SELECT-CENT
SELECT-UART
FLUSH-BUF

CPU-BUSY

CPU-NOT-BUSY

SET-IFC-BUSY

SET-CENT-STS

SET-CONTRAST

SEND-LCD

SEND-LED

BEEP

SEND-UART

TEST-UART

Command Processing Routines

State 1 = fcinit
State 1 = fcselc

State 3 = Icinit
State 3 = Icselc

13 interrupt labels:
13 interrupt labels:
13 interrupt labels: State 1 = fcselu State 3 = Icselu

13 interrupt labels: State 1 = fcflsh State 3 = (none)

At label “fcflsh”, the “alert” word bit “aflush” is set, which requests that the main program flush the
communication buffer.

13 interrupt labels: State 1 = fccbsy State 3 = (none)
At label “fccbsy”, the buffer status byte “‘bstat” is set to indicate that the CPU is busy and cannot
accept more data from the HPC. This disables the IDATA interrupt.

13 interrupt labels: State 1 = fccnby State 3 = (none)
At label “fccnby”, the buffer status byte “bstat” is set to indicate that the CPU is ready to accept more
data from the HPC. The IDATA interrupt is re-enabled.

13 interrupt labels: State 1 = fcifby State 3 = (none)
At label “fcifby”, the currently selected interface is set busy, in order to present an error indication.

13 interrupt labels: State 1 = fcscst State 3 = Icscst

At label “Icscst”, the Centronics Port status byte “cps” is loaded from the value supplied by the CPU,
and the Centronics port control signals are updated to reflect these new settings. The subroutine
“setcen” is used to set up the control signals, and it also pulses the Centronics ACK signal if
appropriate.

13 interrupt labels: State 1 = fcslev State 3 = Icslev
At label “Icslcv” (Set LCD Voltage), the LCD Contrast latch is loaded from the value supplied by the
CPU.

13 interrupt labels: State 1 = fcsled State 3 = Icslcd
This command sends a string of up to eight bytes to the LCD display. Application Note AN-550
describes the implementation of this command in detail.

13 interrupt labels: State 1 = fcsled State 3 = Icsled
At label “Icslcd”, the byte provided by the CPU is written to the LED latch.

13 interrupt labels: State 1 = fcbeep State 3 = (none)
This command sends a one-second beep tone to a speaker.

13 interrupt labels: State 1 = fcsndu State 3 = Icsndu

At label “lcsndu”, the single argument (the character to be sent) is placed in variable “uschr”’, and the
bit “schr” is set in variable “ups” (UART Port Status). By doing this, the character has been queued
for transmission. The transmission is performed by the subroutine at label “‘setuar”, which is also
responsible for performing the XON/XOFF flow control protocol. If a character is already being sent
(the transmitter interrupt is enabled), then this is the only action required, since the transmitter
interrupt automatically invokes the “setuar” subroutine. However, if the transmitter is idle, this routine
must itself call “setuar” to transmit the character.

The subroutine “setuar” itself calls another subroutine at label “uecsnd’, which formats the character
to be transmitted into the frame selected by the current UART framing mode. It then sends the
character. Note that the UART framing mode applies to output as well as input characters.

13 interrupt labels: State 1 = fcusts State 3 = (none)
At label “fcusts”, the HPC sets the “austat” bit of the ALERT word, requesting the Main Program to
send a lUART-STATUS interrupt to the CPU.

14

5.1.5 Centronics Commmunication

This task is triggered by each edge of the Centronics port
STROBE signal. This signal is detected by the HPC on the
14 interrupt line. On the leading edge of STROBE, the char-
acter is input to the data communication buffer. This edge
also sets the BUSY signal, by hardware action. On the trail-
ing edge, the BUSY flag is affected by the HPC firmware. If
the HPC is ready to receive more characters, the BUSY
signal is cleared and the ACK signal is pulsed. If the HPC is
not ready to receive more data, it leaves the BUSY signal
high, which prevents the external system from sending more
characters.

The Centronics port STROBE handler is at label “cenint”. It
first determines whether a falling or rising edge was detect-
ed on the STROBE signal. If the leading (falling) edge was
detected, then it jumps to label “cstrbl”’; otherwise it jumps
to label “cstrbt” to process a trailing edge.

At label “cstrbl”, the character is placed in the next avail-
able position of the communication buffer, if the buffer is not
already full. (If it is already full, then it is processed as an
error, as discussed below.) Then some tests are performed:

If the buffer is not full enough to pass data to the CPU,
then the routine exits by jumping to label “cenlex”, where
it prepares to detect the trailing edge of STROBE. Other-
wise, it sets the “pass” bit in the variable “bstat”, which
requests the main program to send data to the CPU, and
then it continues.

If the buffer is not full enough to tell the external system
to stop sending characters, then the routine exits by jump-
ing to “cenlex”. Otherwise, it sets the “stop” bit in vari-
able “bstat”, indicating that the external system has been
stopped, and it also sets the “cbusy” flag in variable
“cps”, which will prevent the Centronics BUSY and ACK
signals from being changed when the STROBE pulse
ends. The routine continues.

If the buffer has become completely full, then the “full”’ bit
in “bstat” is set, indicating that any more characters re-
ceived will trigger an error. Character processing then
continues at label “cenlex”.

At “cenlex”, the Centronics Control Latch is set (tempo-
rarily) to force the BUSY signal high, because it should
not become low until the STROBE pulse ends. The 14 pin,
which detects the STROBE signal, is then re-programmed
to detect the trailing edge (rising edge at the Centronics
connector, but falling edge at pin 14 due to an inverting
buffer). If the trailing edge already has occurred, then this
reprogramming will set another interrupt pending immedi-
ately. There is, however, a possibility that the strobe edge
could occur simultaneously with the reprogramming, with
unknown results. For this reason, the STROBE signal is
sampled by the firmware, and if the pulse has already
completed, then instead of returning from the interrupt it
jumps immediately to interrupt routine “cstrbt”, which pro-
cesses the trailing edge.
The code at label “cstrbt” is entered whenever either a trail-
ing edge interrupt is detected on pin 14 (STROBE), or the
leading edge interrupt routine jumps to it. It reprograms the
14 pin to detect a leading edge again, clears the |4 interrupt

(which is automatically cleared only on interrupt service),
then jumps to the “setcen” subroutine, which manipulates
the BUSY and ACK signals appropriately, according to the
contents of the “cps” variable and the selected ACK timing
mode in variable “ackmd”.

5.1.5.1 Centronics Error Handling

A buffer overrun error is processed at label “cenerr”. This is
the only kind of character error that can happen on a Cen-
tronics interface, and it would be due to an incorrect con-
nection or a software error.

For internal firmware debugging purposes, the “cps” vari-
able bit “cbusy” is again set to ensure that the Centronics
interface will keep the BUSY signal set.

If an error is already waiting to be reported (bit “aerr” of
variable “alert” is already set), then this is a “multiple error”
condition, and cannot be fully reported. Instead, at label
“cenmer”, the bit “errovf” in variable “errfgs” is set. This
variable is sent to the CPU when the error is reported. Also,
the 14 interrupt is disabled, to prevent any further STROBE
interrupts until a new SELECT-CENT command is received
from the CPU.

If no error is waiting to be reported, then bit “aerr” of vari-
able “alert” is set, requesting the main program to generate
an [ERROR interrupt to the CPU. Further data is provided to
be passed to the CPU:

variable “errfgs” is initialized to indicate only a buffer
overrun error.

variable “errchr” is loaded with the character that was
received and could not fit in the buffer.

Because the received character is reported with the error
interrupt, and because no data is lost yet, the Centronics
port is not disabled by this condition.

5.1.6 UART Communication

UART communication is performed by the UART interrupt
routine at label “uarint”. After pushing the required registers
onto the stack, the routine determines which interface is
selected. If it is the Centronics port, the only cause of the
interrupt is the INPUT PRIME signal, and the HPC jumps to
label ‘“‘uarprm” (see Background Processing/Monitoring
Tasks, below). If the UART port is selected, then it is due to
either a receiver or a transmitter interrupt (and the INPUT
PRIME is gated so that it cannot be presented).

5.1.6.1 UART Output
At label “uarout”, a transmitter interrupt has been received.

If the bit “icpu” in variable “ups” is set, this means that the
character just transmitted was a character sent by a CPU
SEND-UART command, and the CPU is notified by request-
ing the |ACK-UART interrupt from the Main Program.

The subroutine “‘setuar” is now called, to determine wheth-
er any more characters need to be sent, either for
XON/XOFF handshaking or because the CPU has request-
ed the HPC to send another character. If so, another char-
acter is sent by ““setuar”, and the UART transmitter interrupt
remains enabled. If not, the “setuar” routine disables the
transmitter interrupt.

15

5.1.6.2 UART Input

At label “uartin”, an interrupt has been generated by the
UART receiver. This means that a character is available to
be placed into the Communication Buffer.

The first action taken by the HPC is to read the receiver
status register ENUR (which contains the 9th data bit and
the Data Overrun and Framing Error error flags), then it
reads the character itself from the RBUF register. The
ENUR register is saved temporarily in variable “enrimg” for
future processing, but is also held in the Accumulator, which
is used here to “accumulate” error flags. The HPC then
prepares to check for a parity error.

Parity checking is not a hardware feature of the HPC’s
UART, so a bit-table lookup is performed using the
“X,[B].b” addressing mode of the IFBIT instruction. This ad-
dressing mode is similar to NS32000 bit addressing, in that
it allows one to address up to 64 kbits (addressed from the
contents of the X register) from a base address given in the
B register. By placing the character to be checked into the X
register, and pointing the B register at a properly construct-
ed table (labels “evntbl”” and “oddtbl’’), a parity error can be
detected in a single IFBIT instruction (see for example label
“u8dopr”).

After loading the X and B registers, a multi-way branch is
performed (jid), which branches to one of 8 labels depend-
ing on the character framing mode variable “uframe” (which
is loaded by the SELECT-UART command). Each mode
handles parity differently: labels “uiod8” and “uiev8” check
for odd or even parity, respectively, including 9 character
bits (8 data plus 1 parity) to make the test. Labels “uiod7”
and “‘uiev7” include only 8 bits (7 data plus 1 parity). Label
“nopar” handles the cases where no parity is included in
the character frame. Also within these routines, a decision is
made whether a Framing Error seen in the character is also
a Break condition: if two consecutive characters are seen
with framing errors with all zeroes in their parity and data
fields, then the second character is reported as a Break
character as well as having a framing error. If, at label
“uinpok”, no errors have been flagged in the Accumulator,
the routine branches to label “uingd” to place the character
into the Data Communication Buffer for the CPU. If errors
have been discovered, then the character is instead report-
ed to the CPU using the IDATA-ERR at label “uinerc”.

The ““uingd” portion of this routine is very similar to the por-
tion of the Centronics input routine that places characters
into the buffer for the CPU. A different mechanism is used
for flow control, of course, to stop the external system if the
buffer becomes full.

At label “uinerc”, a check is made to determine whether the
CPU has received the last character error reported. If not,
this is a “multiple error” condition, handled at label
“uinmce”. If so, then this is reported as a new error at label
“uinice”. The error character and its error flags are provid-
ed to the Main Program in the mailboxes “errchr” and
“errfgs”, and the bit “aerr” in variable “alert” is set to re-
quest that a IDATA-ERR interrupt be sent to the CPU.

On a multiple-error condition, the new error flags are ORed
with the old ones, handshaking is used to stop the external

host system from sending more characters, and the UART
receiver is automatically disabled. The CPU must issue a
new SELECT-UART command to re-enable it.

Another pair of routines report an error if the buffer over-
flows. This error is reported at label “uinief” if no other
error report is pending, or at label “uinmef” if this is a multi-
ple error condition. On a multiple error, an attempt is made
to stop the external host system from sending characters,
and the UART receiver is disabled until the CPU issues a
SELECT-UART command. (A single error does not disable
the receiver, because no data has been lost yet: the
IDATA-ERR interrupt reports the character with the error
report.)

5.1.7 Buffer Status Reporting

For internal debugging purposes, four unassigned signals
from the LCD Contrast Latch are updated to show the
status of the buffer. While the buffer is full enough to pass to
the CPU, one bit of the latch (IC 25G, pin 12) is high. While
the buffer is full enough that the external system should
stop, pin 15 is high. While the CPU is not ready to receive
data from the CPU, pin 16 is high. If a buffer overrun condi-
tion occurs, and data is lost, or if any fatal error occurs (with
a hexadecimal code appearing on the LCD display), then pin
19 goes high. The code that handles these bits is flagged
with the word “DEBUG” in the comment field.

5.1.8 Background Processing/Monitoring Tasks

These are tasks that are not triggered directly by CPU com-
mands.

Real-Time Clock Timer T1 is loaded with a con-
stant interval value which is used
to interrupt the HPC at 10 ms in-
tervals. When the Timer T1 inter-
rupt occurs (labels “tmrint”,
“t1poll”, “t1int”), and the real-
time interrupt is enabled, the vari-
able “rtcent” is decremented to
determine whether a IRTC inter-
rupt should be issued to the CPU.
If so, the bit “artc” in the “alert”
word is set, requesting the main
program to send a IRTC interrupt
to the CPU. The main program, at
label “sndrtc”, interrupts the
CPU. No other data is passed to
the CPU.

At label “kbdchk” the panel
pushbutton switches are also
sampled. This process is de-
scribed fully in Application Note
AN-550.

At label “dsrchk”, the state of the
UART DSR flag is checked if the
UART is selected and DSR moni-
toring mode has been requested
by the CPU. If it has changed, this
routine requests the Main Pro-
gram to issue a IUART-STATUS

(T1)

16

interrupt to the CPU. The UART
receiver is also enabled and dis-
abled by the state of this signal if
DSR monitoring has been re-
quested. (The CPU does not
have to react to the interrupt for
normal operation, but might wish
to record its occurrence.)

At label “brkchk”, if the UART is
selected, and a BREAK has been
detected, the UART data input
pin is polled to determine wheth-
er the BREAK condition has end-
ed. If a BREAK has ended, then
this routine requests the Main
Program to issue a IUART-
STATUS interrupt to the CPU.

Centronics INPUT PRIME When the EXUI pin on the HPC is

activated, and the Centronics
port is selected rather than the
UART, the UART service routine
(at label ‘“‘uarprm”) sets bit
“aprime” in the “alert” variable,
requesting the main program to
send a !PRIME interrupt to the
CPU. The Centronics port is inter-
nally flagged (in the “cps” vari-
able) as being “busy”, and the
Centronics Control Latch is up-
dated to set the BUSY signal
high. The UART interrupt is then
disabled until a SELECT-CENT
command is received from the
CPU. In the main program, the
IPRIME interrupt is sent to the
CPU at label “sndprm”. No other
data is sent.

17

5.2 HPC Firmware Listing

Centronics Port input / checksum calculation / LCD output.

#
#
"

.globl
.globl
.globl
.alobl
.globl

.set
.s5et
.set

.set
.set
.set

start:

addr
addr
addr
addr
addr
addr
addr
addr
addr
addr
addr
addr
addr
addr
addr
addr
addr
addr
addr

movb
movb

movb
movb

ROVD
rROVD
movb

movb

Accepts up to 1024 characters on Centronics port,
accumulates 8-bit checksum, and on receiving Ctrl-D,
displays checksum on LCD display.

start,main
dataint,rtcint,primeint
lcdint
svint,usttsint,errint,uvrint
dlagint,badint

hpcctrl,0xFFFC00
hpcdata, OXFFFEQO
hpcpoll, 0xFDOGOO

HPC Control/Status I/0 location.
HPC Data I/0 location.
HPC Poll address (UPIC).

cr,0xD

1f,0xA
ctrlD,'D'-0x40

Fill interrupt vector locations.

badint,vex # lnterrupt NMI. {Unimplemented)
dataint,vex+4 t# Interrupt 0x10. Comm Buffer data.
rtcint,vex+s # Interrupt Oxll. Real-Time Clock.
badint,vex+l2 # Interrupt Oxl2. (Unimplemented)
primeint,vex+l6 # Interrupt 0x13. Centronics PRIME.
badint,vex+20 # Interrupt Oxl4. (Unimplemented)
badint,vex+24 # Interrupt 0x15. (Unimplemented)
badint,vex+28 # Interrupt 0xl6. (Unimplemented)
lcdint,vex+32 # Interrupt O0x17. LCD data vritten.
svint,vex+36 # Interrupt Ox18. Pushbutton event.
usttsint,vex+40 t# Interrupt 0x19. UART Status change.
errint,vex+44 # Interrupt OxlA. Error detected.
uwrint,vex+48 # Interrupt 0x1B. UART HWrite ack.
badint,vex+52 # Interrupt 0x1C. (Unimplemented)
dlagint,vex+56 # Interrupt OxlD. Diagnostic.
badint,vex+60 # Interrupt OxlE. (Unimplemented)
badint,vex+64 # Interrupt Ox1F. (Unimplemented)
badint ,vex+68 # Interrupt 0x20. (Unimplemented)
badint,vex+72 # Interrupt 0x21. (Unimplemented)

INITIALIZE command.
RTC value: once per second.

$0,hpcectrl
$100,hpcdata
$0x0B,hpcctril # Turn on two LED's to show we're alive.
$0x06,hpcdata

$1,hpcetril
$1,hpcdata

Select Centronics port.
#
$100,hpcdata #
#
#
#

BUSY drops during ACK/ pulse.

Accept 100 characters before passing
buffer to CPU;

Apply flov control if buffer has 120
characters.

$120,hpcdata

TL/DD/9977-6

18

run:

main:

mvait:

typout:

pnlout:

maindat

datiptr:
datoptr:
poutflg:

ckdata:
asctab:

bispsrw

movd

cmpd
bls

movb
cmpb
beq

addb
addga

bicpsrv
cbitb
movb
movb
movb
movb
movzbd
1shd
movb
movb
movzbd
andb
movb
movh

bispsrv

bfc
movgb
movd
movd

br

ret

.byte
.byte

$0x800 # Enable interrupts from HPC.
Mailn program starts here.
datoptr,rl # Register Rl contains buffer out pointer.

datiptr,ril # Wait here for a block to come in.
nvait

o(rl),ro # Here, process character.
r0,sctrlD # 1f End of File, go type checksunm.
typout

r0,ckdata
$1,rl
mvait

Send checksum out on LCDs.
$0x800 # Disable interrupts.

$0,poutflg # Clear LCD output acknovledge flag.
$0xA,hpcectrl # Send-LCD command.
$0x6,hpcdata

$3,hpcdata

$0x1,hpcdata # Clear panel LCD's.
ckdata,ro # Send first hex character.
$-4,r0

asctab[r0:bj,ro

ro,hpcdata

ckdata,ro # Send second hex character.
$0xF,ro

asctabfr0:b],ro

rG,hpcdata

$0x800 # Re-enable interrupts.

tbith $0,poutflg
pnlout

0,ckdata

$databuf,datiptr

datoptr,rl

mwait # Close loop: infinite.

0 # End of main program.

Data for Main Program.

.double databuf # Pointer to Data Buffer area.
.double databut # Pointer to Data Buffer area.

1 # UART Output Ready.
0 # Accum. checksum.
.byte ‘0','1,'2','3",°4%,'5" ,'6" ' T

TL/DD/9977-7

19

.DYtE ‘8‘,‘9',‘a',‘b‘,‘c‘,‘d',‘e‘,‘f'
databuf: .bikb 1024 # Data buffer area.

Start of Interrupt Service Routines.
Invoked by ROM interrupt service. Reglsters RO..R2 are already
saved, but no ENTER instruction has been performed yet.

dataint: # Interrupt 0x10. Comm Buffer ready.
movzbd hpcdata,ro # Get character count from HPC.
movd datiptr,rl
datalp: wmovb hpcdata,0(rl) # Loop: get character from HPC,
addqd 1,rl # increment buffer address,
acbd -1,r0,datalp # decrement count and loop.

movd ri,datiptr

ret 0

rtcint: # Interrupt Oxll. Real-Time Clock.
movb $4 ,hpcctrl # Send Flush-Buf command to HPC.
ret 0

primeint: # Interrupt 0x13. Centronics PRIME.

RoOVD $1 ,hpcetri
movb $1,hpcdata
movbh $100,hpcdata
movb $120,hpcdata
ret 0

lcdint: # Interrupt Oxl17. LCD data written.

sbitb $0,poutflg
0

ret
swint: # Interrupt 0x18. Pushbutton event.
br badint
ret 0
usttsint: # Interrupt 0x19. UART Status change.
br badint
ret 0
errint: # Interrupt OxlA. Error detected.
br badint
ret 0
uvraint: # Interrupt Ox1B. UART Write ack.
br badint
ret 1]
diagint: # Interrupt O0xlD. Diagnostic.

TL/DD/9977-8

20

badint:

movb
novb
movb
movhb
movb
ret

ret

hpcdata,
hpcdata,
hpcdata,
hpcdata,
,ro

hpcdata
0

ro
ro
ro
ro

Trap for unimplemented interrupts.

TL/DD/9977-9

21

start:

addr
addr
addr
addr
addr
addr
addr
addr
addr
addr
addr
addr
addr
addr
addr
addr
addr
addr
addr

movb
BOVD

movb
movb

ROVD
movb
movb
ROVD
movb

movb

Port input / checksum calculation / UART output.
Accepts up to 1024 characters on UART port,
accumulates 8-bit checksum, and on receiving Ctrl-D,
displays checksum by sending out on RS-232 port.

start,main

dataint,rtcint,primeint

lcdint

svint,usttsint,errint,uvrint

diagint,badint

hpcctrl,0xFFFCO00 # HPC Control/Status I/0 location.
hpcdata, OxFFFE0O # HPC Data I/0 location.

hpcpoll, 0xFD0000 # HPC Poll address (UPIC).

cr,0xD

1f,0xA

ctrlD,'D'-0x40

badint,vex
dataint,vex+4
rtcint,vex+8
badint,vex+12
primeint,vex+16
badint,vex+20
badint,vex+24
badint,vex+28
lcdint,vex+32
swvint,vex+36
usttsint,vex+40
errint,vex+44
uvrint,vex+48
badint,vex+52
diagint,vex+56
badint,vex+60
badint,vex+64
badint,vex+68
badint,vex+72

$0,hpcctrl
$100,hpcdata

$0x0B,hpcetrl
$0x06,hpcdata

$2 ,hpcetrl
$5,hpcdata
$2 ,hpcdata
$0xA hpcdata
$100,hpcdata

$120,hpcdata

Fill interrupt vector locations.

Interrupt NMI. (Unimplemented)
Interrupt 0x10. Comm Buffer data.
Interrupt 0x11. Real-Time Clock.
Interrupt O0xl12.

Interrupt 0x13. Centronics PRIME.
Interrupt 0Ox14.

Interrupt 0x15.

Interrupt Oxlé.

Interrupt 0x17. LCD data written.
Interrupt 0x18. Pushbutton event.
Interrupt 0x19. UART Status change.
Interrupt OxlA. Error detected.
Interrupt Ox1B. UART Write ack.
Interrupt 0x1C. (Unimplemented)
Interrupt Ox1D. Diagnostic.
Interrupt Ox1E. (Unimplemented)
Interrupt O0x1F. (Unimplemented)
Interrupt 0x20. (Unimplemented)
Interrupt 0x21. (Unimplemented)

s

INITIALIZE command.
RTC value: once per second.

Turn on two LED's to show ve're alive.

Select UART and set up parameters.

9600 baud,

8 bits, no parity,

XON/XOFF protocol, DTR always on.

Accept 100 characters before passing
& buffer to CPU;

Apply flow control if buffer has 120

TL/DD/9977-10

22

run:
bispsrv

main:
movd

mvait: cmpd
bls

aovb
capb
beq

addb
addqd
br

typout:
Bovb
bsr

ROVDb
bsr

movzbd
1shd
movb
bsr

movzbd
andb
movb
bsr

movb
bsr

Bovb
bsr

movgb
movd
movd
br

ret

serout:
bfc

cbitb

bicpsrv
novb
ROVD
bispsrwv

characters.,

$0x800 # Enable interrupts from HPC.

Main program starts here.
datoptr,rl

datiptr,rl # Wait here for a block to come in.

mvait

o(rl),ro
r0,$ctrlD
typout

Here, process character.
if End of File, go type checksum.

r0,ckdata
$1l,ri1
nvait

Send checksum out on RS-232 port.
$cr,r0
serout

$1f,r0
serout

ckdata,ro
$-4,1r0
asctab{ro:bj,r0
serout

ckdata,ro
$O0xF,ro
asctab[r0:b],ro
serout

$cr,ro0
serout

$1f,ro
serout

0,ckdata
$databuf,datiptr
datoptr,rl

mvait # Close loop: infinite.

0 # End of main program.

tbitb $0,uoutflg
serout
$0,uoutflg # Indicate UART not ready.
$0x800
$0xD,hpcctrl
r0,hpcdata
$0x800

Critical Sequence:

Give Send-UART command to HPC.
Give character to HPC.

End critical sequence.

Register Rl contains buffer out pointer.

TL/DD/9977-11

23

ret 0

maindat: # Data for Main Program.

datiptr: .double databuf # Pointer to Data Buffer area.
datoptr: .double databuf # Pointer to Data Buffer area.

uoutflg: .byte 1 # UART Output Ready.
ckdata: .byte 0 # Accum. checksun.
asctab: .byte ‘'0',*1','2','3"','4"','5"','6','T’

‘byte lal,lgl,lal'ibl'lcl'hdl'lelllfl
databuf: .blkb 1024 # Data buffer area.

Start of Interrupt Service Routines.
Invoked by ROM interrupt service. Registers RO..R2 are already
saved, but no ENTER instruction has been performed yet.

dataint: # Interrupt 0x10. Comm Buffer ready.

movzbd hpcdata,r0 # Get character count from HPC.
movd datiptr,rl

datalp: movb hpcdata,0(rl) # Loop: get character from HPC,
addqd 1,rl # increment buffer address,
achd -1,r0,datalp # decrement count and loop.

movd rl,datiptr

ret 0

rtcint: # Interrupt Ox1l. Real-Time Clock.
movb $4 ,hpcctrl # Send Flush-Buf command to HPC.
ret 0

primeint: # Interrupt 0x13. Centronics PRIME.
br badint
ret 0

lcdint: # Interrupt Ox17. LCD data written.
br badint
ret 0

svint: # Interrupt 0x18. Pushbutton event.
br badint
ret 0

usttsint: # Interrupt 0x19. UART Status change.
br badint
ret 0

errint: # Interrupt 0xlA. Error detected.
br badint

TL/DD/9977-12

24

ret 0

uwrint: # Interrupt Ox1B. UART Write ack.
sbitb $0,uoutflg
ret 0

diagint: # Interrupt Ox1D. Diagnostic.

novb hpcdata,ro
movb hpcdata,ro0
movb hpcdata,ro
movb hpcdata,ro0
movb hpcdata,ro
ret 0

badint: # Trap for unimplemented interrupts.

ret 0
TL/DD/9977-13

25

'

.title CENTUART,'HPC FIRMWARE: CENTRONICS/UART PORTS'

; program centuart.asm version 1.0 05/22/88

; Copyright (C) 1988 by National Semiconductor Corp.
;(!t*txtttttitxttt!ttttti&t**tttxttt!&tttt*ttkttttt!t*tt!t*ttttktttt*tixt)

P(*
P (*
HE
P (*
H G
P
HG
G
H
J(*
e
H G
H G
P (*
H &
I
HG
H
H&
H G
H&
P(*
P (*
H G
s {*

*)
Copyright (c) 1988 by National Semiconductor Corporation *)

%)

National Semiconductor Corporation

2900 Semiconductor Drive *)
Santa Clara, California 95051 *)

*)
All rights reserved %)

*)
This software is furnished under a license and may be used)
and copied only in accordance vith the terms of such license *)
and vith the inclusion of the above copyright notice. This t)
software or any other copies thereof may not be provided or x)
othervise made available to any other person. No title to and *)
ownership of the softvare is hereby transferred. %)

*)
The information in this software is subject to change without *)
notice and should not be construed as a commitment by National t)

Semiconductor Corporation. x)
%)

National Semiconductor Corporation assumes no responsibility %)
for the use or reliability of its software on equipment %)
configurations vhich are not supported by National *)
Semiconductor Corporation. *)

*)

;(i*ttttittt*tttt*ttttt!ttt*t'kt*t*t*titiiti!ttt*ti!tittttittt*tttttttﬂttt)

’
'

’

psv
al
ah

bh
x1
xh

enir
irpd
ired
sio
porti

Derived from hpcupi.asm file. Hovever, commands have
been re-mapped (different code values), and so are not exactly
upvard compatible.

Adds commands and interrupts to support input, buffering,
handshaking and mode selection for an RS-232 port and
a Centronics-style parallel port.

.form ‘Declarations: Register Addresses'
= x'CO:v ; PSW register

= x'C8:b ; Low byte of Accumulator.
= x'C9:b ; High byte of Accumulator.
= x'CC:b ; Lowv byte of Register B.

= x'CD:b ; High byte of Register B.

= x'CE:b ; Lov byte of Register X.

= x'CF:b ; High byte of Register X.

@O VO
TCcoTooTUooT

LT I
[-N -]

*)

TL/DD/9977-14

26

obuf
portah
portb
portbl
portbh
upic
1buf
dirah
dirb
dirbl
dirbh
bfun
bfunl
bfunh

portd
enu
enui
rbuf
tbuf
enur

divby
divbyl
divbyh
tmmode
tnmdl
tmadh
t0con

LT T 1 T O T [T [TR R T |

(LR (R TR T TR T}

L T T T T T T RO P A TN T TR TR 1]

LTI L T T R TR T I T LR T [R}

.form

e e e M- B B I I - N]

E R B
NP R WNNN—OOWNN—~O
TU LU UCE DT OO EUTUOT

x'0104:b
x'0120:b
x'0122:b
x'0124:b
x'0126:b
x'0128:b

x'0140:v
x'0142:v
x'0144:v
x'0146:v
x'0148:v
X'014A:v
x'014C:w
X'014E:vw
X'0150:w
x'0150:b
x'0151:b
x'0152:v
X'0152:b
x'0153:b
x'015C:b

x'0182:v
x'0184:v
x'0186:v
x'0188:v
x'018A:v
x'018C:v
X'018E:v
x'018E:b
x'018F:b
Xx'0190:v
x'0190:b
x'0191:b
x'0192:b

; (Lov byte of PORTA.)
; High byte of PORTA.

; Low byte of PORTB.
; High byte of PORTB.

; (Lov byte of DIRA.)
; High byte of DIRA.

; Lov byte of DIRB.
; High byte of DIRB.

; Lov byte of BFUN.
; High byte of BFUN.

; Lov byte of PWMODE.
; High byte of PWMODE.

; Low byte of PORTP.
: High byte of PORTP.

; Low byte of DIVBY.
; High byte of DIVBY.

; Low byte of TMMODE.
; High byte of TMMODE.

‘Declarations: Register Bit Positions

Position

won

Register(s)

; enir
; enir, irpd, ircd

TL/DD/9977-15

27

i3 = 3 ; enir, irpd, ircd
i4 = 4 ; enir, irpd, ircd
tmrs = 5 ; enir, irpd
uart = 6 ; enir, irpd
el = 7 ; enir, irpd
dsr = 7 ; porti only: poll UART DSR.
uvmode = 1 ; ircd
uvdone = 0 ; irpd

tbmt = (1} : enu

rbfl = 1 s enu

b8or9 = 4 ; enu

xbit9 = 5 : enu

vakeup = 2 ; enur

rbitg = 3 ; enur
fraerr = 6 ; enur
doeerr = 7 s enur

eti = 0 ; enul

eri = 1 ; enui

xtclk = 2 ; enul

xrclk = 3 ; enui

b2stp = 7 ; enui

vrrdy = 0 ; upic

rdrdy = 1 ; upic

la0 = 2 ; upic

upien = 3 ; upic
b8orlé = 4 ; upic

totie = 0 ; tmmdl
topnd = 1 ; tmmdl
tO0ack = 3 ; tmmdl
tltie = 4 ; tmmdl
tlpnd = 5 ; tmmdl
tlstp = 6 ; tmmdl
tlack = 7 s tmmdl
t2tie = 0 : tmmdh
t2pnd = 1 s tmmdh
t2stp = 2 : tmmdh
t2ack = 3 s tmmdh
t3tie = 4 ; tmmdh
t3pnd = 5 + tmmdh
t3stp = 6 ; tmmdh
t3ack = 7 : tmmdh
t4tie = 0 ; pvmdl
t4pnd = 1 ; pvmdl
t4astp = 2 ; pvmdl
t4ack = 3 ; pvadl
t5tie = 4 ; pvmdl
t5pnd = 5 ; pvmdl
tbstp = 6 ; pvmdl
t5ack = 7 ; pvadl
tétie = 0 ; pvmdh
tépnd = 1 ; pvamdh
téstp = 2 ; p¥mdh
téack = 3 ; pvmdh
t7tie = 4 ; pvmdh

TL/DD/9977-16

28

t7pnd
t7stp
t7ack

t4out
t4tfn
t5out
t5tfn
téout
tétfn
t7out
t7tfn

LTI T T TR TR T R 1}

cenclk

txd
dtr
pnlclk

lcvelk =

; ua0 would be
uvrrdy =
cdata
astts
ledclk
urdrdy

[TR TR TR

H CONSTANT

xon= x'11
xoff= x'l3

.form

botad= x'40
topad= x'BF
bufsiz=

'

.sect
.dsb

.endsect

.sect

s WORD-ALIGNED

dummy: .dsv 1
.set

alert: .dsv 1

.set
cpuad: .dsv 1
cpubuf:
ledsix:

;BYTE-ALIGNED

; pvmdh
pvadh
; pvmdh

~N o,

; portpl
portpl
portpl
portpl
portph
portph
portph
portph

N WO Ik WO

o

; portph (CCTLCLK signal).

0 ; portbl, dirbl, bfunl
s portbl, dirbl
7 ; portbl, dirbl

[

; portbh, dirbh
2 , but requires no setup.

3 ; portbh, dirbh, bfunh

4 ; portbh (enables Centronics data to Port D).
5 ; portbh (enables panel swvitches to Port D).
6 ; portbh, dirbh

7 ; portbh, dirbh, bfunh

S

+ XON character: Control-Q
; XOFF character: Control-S$

'Space Declarations'

; First address in buffer.
: Last address in buffer.
topad-botad+l ; Length of buffer.

BUFFER,BASE,ABS=botad ; Data Communication Buffer.

bufsiz

DSECT,BASE,REL ; Basepage RAM variables (addresses 0000-00BF)

; x'00,01 ; Destroyed on reset (address 0).
upicsv,dumny ; Temporary image of UPIC register.

; Alert status bits to main program:

; generate interrupts to CPU.

alerth,alert+l ; Declare top byte of ALERT word.

;s Current address within CPU command buffer.

.dsv 4 ; Buffer for accepting command parameters from CPU.
.dsv 1 ; Pointer into LCD character string buffer.

TL/DD/9977-17

29

numchr: .dsb 1 ; Number of characters currently in data buffer.
cadin: .dsb 1 ; Current input byte address in data buffer
; (first empty loc.).
cadout: .dsb 1 ; Current output byte address in data buffer.
pascnt: .dsb 1 ; Number of characters before data buffer full enough to
; transmit to CPU.
stpcnt: .dsb 1 ; Number of characters before host system is told to stop
; transmitting.
numout: .dsb 1 ; Number of data characters (total) being sent to CPU in
; current transfer.
cntout: .dsb 1 ; Number of data characters remaining to be sent to CPU in
; current transfer.
bstat: .dsb 1 ; Buffer Status byte.
cps: .dsb 1 ; Centronics Port Status byte
; (image of control signals).
ackmd: .dsb 1 ; Acknovledge Timing Mode: Position of ACK/ pulse edges
; on Centronics port relative to BUSY falling edge.
curcad: .dsb 1 ; Current command byte from CPU being processed.
numexp: .dsb 1 ; Number of parameter bytes expected before command processing
; begins.
lecvs: .dsb 1 ; Image of LCD Voltage (Contrast) latch setting; needed with
; LCD RS (PAUX0) signal coming from this latch.
fshlim: .dsb 1 ; Flush limit count: used to limit number of characters passed
; to CPU vhen an error report is pending.
errchr: .dsb 1 ; Holds character on vhich an error vas detected.
errfgs: .dsb 1 ; Holds error flags assoclated vith error character.
lcdfgs: .dsb 1 ; Holds flag bits for characters sent to Panel LCD display.
lcdnun: .dsb 1 ; Number of characters to be sent to LCD display.
lcdsfg: .dsb 1 ; Flag bits associated vith characters in LCD String Buffer.
lcdsct: .dsb 1 ; Counter for characters being sent to LCD display from String
; Buffer.
svlast: .dsb 1 ; Last-sampled switch values.
svlsnt: .dsb 1 ; Last switch values sent to CPU.
beepct: .dsb 1 ; Beep duration count. Counts occurrences of T0 interrupt.
uframe: .dsb 1 ; Frame mode for UART.
uflow: .dsb 1 ; Flov control mode for UART.
ups: .dsb 1 ; UART Status byte.
uschr: .dsb 1 ; UART Send Character: from CPU.
uinchr: .dsb 1 ; UART Input Character: character last received from UART.
enrimg: .dsb 1 ; UART ENUR register image in memory.
rtcivl: .dsb 1 ; Real-Time Clock Interval (units of 10 milliseconds).
rtcent: .dsb 1 ; Real-Time Clock Current Count (units of 10 milliseconds).
rtevs: .dsb 1 ; Events to check for on Timer Tl interrupts.
ustat: .dsb 1 ; UART status for CPU.
dsevc: .dsb 1 ; Diagnostic Interrupt: Severity Code.
derrc: .dsb 1 ; Diagnostic Interrupt: Error Code.
dbyte: .dsb 1 ; Diagnostic Interrupt: Error Byte.
dccmd: .dsb 1 ; Diagnostic Interrupt: Current Command.
dqual: .dsb 1 ; Diagnostic Interrupt: Qualifier (Command Status).
; * Addresses 0040-00BF are reserved for the Data Communication Buffer
H (128 bytes).
H BIT POSITIONS
; Bits in BSTAT byte (Data Communication Buffer Status):
pass= 0 ; Data 1s ready to be passed to the CPU.
passng= 1 ; Indicates that some of the data in the buffer is being
; passed to the CPU.
stop= 2 ; Indicates that host has been requested to stop transmitting.

TL/DD/9977-18

30

cpubsy= 3 ; Indicates that CPU is not able to receive any more data.

ifcbsy= 4 ; Indicates that the interface is considered busy by CPU.
full= 5 ; Indicates that the interface is completely full. Any more
H characters will overflow it.

; Bits in CPS (Centronics Port Status byte)
cack= 0 ; ACK/ Strobe.

cauxl= 1 ; AUXOUT1 Signal.

cbusy= 2 ; BUSY Signal.

cselct= 3 ; SELECT Signal.

ccall= 4 ; CALL Signal.

cfault= 5 s FAULT/ Signal.

caux2= 6 ; AUXOUT2 Signal.

enpre= 7 : 1 enables INPUT PRIME/ interrupt from Centronics port.

; Bits in ACKMD (Centronics Acknovledge Mode byte)
; (Bits 0 and 1 give timing relationship between BUSY and ACK/.)

clinmd= 2 ; 1 = Centronics Line Mode. Buffer limits must also both be 1.
; (Other bits unassigned.)
; ALERT status word (low-order byte) bits:
aflush = 0 + Flush Data Buffer.
artc = 1 ; Real-Time Interrupt detected.
aprime = 3 : INPUT PRIME detected from Centronics interface.
alcdak = 7 ; LCD Panel Write Acknovledge.
; ALERT status word (high-order byte, named alerth) bits:
abutton = 0 ; Pushbutton switch state change.
austat = 1 ; UART status change.
aerr = 2 ; Error detected (UART or buffer overflow).
auack = 3 ; UART output acknowledge: character sent.
adiag = 5 ; Diagnostic interrupt.
; (Other bits not defined.)
; ERRFGS error flags byte sent to CPU vith !BAD-DATA interrupt:
doe= 7 : Data Overrun Error on UART.
frm= 6 ; Framing Error on UART.
par= 5 ; Parity error on UART.
bufovf= 4 ; Buffer Overflov condition (flow control did not work).
errovf= 3 : Error Overflov condition. Two or more errors occurred
: so close together that the first error could not be
H reported before the second error occurred. Details
H of the second error are lost.
brk= 2 ; Break condition detected in addition to Framing error.
; (Other bits not defined.)
: CURCMD byte: Current CPU command. The lower 5 bits contain a code
H in the range 0-10 (hex). The upper tvo bits contain
H further information about command collection:
crdemp= 7 ; Bit 7 (MSB) of curcmd = 1 means that no command is being
; processed and curcmd byte is "empty".
getcnt= 6 ; Bit 6 of curcmd = 1 means that the count is being received

; for a variable-length command.

; LCVS byte: LCD Voltage (Contrast) Latch memory image.
H Contains voltage value in its least-significant 3 bits,
H RS signal to LCD controller in bit 3, and debugging
H information in its top 4 bits.
pnlrs= 3 ; Bit 3 is (inverted) RS signal to panel.

; UPS byte: Status of UART output and flow control.

TL/DD/9977-19

31

When set, means that UART port is selected.

Receiver disabled due to multiple character error.
BREAK signal has been detected and 18 3till active; receiver

disabled.

; One character which is possibly a BREAK has been seen.

; When set, means that CPU should be informed of next UART
transmitter interrupt.
; Request to send a character from uschr location (from CPU).
; Current UART status: 1 = stopped.
; Last UART Status Sent: Indicates what the external system
; thinks the UART's status is.

Wa we neoae ne

byte: Modes for UART flov control.
; 1 = No flov control yet provided since reset.

; (intervening bits not defined.)

; 1 = XON/XOFF protocol mode selected.

; DTR Mode field: 00 = permanently low.

H = permanently high.

; 10 = lov wvhen ready.

H = high vhen ready.

; 1 = characters received while DSR low vill not be accepted.

byte: Status of UART reported to CPU.
0 ; State of DSR signal. 1 = Data Set Ready condition.
1 : 1 = End of BREAK condition detected.
byte: Events to check for at 10-millisecond intervals.
(T1 Underflovs)
0 ; 1 = Real-Time Clock interrupts enabled to CPU.
1 ; 1 = UART Break mode; report end of break.
STACK,RAM16,REL ; On-chip RAM in addresses 01CO-OLlFF.
.dsv 16 ; Space for 8 words beyond
; interrupt context.
12 ; Spare portion of this space.
.dsvy 4 ; LCD String Buffer.

'Code Section'
CSECT,ROM16 ,REL ; Code space. (On-chip ROM)

: Declarations of subroutines called by one-byte JSRP instruction.

rdvait ; Waits for CPU to read a value from UPI port.
vrpnl ; Writes to LCD panel (for initialization only).

; Program starts at label “"start" on reset. This routine is the fatal
; error handler, located here for convenience in setting breakpoint.

usel= 7
mcemnd= 6
brkmd= 5
onebrk=
icpu= 3
schr= 2
cus= 1
luss= 0
s UFLOW
flemp= 7
xonb= 3
dtrbl= 2
dtrb0= 1
dsrb= 0
; USTAT
dsrflg=
brkflg=
: RTEVS
rtcenb=
brkenb=
.sect
stackb:
avail: .dsv
lcdbuf:
.form
.sect
.spt
.8pt
hangup:
sbit
sbit
1d
sbit
rbit
sbit
rbit
nop
rbit

rbit gie,enir ; Fatal error: signal it and halt.
7,1cvs ; Signal error on most-significant bit of
LCD Contrast Latch.
Select command mode for LCD controller.
Place error on Port A for latch.
Clock LCD Contrast Latch high,
then lov to load it.

pnlrs,lcvs
portah,lcvs
lcvclk,portbh
lcvclk,portbh
té6stp,pvadh
té6tie,pvadh ; Set up Timer T6 for non-interrupt use.

tépnd, pvedh ; Clear Pending bit.

TL/DD/9977-20

32

hqupi:

hgupil:

hgrst:

hqupi2:

hextab:

start:

srfsh:

pop
ld
1d
Jsrl
rbit
ld
sbit
rbit
1d
svap
and
1d
Jjsrl
id
and
ld
Jsrl
14d
svap
and
1d
Jsrl
1d
and
1d
Jjsrl

ifbit
1d

ifbit

Jp
Jp

Jp
Jp
ifbit

Jp
Jmpl

Jp

.byte
.form

1d

sbit

sbit

0.v ; Get error address from stack.

sp.v,#stackb : In case of stack underflow, re-initialize SP.
A, #x'01

vrpnl Clear LCD panel.

pnlrs,lcvs
portah,lcvs

Set up panel for data.
Place error on Port A for latch.

lcvclk, portbh ; Clock LCD Contrast Latch high,
lcvelk,portbh :+ then lov to load it.

A,l.b ; Process first character of return address.
A

A, #x'OF

A,hextab[A].Db

vrpnl ; Display it on LCD panel.

A,1.b ; Process second character of return address.
A,#x'OF

A, hextab[A]).D

vrpnl ; Display it on LCD panel.

A,0.b ; Process third character of return address.
A

A,#x'OF

A, hextab[A].D

vrpnl ; Display it on LCD panel.

A,0.b ; Process last character of return address.
A, #x'OF

A,hextab[A].D
vrpnl

Display

it on LCD panel.

rdrdy,upic ; Check to see if OBUF register is full.
obuf,#vdiag ; If not, fill it with !DIAG vector
; continuously.
i3,irpd ; Check for UPI data ready.
hgupil
hgupti
ifeq ibuf,#x'A5 ; Check for RESET command.
hgrst
hgupi2
la0,upic
hgupi2
Xreset ; If so, then go reset the HPC.
; This is part of the outer loop, waiting for
; the RESET command.
1d irpd,#x'F7 ; Clear the UWR detector,
hqgupi ; and keep looking. This is an
;s 1infinite loop until RESET is seen.
.byte 'o','1','2','3','4"','5','6','T’

'g",'9",*A','B','C','D','E','F"
'Hardvare Initialization'

psv.b,#x'08 ; Set one WAIT state.
; Start dynamic RAM refreshing,
; as quickly as possible.
t4out,portpl ; Trigger first refresh
; limmediately.
; Stop timer T4 to
; allow loading,

t4stp,pverdl

TL/DD/9977-21

33

1d
rbit
sbit
14

supi:
1d

sbit
sbit
1d

sbit
sbit

sbit
ld

sbit
1d

sram:

1d
sramll:

X3

Jp

1d
sraml2:
XS

Jp
sskint:
1d
1d
1d
tminit:
14
14
1d
scent:
1d

sbit
sbit

t4,48
t4stp,pvmdl
t4tfn,portpl
r4,4#8

upic,#x'18

uvrrdy,bfunh
uvrrdy,dirbh
A,ibuf

urdrdy,bfunh
urdrdy,dirbh

i2,ircd
irpd,#x'FB

i3,ircd
irpd,#x'F7

s Clear
: Clear
BK,#x'0000,#x"'00
clr A
A,[Bt]).v
sramll

; Clear
BK,#x'01C0,#x'01
clr A
A,[Bt].v
sraml2

s indiv
sp.v,#istackb+2

stackb.v,#hangup

enir,#x'00

1d tOcon, #x
tmmode, #x'4440
divby, #x'0055
tmmode, #x'CCC8

dirah,#x'FF
astts,portbh
astts,dirbh

then load it.
Start timer T4.
Enable pulses out.
Load R4.

~r s me wa

; Set up UPI port.
; 8-Bit UPI Mode
; enabled.

; Enable UWRRDY/ out.

; Empty IBUF register,
; in case of false trigger.

: Enable URDRDY/ out.

Set up UREAD/ interrupt.
Detects rising edges.

Clear any false interrupt
due to mode change.

~e me we o se

; Set up UWRITE/ interrupt.
; Detects rising edges.

; Clear any false interrupt
; due to mode change.

all RAM locations.
Basepage bank:
BE ; Establish loop base and limit.

Non-Basepage bank:
FE : Establish loop base and limit.

; Set up Stack and remove
idual interrupt enables.
; Move stack to high
¢ bank of on-chip RAM.

; Safeguard against

: stack underflowv.
; Disable interrupts
s individually.
'08
; Stop timers T1, T2, T3.
; UART set to 9600 Baud.
; Clear and disable timer
; TO-T3 interrupts.

; Set up Centronics parallel

;. port.

; Enable multiplexed outputs.

; Enable and remove ENASTTS/ signal.

TL/DD/9977-22

34

suart:

sled:

Stmrs:

slcd:

sbit
sbit
1d

jsrl

sbit
1d

sbit
sbit
rbit

sbit
1d

1ad
1d
rbit
sbit

sbit
rbit

ld
1a

ld
nop
nop

1d
1d

rbit
rbit

ld

cdata,portbh ; Enable and remove ENCDATA/ signal.
cdata,dirbh
cps,#x'25 Set up Port A data for

; Centronics Control.

setcen Send to Centronics latch and to Busy flag.
; Set up I4 interrupt on

i4,ircd ; CINTR/ (rising edge).

irpd, #x'EF ; Clear any false interrupt
; caused by mode change.
; Set up RS-232 port.

txd,bfunl ; Enable TXD output.

txd,dirbl

dtr,portbl ; Set up DTR signal. (State is arbitrary:
; low typically means not ready.)

dtr,dirbl ; Enable it as an output pin.

enu,#x'0 : 8-bit Mode.

enur ,#x'0 ; Clear Wake-Up Mode.

enui,#x'80 ; Internal baud; 2 stop

; bits; no interrupts.

portah,#tx'FF ; Set up to turn off LED's.
ledclk,portbh ¢+ Start vith LEDCLK lov,
ledclk,dirbh ; (enable output),
ledclk,portbh : then high,
ledclk,portbh ; then lov again.

; Set up remaining timers.

;s (T1-T3 already stopped

H and pending bits cleared
H at tminit above.)

tl,#12287 : Tl runs at 10-millisecond real-time interval.

rl,#12287
; Timer remains stopped, and interrupt
; disabled, until INITIALIZE command.

pvmode, #x'4440 ; Stop timers T5-T7.
; Wait for valid PND
; bits.
pvmode, #x'CCC8 ; Clear and disable
: interrupts from all
: PWM timers.

ré6,#x' FFFF ; No modulus for LCD Display Ready tinmer.

t7,4#204 ; Set T7 to underflovw at 6 KHz rate

r7,4204 ; (= 3 KHz at pin).

t7tfn,portph : Disable beep tone to panel speaker.
t7stp,pvndh ; Start T7 running.

; Set up LCD display.
; Requires use of timer T6, so
; appears after timer initialigation.

; First, set up LCD contrast,
lcvs, #x'0A ; Initialize memory image of LCD Voltage
; latch, containing RS (PAUX0) bit also.

TL/DD/9977-23

35

lecdlpl:

lcdgol:

minit:

1d

rbit
sbit
sbit
rbit

sbit
sbhit

sbit

rbit

Jp

sbit

ld
jsrl
1d
jsrl
14d
jsrl
1d
Jsrl
1d
jsrl
1d
Jsrl

1d
jsrl
1d
Jjsrl

portah,lcvs

lcvclk,portbh
lcvclk,dirbh

; Arbitrary initial contrast level of 5,
; and RS/ (PAUX0/) is high (="command").
; Start with LCVCLK 1lov,
; (enable output)

lcvclk, portbh ; then high,
lcvclk,portbh ; then lov to get it into LCV latch.

’

Initialize PNLCLK (Panel “"E" signal).

pnlclk,portbl ; Start with PNLCLK high
pnlclk,dirbl ; (enable output).

.
’
»
i

'

; Wait for vorst-case command

execution time (4.9 ms, twice), in case
a panel command vwas triggered vhile
PNLCLK was floating.

téack,pvmdh ; Clear T6 PND bit.
t6,#13000 ; Set Té to twice 4.9 milliseconds.
téstp,pvadh ; Start timer T6.
ifbit té6pnd, pvmndh ; Wait for Té6 PND bit
; to be set.
lcdgol
lcdlpl
sbit té6stp,pvmdh ; Stop timer T6.
téack, pvmdh ; Clear T6 PND bit.

A,#x'38
vrpnl
A, #x'38
vrpnl
A, 8#x'38
wrpnl
A,#x'38
vrpnl
A,#x'08
vrpnl
A, #x'01
vrpnl

A, #x'06
vrpnl
A,#x'0OE
vrpnl

’

’

i

; Reset Panel controller (per Hitachi HD44780

User's Manual).

(Panel RS signal vas set

in LCD Contrast initialization above,

so no change needed here to

flag these as a commands.)
: Send "8-Bit Mode, 2 Lines" command: one;
s tvo;
: three;
;s four times.

; Disable display.

; Clear display RAM.

Initial default mode settings.

; Set mode to move cursor to the right, no
; automatic shifting of display.

CONTINUES TO MAIN PROGRAM INITIALIZATION
'Main Program Initialization'

.form

.
'

Once-only initializations.

Enable display: non-blinking cursor mode.

TL/DD/9977-24

36

1d

curced, #x'80

.
’
.
'
.
.

Current Command: top bit set means "none".
Set CPU command index to beginning of buffer.
Arbitrary starting value.

; Arbitrary set of initialization values for variables,
; 1in effect until receipt of the first INITIALIZE

.

Clear count of characters received.

Next character in from comm port goes to
first byte of buffer.

Next port data character out (to CPU)
comes from first byte of buffer.

No characters being sent to CPU.

No characters being sent to CPU.

Send to CPU when 125 characters received.

Stop host when 126 characters received.
Set buffer ready to receive.

No events pending.

BUSY will fall during ACK/ pulse.

Arbitrary fill for error character.
Clear error detail flags.

Set UART flow control mode byte empty.

Enable interrupts, start timers and go to main loop.

Enable timer interrupts. (Done here
to allov certain commands without an
INITIALIZE command first.)

Enable CPU Command interrupt.

Enable interrupt systenm.

CPU DATA vector number.

Real-Time Clock vector number.

Centronics INPUT PRIME signal.
Acknovledge finished writing to LCD panel.

Pushbutton status change: a button pressed or

; released.

; Change in UART DSR signal, or end of BREAK.
; Character received vith error from UART, or gross

either port.

UART output acknovledge:
Diagnostic Interrupt.

: error condition in buffering or flow control on

character sent.

; Error Vectors for unimplemented or
: unexpected interrupts.

.

NMI: never expected.
UPI READ READY: never expected.
EI: never expected.

1d cpuad, #cpubuf
1d numexp, #8
: command.

14 numchr, #0

14 cadin,#botad

1d cadout ,#botad

14 numout , #0

1d cntout,#0

1d pascnt,#125

1d stpcnt, #126

1d bstat,#0

1d alert, #0

14 ackmd, #l

1d errchr, #55

1d errfgs,#0

1d uflov,#x'80
runsys:

sbit tmrs,enir

sbit 13,enir

sbhit gie,enir

.form ‘Main Scan Loop'
; Declarations
vdata = x'10 H
vrtc = x'1l H
vprime = x'13 H
vlcdak = x'17 ;
vbutton = x'18
vustat = x'19
verr = x'1A
vuack = x'1lB
vdiag = x'1D ;
mainlp:

.ipt 1,hangup

.ipt 2,hangup

.ipt 7,hangup
chkdta:

TL/DD/9977-25

37

1d
and
ifeq
jsrl

chkalt:
Jjmpl

ifbit
Jsrl

ifbit
jsrl

ifbit
jsrl

ifbit
Jsrl

ifbit
Jsrl

ifbit
Jsrl

ifbit
Jjp
Jp
cherr: ifbit
Jp
ifgt
jsrl
Jjsrl
nocher:

ifbit
Jjsrl

ifbit
Jsrl

chkrsp:

.form

A,bstat ; Test state of buffer.

A,8x'09 ; Check PASS and CPUBUSY bits.

A,#x'01 ; If PASS and not CPUBUSY,

snddta ; then go send a block of data to CPU.

ifeq alert.v, #x'00 ; Check for alert conditions.

chkrsp ; If none, go check for response ready.
artc,alert.b ; Check for RTC interrupt request.

sndrtc ; If so, then send Real-Time Clock Interrrupt.
aprime,alert.b ; Check for Centronics Input Prime signal.
sndprm ; If so, send Input Prime interrupt.

alcdak,alert.b
sndlak

Check for LCD Panel write done.
If so, then send LCD Acknovledge interrupt.

aflush,alert.b ; Check for Flush Buffer request.
sndfsh ; If so, then send data in buffer to CPU.

abutton,alerth.b ; Check for a pushbutton change.
sndbtn ; If so, then report the change to the CPU.

austat,alerth.b
sndust

Check for a UART status change.
If so, then report the change to the CPU.

~e we

aerr,alerth.b + Check for a data error condition.

cherr

nocher

cpubsy,bstat ; Suppress if CPU busy. (CPU needs to

nocher ; receive flushed characters first.)

fshlim,#0

sndfsh ; If a flush is still needed, then do it first.
snderr ; If so, then report the error to the CPU.

; (This line deliberately empty.)

auack,alerth.b ; Check for UART output done.
snduak ; If so, then send UART-ACKNOWLEDGE interrupt.

adiag,alerth.b ; Check for Diagnostic Interrupt.
sndiag ; If so, then send interrupt and data.

Jmpl chkdta : No "responses" defined yet; Jjust close loop.

'Main: Send Real-Time Clock Interrupt'

; No data transfer; Jjust trigger interrupt and continue.

sndrtc:
rbit
jsrl

ld
ret

artc,alert.b s Clear ALERT bit.
rdvait Check that UPI interface 1s ready.
If not, loop until it is.

obuf ,#vrtc ; Load Real-Time Clock vector into OBUF for CPU.
Return to main loop.

TL/DD/9977-26

38

: No data transfer;

sndlak:
rbit
Jsrl

1d

ret

.form
sndbtn:

Jjsrl

1d

jsri

rbit
rbit

sbit
ret

.form

; Trashes A, B, K (limit), and

: Buffer Flush request

sndfsh:
rbit
ifeq
ret
Jmpl

alcdak,alert.b
rdvait

obuf , #vlcdak

just trigger interrupt and continue.

Clear ALERT bit.
Check that UPI interface 1s ready.
If not, loop until it is.

; Load LCD-Acknovledge vector into OBUF for CPU.
; Return to main loop.

‘Main: Send Pushbutton Status to CPU’

rdvait

obuf,#vbutton

rdvait

gie,enir
obuf,svlsnt

abutton,alerth.b

gie,enir

; Check that UPI interface is ready.
If not, loop until it is.

; Load BUTTON-DATA vector into OBUF for CPU.

; Check that UPI interface is ready.
; If not, loop until it is.

; *** Begin Indivisible Sequence ***

; Load Pushbutton Data Byte into OBUF for CPU.
; Clear ALERT bit.

; *** End Indivisible Sequence #**%

; Return to main loop.

'Main: Send Data from Data Buffer to CPU'

aflush,alert.b
numchr, #0

snddta

C flag. May trash X in future.
serviced here.
Reset Flush request.

; If no characters to send, just return,
; else go to Send Data routine.

; Automatic Pass condition serviced here.

snddta:
ifbit
Jp

Jp

chkflm:
ret

snddl: jsrl

1d

Jsrl

aerr,alerth.b
chkflm

Check for a communication or buffer error.
If so, there is a limit on the number of
characters to send. Investigate further.

snddl Else, go ahead and perform automatic pass.

ifeq fshlim,#0 ; Here, a flush limit is in effect due to an
; error condition. Check that the limit is
; non-gero before initiating the pass. If
; 2ero, then simply return without passing.

rdvait ; Check that UPI interface is ready.

obuf,b #vdata

rdvait

; If not, loop until it is.
; Load DATA vector into OBUF for CPU.
; Check that UPI interface is ready

(CPU has acknovledged DATA interrupt}).
; If not, loop until it 1is.

TL/DD/9977-27

39

rbit

sbit
ld

ifbit

1d

sbit

la
1d

1d
1d

snddlp:

lds

Jp
1d

sndd4: jsrl

st
decsez

Jp

1d

rbit
and

rbit
1d

sbit
rbit

sc
subc

1d
ifgt
rbit
ifqt
rbit
1fbit
Jp
Jmpl

sdstp: ifgt

gie,enir

passng,bstat
numout , numchr

aerr,alerth.b
numout, fshlim
fshlim,#0

gie,enir

obuf,numout
cntout,numout ;

B,cadout
K,#ttopad

A,[B+].b

sndd4
B, #botad

rdvait

A,obuf
cntout
snddlp

cadout,B.b

gie,enir
bstat,#x'FC

passt+4,lcvs
portah,lcvs
lcvclk,portbh
lcvelk,portbh

numchr, numout

A,%bufsiz
A, numchr
full , bstat
A,numchr
7,1cvs
stop,bstat
sdstp
sdend

stpent, numchr

'
’

Indiviasible operation: disable interrupts
momentarily.

Indicate data being passed to CPU.

Sample number of characters in buffer.

; This becomes the number of characters to
; transfer,

; unless there is a flush limit in effect,

; 1n which case that limit is used.

Any flush limit is set to gzero at this point,
disabling any data passing until the error
condition is reported.

{This does not need to be conditional.)

End indivisible operation: re-enable
interrupts.

; Give number of characters to CPU.

Copy number of characters to temporary

Ne ne e me

.

:+ count location.

Initialize for loop below.
Establish buffer limit.

Loop to send characters from data buffer to CPU.

Load from next byte in buffer, and increment
address pointer in B.

If skip occurs (incremented past end

of buffer), reset pointer to top of buffer.

Check that UPI interface is ready.
If not, loop until it is.

Give character to CPU.
Check if last character.
No: Loop.

Yes: Update pointers and buffer status.
Update current pointer address in memory.

t+* Begin Indivisible Sequence. ***
Clear PASS and PASSING flags.

(DEBUG: Update PASS in LCD Contrast latch.)

(Set carry for subtraction.)

Adjust number of characters in buffer to
reflect those just removed.

Check whether the buffer is any longer
completely full.

No: remove FULL indication (if set).

(DEBUG: update FULL for LCV latch.)

Check wvhether host vas stopped.
Yes: continue,
No: terminate indivisible sequence and
return to main loop.

; Check whether number of characters is

TL/DD/9977-28

40

Jp
Jmpl

sdstpl:
rbit

ifbit
Jjmpl
ifbit
Jmpl
Japl

sdcsts:
Japl
1d

and

ifeq
rbit

ifbit

Jsrl

Jjmpl

sdusts:
Jsrl
ifbit

Jjmpl
ifbit
Jjsrl

Jmpl
sdend:

sbit

rbit

sbit

ret

.form
sndprm:

rbit
jsrl

ld
ret

sdstpl
sdend

rbit
5,1cvs

usel,ups
sdusts
enprm,Cp
sdcsts
sdend

1fbit
sdend
A,bstat
A, 8x'3C

A, #x'00
cbusy,cp

i4,ircd

setcen

sdend

rbit
dtron
eti,enui

sdend
xonb,ufl
setuar
sdend

portah,l
lcvclk,p
lcvclk,p
gie,enir

'Main:

aprime,a
rdvait

obuf,#vp

; nov less than "Stop" value to host.

; If not, then return to main loop.
stop,bstat ; Clear "Stop Host" flag.
Check which port to enable for more data.

Check if UART is selected.
If so, go set up flow control.

] Check if Centronics port is selected.
If so, go set up Centronics BUSY.
Otherwvise, do nothing more and return.

clinmd,ackmd ;s Check if in Centronics Line Mode. If so,

H the CPU itself must command the ACK action.

; Test whether data communication with

H host should be alloved to continue.

H Bits involved are STOP, CPUBSY, IFCBSY and

H FULL.

H If no stop conditions are in effect,
s H clear the BUSY indication in CPS

H (Centronics Port Status) byte in memory.

; If not betveen the two interrupt services

H of a Centronics strobe, then

H call Centronics port control setup routine,

H to generate ACK/ pulse and clear BUSY.

; (If this sequence does occur between the

; leading and trailing edge interrupts for

;s STROBE/, then the trailing edge routine

; will pulse ACK/ when it is allowed to run.)
cus,ups ; Set UART not busy.

; Set DTR handshake appropriately.
; Check if a UART transmitter interrupt will
; be occurring.
; If so, then no further action is required.
ov ; Otherwise, if XON protocol is in effect,
; then check and perform flov control.

; Then exit to main program.

cvs ; (DEBUG: Update LCV latch.)
ortbh
ortbh
; *** End Indivisible Sequence. *#*%

; Return to main program loop.
Send Input Prime interrupt to CPU'

; Send INPUT PRIME interrupt to CPU.
lert.b ; Clear ALERT bit.

; Check that UPI interface is ready.

; If not, loop until it is.

rime ; Load PRIME vector into OBUF for CPU.
; Return to main program loop.

TL/DD/9977-29

41

sndust:

snderr:

snduak:

.form

jsrl

1d

Jjsrl

rbit
rbit
1d
rbit
sbit
ret

.form

rbit
Jjsril

1d
jsrl

1d
Jsrl

1d
ret
.form

rbit
Jjsrl

1d
ret

‘Main:

rdvait

obuf , #vustat
rdvait

gie,enir
austat,alerth.b
obuf,ustat

brkflg,ustat
gie,enir

‘Main:

aerr,alerth.b
rdvait

obuf, #verr
rdvait

obuf,errchr

ee me mn Ne e ne

rdvait H
obuf,errfgs H
‘Main: Send UART

auack,alerth.b
rdwait

obuf,#vuack

‘Main:

rdvait
obuf,#vdiag
rdvait
gie,enir
obuf,dsevc
dsevc,#0
A,derrc
derrc,#0
adiag,alerth.b
gie,enir

e we ~o

’

v

Report a UART DSR change or END OF BREAK'

Check that UPI interface is ready.
If not, loop until it is.

Load UART-STATUS vector into OBUF for CPU.

Check that UPI interface 1s ready.
If not, loop until it is.

* INDIVISIBLE SEQUENCE *

Clear ALERT bit.

Load UART Status Byte into OBUF for CPU.
Clear END OF BREAK indication.

% END INDIVISIBLE SEQUENCE *

Return to main loop.

Report a Data Error Condition to CPU'

Send DATA-ERR interrupt to CPU.
Clear ALERT bit.

Check that UPI interface is ready.
If not, wait until it is.

Load DATA-ERR vector into OBUF for CPU.
Check that UPI interface is ready.
If not, wvait until it is.

Give CPU the offending character.
Check that UPI interface is ready.
If not, wait until it is.

Give CPU the error flags.
Return to main program loop.

Acknovledge interrupt to CPU’

Send ACK-UART interrupt to CPU.
Clear ALERT bit.

Check that UPI interface is ready.
If not, loop until it is.

Load ACK-UART vector into OBUF for CPU.
Return to main program loop.

Send Diagnostic Interrupt to CPU'

Wait for UPI interface ready.

; Load vector into OBUF for CPU.

Wait for UPI interface ready.

+ Begin Indivisible Sequence *
Transfer Severity Code.

Clear it.

Get Error Code.

Clear it.

Clear ALERT bit.

*** End Indivisible Sequence **%

TL/DD/9977-30

42

upivr:

lcrst:

lcord:

lastc:

lastcl:

Jsrl

jsrl

1d
Jjsrl
1d
Jsrl
1d
ret

.form

.ipt

push
push

1d

ifbit
Jmpl

1d

ifeq

Jp
ifbit

Jp
jsrl

ifbit

Jp
Jmpl

X

inc
decsz
Jmpl

1d
ifbit
ip
sbit
ld

shl

.odd
Jjidw
.ptv
.ptv
.ptv
.ptv
.ptv

rdvait
A,obuf
rdvait
obuf, dbyte
rdvait
obuf,dccmd
rdvait
obuf,dqual

'UPI (I3) Interrupt:

3,upivr

A
psv

upicsv.b,upic

cmdemp, curcmd
firstc

A,ibuf

A, #x'AS
lerst
la0,upicsv.b

lcord
hangup

1a0,upic
lcord
xreset

A,[cpuad].b

cpuad
numexp
upvret

A,curcmd
getcnt,A.b
lastcl
cmdemp,curcad
cpuad, #cpubuf

and
A

A, #x'1F

.
i

’

.
.

’
.
i

’
.
i
.
’

’

.

Wait for UPI interface ready.

; Transfer Error Code.

Wait for UPI interface ready.

Remaining bytes will have meaning only for
command errors.

Transfer Byte Received.
Wait for UPI interface ready.

; Transfer Current Command.

Wait for UPI interface ready.
Transfer Command Count.

; Return to main program loop.

Data from CPU'

Declare upivwr as vector for Interrupt 3.
Write Strobe received from CPU.

Save Context

Save UPIC register image for LAO bit test.

If expecting first byte of a command,
then go process it as such.

If not, input it for entry into cpubuf.

Check for RESET command.

Check for
address.

If so, go process as a normal argument.

If not, process as a FATAL error, dgenerating
'DIAG interrupt.

command argument written to proper

Continue checking for a RESET command.
If so, go reset the HPC.
If not, place it in next available cpubuf
entry.
If not final byte of command, then return.
Else, process current command.
Check if extended collection is being made.
If not, then:

Set command slot available again.

Reset CPU buffer pointer to beginning.

; Mask off flag bits.
Scale by tvo, and then

Jjump based on command value.

lcinit,lcselc,lcselu,lillc

illc,illc,illc,illc

(All these are one-byte commands.)

lcscst,lcslcv,lcslced, lcsled
illc,lcsndu,illc,illc

illc,illc

TL/DD/9977-31

43

leinit:

incent:

inuart:

lcibuf:

lcselc:

ifeq
rbit
1d

jsrl

1d
ld

jmpl

ld

ld
1d

1d
and
1d
sbit
rbit
ret

; Process INITIALIZE Command.

14 rtevs, #ix’'01 ; Enable only Real-Time Clock interrupts, but

cpubuf.b,#0
rtcenb,rtevs
rtcivl,cpubuf.b

rtcent, cpubuf.b

; disable them again if

; the command argument is zero.
; Put argument into Real-Time

; Clock interval.

; Put argument into Real-Time

; Clock count.

tltie, tmmdl ; Enable Timer T1 interrupt, if not already
; enabled.

tlstp, tamdl ; Start timer, if not already running.

lcibuf ; Initialize buffer parameters.

alert.v, #0 ; Set no events pending.

ackmd,#1 ; BUSY will fall during ACK/ pulse.

errchr,#55 ; Arbitrary fill for error character.

errfgs,#0 ; Clear error detail flags.

svlast,#0 ; Set up initial switch values.

svlsnt, #0 ; (Both current and last sent)
; Reset Centronics port: Busy

1d cps,#x'25 ; Initialize Centronics port status byte
; in memory. (Busy, and PRIME interrupt
; disabled; othervise normal.)

setcen ; Send to Centronics Control Latch.
; Reset UART port: Busy

and enui,#x'FC ; Disable UART by clearing enables on
; UART-generated interrupts (except EXUI/,
H vhich is connected to INPUT PRIME/.)

ups,#x'03 ; Flag UART as busy and not selected.

A,rbuf ; Clear out spurious characters.

A,enur ; Clear out spurious error flags.

upvret ; Return.

Internal subroutine to initialize buffer status.

; Called also from SELECT commands.

numchr, #0
cadin,#botad

cadout ,#botad

numout ,#0
cntout, #0
bstat,#0
lcvs,#x'OF
portah,lcvs
lcvclk, portbh
lcvelk,portbh

; Clear count of characters received.

; Next character in from comm port goes to
; first byte of buffer.

; Next port data character out (to CPU)

; comes from first byte of buffer.

; No characters being sent to CPU.

; No characters being sent to CPU.

; Set buffer ready to receive.

; (DEBUG: Initialize LCV latch high bits.)

; Return.

+ Process SELECT-CENT command.

and enui,#x'FC ; Disable UART by clearing enables on

TL/DD/9977-32

44

lcsecl:

primlp:

lcselu:

rbit
ifbit

Jp
jsrl

1d
la

jsrl

Jp

sbit
1d

sbit
shit

1d
jsrl

Jmpl

and
st

ifgt
Jjsrl
ld
sc
subc
svap
or
st

1d
and
sbit
ifgt
rbit

rbit
ifeq
sbit
ifgt
sbit

1d
and
st

UART-generated interrupts (except EXUI/,
vhich is connected to INPUT PRIME/.)

usel,ups ; Flag UART not selected.

flemp,uflov ; If valid UART mode exists,

lcsecl

dtroff H use it to set DTR to "not ready" state.

1d ackad,cpubuf.b ; Accept ACK/ mode from command buffer.

pascnt,cpubuf+l.b

stpent,cpubuf+2.b

lcibuf H
ifbit vart, irpd
primlp H
i4,ircd H
irpd,#x'EF H
i4,enir H
uart,enir :
cps,#x'A9 H
setcen H
upvret H
: Process
ld A,divby.b
A, #x'OF H
A,cpubuf+7.b :
cpubuf.b, #x'08 ;
hangup
A, %10
A,cpubuf.b H
A H
A,cpubuf+7.b :
A,divby.b ;
uframe,cpubuf+l.b
uframe,#x'07 H
b8or9g,enu H
uframe, #tl H
b8or9,enu H
b2stp,enui H
uframe, #3 H
b2stp,enui H
uframe, #5
b2stp,enui
A,cpubufi2.b H
A,#x'OF :
A,uflov

; Put "Buffer Pass" value into
; the PASCNT slot.
. Put "Host Stop" value into
; the STPCNT slot.
Initialize buffer parameters.

; Check to see if INPUT PRIME/ interrupt is
still asserted. If so, vait here.

Set up STROBE detector to see leading edge.

Clear any spurious interrupt triggered by
polarity change.

Enable interrupts on I4 (STROBE).

Enable INPUT PRIME/ interrupt (through
UART vector).

Set Centronics interface byte not busy,
selected, and all status bits noreal.

Clears BUSY signal and generates ACK/ pulse
according to current mode in ACKMD.

Return.

SELECT-UART command.

; Process UART baud selection.
Strip out old baud rate selector.
Save (in unused area of the command buffer),
and start processing new value.
Check if out of range.

Convert to DIVBY field format.
Place value in correct field.
OR vith Microvire rate field.
Place back in DIVBY register.

; Get requested frame format.

Discard unused bits.

Set 9-bit mode for 8-bit data plus parity.

If 7-bit plus parity, or 8-bit without parity,
then change this setting to 8-bit mode.

Initialize to one Stop bit.

Test for number of Stop bits requested,
and set up UART hardwvare accordingly.

Set up handshaking mode. This also clears
the FLEMP bit automatically.

TL/DD/9977-33

45

lcslul:
lcslu2:

lcsest:

lcslcv:

lcslcd:

1d

ld
Jsril

1d

ifbit
ip
rbit
Jp

jmpl

jsrl
jmpl

comp
and
and
or
1d
sbit
rbit
Jjmpl

Jjmpl

pascnt,cpubuf+3.
stpcnt,cpubuf+4.
lcibuf

cps,#x'25

clinmd,ackrd
setcen
i4,enir
A,rbuf
A,enur
eri,enui
eti,enui
ups,#x'80

ustat ,#x'01
uart,enir

dtrb0,uflovw

b ; Put "Buffer Pass"
; the PASCNT slot.
; Put "Host Stop" value into
; the STPCNT slot.

; Initialize buffer parameters.

value into

; Set up Port A to disable and de-select

; Centronics port, and disable

; INPUT PRIME interrupt.

; Clear the Centronics Line Mode bit.

; Send to Centronics latch and to Busy flag.

; Disable Centronics STROBE interrupt.

; Clear any pending character before selection.
; Clear any error indications before selection.
: Enable receiver interrupt.

; Disable transmitter interrupt.

; Set UART port selected, not busy, and

; no characters being sent or vaiting to be

; sent.

; Set DSR ready(will trigger interrupt if not).
; Enable UART interrupt.

; Initialize DTR pin according to nev mode.

lcslul
dtr,portbl
lcslu2
sbit dtr,portbl
upvret ; Return.
: Process SET-CENT-STS Command.
id cps,cpubuf.b ; Load Centronics Port Status from byte
; provided by CPU.
setcen ; Perform ACK/ if nev status calls for it.
upvret
: Process SET-CONTRAST Command.
1d A,cpubuf.b ; Load LCD Voltage latch (Contrast) from byte
H supplied by CPU.
A s (3-bit value is in complemented form.)
A, 8x'07 ; Use only lover three bits.
lcvs,#x'F8 ; Clear field in memory image.
lcvs,A.b ; Merge nev field into image.

portah,lcvs
levclk,portbh
levclk, portbh
upvret

; Place on Port A (input to latch).
; Clock latch.

; Process SEND-LCD Command.

ifbit
lecsicl

getcnt,curcad H

Check for first or second collection
; phase.

TL/DD/9977-34

46

lcslc2:

ld
1d

1d
1d
sbit
rbit
Jjapl
lcsicl:

ld
1d

1d

1d
rbit

japl

lcsled:
comp
st
sbit
rbit
Jupl

lcsndu:
sbit

ifbit
Jjmpl

jsrl

Jmpl

lcdbuf.v,cpubuf.v

r

.
’

Second phase:

command.

.
’

lcdbuf+2.v,cpubuf+2.v
lcdbuf+4.w,cpubuf+4.v
lcdbuf+6.v, cpubuf+6.v

lcdsct,lcdnum
lcdsct

lcdsix, #lcdbuf
lcdsfg,lcdfgs
ré, #x' FFFF
t6,1#0
té6tie,pwmdh
téstp,pvadh

upvret

lcdfgs,cpubuf.b

lcdnum,cpubuf+l.b

numexp,lcdnum

cpuad, #cpubuf

getcnt,curcmd

v

Copy CPU buffer to LCD string buffer.

Move number of characters to string
count byte
(incremented by one because of
extra interrupt occurring after
last character has been sent).
Set string pointer to first byte.
Move flag bits to string location.

Set up R6 and Té to trigger string
transfer.

Enable timer T6 interrupt.

Start timer to trigger (immediate)
interrupt from timer T6.

First phase:

more bytes of command.

'

i

'

’

’

.
v

'

Get flag bits supplied by CPU.

» Get character count from CPU.

; Request another collection of

data from the CPU (the string of
data for the panel).

Reset CPU collection pointer to start
of command buffer.

Declare that it will be the final
collection.

begins execution of the LCI

Prepare to collect up to 8

upvret

; Process SEND-LED Command.
1d A,cpubuf.b ; Load LED latch from byte supplied by CPU.
A ; (Data goes to LED's in complemented form.)
A,portah : Place nev value on Port A (input to latch).
ledclk,portbh : Clock latch.
ledclk, portbh
upvret

: Process SEND-UART Command.

uschr,cpubuf.b ; Queue this character,

schr ,ups ; and request transmission at next
; transmitter interrupt.
eti,enui :+ Check to see if another character is
upvret ; already being sent (transmitter interrupt
; enabled).
setuar ; If not, then call flow control routine to
H send it.
upvret ; Return.

TL/DD/9977-35

47

firstc:

Xreset:

fcord:

fcinit:

fcselc:

form

ifbit

Jsrl

ifeq

Jp

1d

jsrl
ld
st
st
st
st
st
st
st
st
ret

and
ifgt
Jepl
st

shl

.odd
Jjidv
.ptv
.ptv
.ptv
.ptv
.ptv

Jmpl

‘Processing of First Byte of Command (Code)'

; One-byte commands are processed in this section.
; Longer commands are scheduled for collection of
H remaining bytes, and are processed in routines

H above.
1d A,ibuf ; Get command from UPI port.
la0,upicsv.b ; Check for out-of-sequence condition
; (argument instead of command).
hangup ; If so, process as a FATAL error (previous

; command vas too short).
; Processing of RESET command.

A, #x'AS : Check for RESET command.
xreset
fcord

; This code is entered vwhenever a RESET
; command is received.
obuf, #vdiag Present dummy value for CPU,
{in case a value vas already in OBUF),

rdvait and vait for it to be read by CPU.
A, %0 ; Initialigze registers.
A,upic.b
A,ibuf.w ; (Actually all of DIRA.)
A,dirb.v
A,bfun.v
A,1ircd.b
A,portp.v
A,sp.v ; Then, through RESET vector,
A,psv.v
; Jump to start of program.

; Here, process an ordinary command (not RESET).
A,8#x'1F ; Use only least-significant 5 bits.
A,#x'11 ; Check for command out of range.
illc
A,curcmd ; Save as current command.
A ; Scale by two, and then

: Jjump based on command value.
fcinit, fcselc, fcselu,illc
fcflsh, fcecbsy, fcenby, fcifby
fcsest, feslev, fesled, fesled
fcbeep,fcsndu, fcusts,illc

illc,1illc
1d numexp, #1 ; First byte of INITIALIZE command.
; Expects 1 more byte (RTC interval).
upvret ; Return.
1d numexp, #3 ; First byte of SELECT-CENTRONICS command

TL/DD/9977-36

48

jmpl

fcselu:

Jmpl

fcflsh:
sbit
Jmpl

fcecbsy:
shit
1d
sbit
rbit
sbit
Jmpl

fcenby:
rbit
1d
sbit
rbit
shit
Jmpl

fcifby:

sbit
ifbit
Jmpl
ifbit
Jjmpl
Jsrl

fcibyu:
sbit
jsrl
ifbit

Jp

ifbit
Jjsrl
fcibyl:

fcibyc:
sbit
Jsrl

sbit
Jjmpl

; Expects 3 more bytes (ACK-Mode, Pass-Count,
; Stop-Count)
upvret ; Return.

1d numexp, #5 ; First byte of SELECT-UART command.
; Expects 5 more bytes (baud, frame,
; handshake, Pass-Count, Stop-Count)

upwret ; Return.

; Processing of one-byte FLUSH-BUF command.

sbit aflush,alert.b ; Set flush request bit in ALERT byte.
cmdemp, curcmd ; Set command byte empty (end of command).
upvret

; Processing of one-byte CPU-BUSY command.
sbit cpubsy,bstat ; Set CPU Busy bit in BSTAT byte.
6,1cvs ; (DEBUG: set also CPU Busy bit in LCV latch.)

portah,lcvs
lcvclk,portbh
lcvelk,portbh
cendemp,curcmd
upvret

; Set command byte empty (end of command).

; Processing of one-byte CPU-NOT-BUSY command.
cpubsy,bstat ; Reset CPU Busy bit in BSTAT byte.
; (DEBUG: reset also CPU Busy bit in LCV latch.)

rbit
6,1cvs
portah,lcvs

lcveclk,portbh

lcvclk,portbh

cmdenp,curcmd ; Set command byte empty (end of command).
upvret

; Processing of one-byte SET-IFC-BUSY command.
; This command (one byte) sets the interface busy
: immediately, to stop characters from the external

H system.
cmdemp, curcmd ; Set command byte empty (end of command).
usel,ups ; Check if UART is selected.
fcibyu ; If so, go set up flov control.
enpre,cps ; Check if Centronics port is selected.
fcibyc ; If so, go set up Centronics BUSY status.
hangup ; Othervise, error. Stop.

; Set UART port busy.
cus,ups ; Set UART input port status busy.
dtroff ; Set DTR handshake appropriately.

eti,enui ; Check if UART transmitter busy.
fcibyl B If so, flov control will happen

; automatically.
xonb,uflovw H If not, then if XON mode is selected,
setuar H invoke flow control routine.
jmpl upvret

; Set Centronics port busy.
sbit ifcbsy,bstat ; Set Interface Busy bit in BSTAT byte.
cbusy,cps ; Set BUSY bit in Centronics Port Status byte.
setcen ; Change Centronics port control latch

: accordingly.
cmdemrp, curcmd ; Set command byte empty (end of command).
upvret

TL/DD/9977-37

49

fcscst:
Jmpl

fcslev:
Jmpl

fcsled:
sbit

Jmpl

fcsled:
Jjapl

fcbeep:
sbit
sbit
1d

Jmpl

fcsndu:
Japl

fcusts:
sbit
Jmpl

ille: jsrl

upvret:
pop
pop
reti

.form
.ipt

tarint:
push
push

tipoll:
Jjmpl

tépoll:
Jmpl

; First byte of SET-CENT-STS command.

ld numexp, #1 ; Set up to expect one more byte.
upvret

; First byte of SET-CONTRAST command.
1d numexp,#l1 ; Set up to expect one more byte.
upvret

; First byte of SEND-LCD command.
1d numexp, #2 ; Set up to expect one more byte.
getcnt,curcmd ; Note extended collection mode in Current

; Command byte.
upvret

; First byte of SEND-LED command.
1d numexp,#1 ; Send to LED's: Set up to expect one more byte.
upvret

; Process one-byte BEEP command.
sbit cmdemp, curcnd ; No arquments; set CURCMD byte empty.
t7tfn,portph ; Enable beep tone to panel speaker.
totie,tmmdl ; Enable Timer TO interrupt.
beepct ,#19 ; Initialize duration count (approximately

;1 second, in units of Timer TO overflows).
upvret

; First byte of SEND-UART command.
1d numexp,#1 ; Send to UART: Set up to expect one more byte.
upvret

: Process one-byte TEST-UART command.
sbit cmdemp,curcad ; No arqguments; set CURCMD byte empty.
austat,alerth.b ; Force UART Status interrupt.
upvret
hangup ; Process illegal command codes.

; Return from UPI Write interrupt.

: Restore Context

psv
A

'Timer Interrupt Handler'

5,tmrint

push
B
psv

ifbit
tlint

ifbit
téint

; Declare entry point for Timer Interrupt.

A ; Save context.

tlpnd, tamdl ; Poll for Timer T1 interrupt (Real-Time Clock}.
; If set, go service it.

tépnd, pvmdh ; Poll for Timer Té interrupt (LCD Panel Timing
; Interrupt).

TL/DD/9977-38

50

topoll:
Jp
Jp
tOpdg: ifbit
Jmpl
tonotp:

noint: jsril
.form

tlint: sbit
ifbit
Jp
Jmpl
tlintl:
Jmpl

ld
ifbit
Jjp
sbit
Jp
tirerr:

sbit
sbit

kbdchk:
rbit
1d
sbit
xor
X
ifeq

p
Jmpl

kbint1:
impl

st
sbit

dsrchk:
1fbit
Jp
Jmpl
ifbit
Jp
jmpl
dsrl: 1d
ifbit
rbit
st
ifbit
xor
1fbit
Jp

dsro:

ifbit topnd, tmmdl ; Poll for Timer TO interrupt (Beep Duration).
tOpdg ; If set, check the Enable bit: TO 1is not
tonotp ; alvays enabled to interrupt when it runs.
totie, tmmdl ; If enable is also set, then go service TO.
toint
: (This label is deliberately here.)
hanqup ; Error: no legal timer interrupt pending.

‘Timer T1 Interrupt Service Routine’

tlack,tmmdl ; Acknovledge T1 interrupt.

rtcenb,rtevs ; Check if RTC interrupts are enabled.
tlintl

kbdchk ; If not, then go check other events.

decse rtcent : Decrement interval value.

kbdchk : If interval has not elapsed, then go check

; for other events.
rtcent, rtcivl ; Reload counter value for next interval.

artc,alert.b ; Check if CPU has received previous interrupt
tirerr ; request; report error if not.

artc,alert.b ; Set Real-Time Interrupt request to main
kbdchk ; program.

sbit 0,dsevc ; Signal NOTE severity.

7,derrc : Signal multiple-RTC error.

adiag,alerth.b ; Request 'DIAG interrupt from main progranm.

; Check keyboard switches.
astts,portbh ; Enable pushbutton data to Port D.
A, portd ; Sample pushbutton switches.
astts,portbh ; Disable pushbutton data to Port D.

A, #x'FF ; Complement lov-order 8 bits of A.

A,svlast ; Exchange with last sample.

A,svlast ; Check if the data is stable (same as last
; sample).

kbintl

dsrchk ; If not, go check other events.

ifeq A,svlsnt ; Check if the data differs from the last
; pattern sent to the CPU.

dsrchk ; If not, go check other events.

A,svlsnt ; Place new pattern in "last sent" location.

abutton,alerth.b ; Request "BUTTON-DATA" interrupt to CPU.

; Check for status of DSR signal if mode selected.

usel,ups ; Check if UART is selected.

dsro

tmochk ; If not, skip both DSR and BREAK checking.
dsrb,uflov ; Check if DSR input should be checked.

dsri

brkchk

A,8x'01 ; Initialize Accumulator to check DSR.
dsr,porti ; Check current state of DSR pin.

0,A ; Clear LSB of A if DSR pin set.

A,B : Register B holds DSR state (1 = DSR Ready).

dsrflg,ustat ; Check last DSR state given to CPU.

A ftx'01 ; Toggle LSB of A if set.

0,A ; If LSB of A is still set, then must send
dsr2 ; UART-STATUS interrupt to CPU.

TL/DD/9977-39

51

Jmpl
dsr2: rbit
ifbit
sbit
sbit

ifbit
ip
dsroff:
Jmpl
dsron: 1d
and
ifgt
Jmpl
sbit

1d
1d

brkchk:
Jp
Jjmpl
brkmdl:
Jp
jmpl
brkmd2:
sbit
sbit

tmochk:
Jmpl

.form

téint: sbit
sbit

decsz
Jmpl

shit
jmpl

ténxtc:

shr
st
sbit
ifc
rbit
1d
shit
rbit

1d
inc
comp

brkchk ; Else, go check BREAK status.

dsrflg,ustat ; Report nev state of DSR to CPU.

0,B.b

dsrflg,ustat

austat,alerth.b ; Request main program to generate !'UART-STATUS.

0,B.b ; Now, enable or disable UART receiver based on
dsron ; nev DSR state.
rbit eri,enui ; If DSR is nov lnactive, disable receiver
brkchk ; interrupts.
A,ups » If DSR is now active, check to see vhether
A,#x'60 ; receiver may be re-enabled: must test
A, 8#x'00 ; for BREAK condition and Multiple Character
brkchk ;s Error condition, which disable the receiver
eri,enui » until a SELECT-UART command. If not

; permanently disabled then re-enable it here.
A,rbuf ; Also remove any garbage characters and error
A,enur ; indications seen while DSR was inactive.
ifbit brkad,ups + Check whether BREAK has been detected.
brkmdl
tmochk ; Go check for other events if not.
ifbit txd,portbl ; Check UART data input pin.
brkmd2 ; If set, BREAK pulse is done.
tmochk ; Othervise, go check for other events.
rbit brkmd,ups ; Clear BREAK mode in UART Port Status byte.

brkflg,ustat ; Set END OF BREAK bit in UART status to CPU.
austat,alerth.b ; Request main program to generate !UART-STATUS.

; t*t Insert other RTC events here. #*#*x
tarret ; Return from Timer Tl interrupt.
‘Timer T6 Interrupt Service Routine'

; Timer T6 interrupt routine: sends characters from
; LCD String Buffer to the panel.

téstp,pvadh ; Stop timer T6.

téack,pvadh ; Acknovledge T6 interrupt.

lcdsct ; Decrement LCD character count.

ténxtc ; If not done, go send another character.

alcdak,alert.b ; If done, request main program to send LCD
; Acknovledge interrupt to CPU.

terret

1a A, lcdsfg ; Get flags byte (for panel RS signal).

A ; Shift right, LSB into carry.

A,lcdsfg ; Store shifted value back.

pnlrs,lcvs ; Determine proper state for RS signal from

; current character's flag (= flag inverted).
pnlrs,lcvs
portah,lcvs ; Send nev RS value to LCD Voltage (LCV) latch.
lcvclk, portbh ; Clock the latch. RS signal is now valid.
lcvelk,portbh

A,[lcdsix].Db : Get next LCD character from string buffer,
lcdsix ; Increment character pointer.
A ; Complement character, then

TL/DD/9977-40

52

ténxt2:

toint:

tarret:

cenint:

cstrbl:

st

rbit
sbit
comp

ld

1fqt
Jp

ifnc
1d

Jjmpl

.form

shit
decse
Jmpl
rbit

and
jmpl

pop
pop
reti

.form

A,portah ; place it on Port A for LCD display.

pnlclk,portbl ; Clock it into panel.

pnlclk,portbl

A ; Restore A to uncomplemented form for
; test performed belov.

té6,#148 ; Set up normal delay time in timer Té
;s (120 microseconds).
A, #x'03 ; Check vhether the longer delay
ténxt2 ; (4.9 milliseconds) is necessary.
; This happens if RS=0 and the byte sent to
; the panel is a value of hex 03 or liess.
t6, #6022 ; If so, change timer to 4.9 milliseconds.
rbit téstp,pwadh ; Start Timer T6 to time out the character.
tarret ; Return from the interrupt.

‘Timer TO Interrupt Service Routine'

; Count duration of beep tone. Restore beep signal
; to gzero and re-enable switch sampling interrupt
; when done.

toack,temdl ; Acknovledge interrupt from Timer TO.

beepct ; Check wvhether beep time has finished.

terret ; No: return from interrupt.

totie, tmerdl ; Yes: disable Timer TO interrupts and
; continue.

portph,#x'OF ; Disable speaker output.

tarret ; Return from interrupt.

; Common return for timer interrupt service routines.
pop psv ; Restore context.
B

A

'Centronics Port Interrupt Handler'

Centronics Port Interrupt Handler

(Pin I4 rising edge)

Note that cadin is an 8-bit quantity; buffer must be

.ipt

push
push
push

ifbit
Jupl
Jjmpl

contiguous within the basepage area.

4,cenint

push psv ; Save context.

A

B

K

; Decide wvhether to process leading or trailing edge interrupt.
i4,ircd ; Check polarity of detector.

cstrbl ; Leading edge (rising on I4 pin}.

cstrbt ; Trailing edge (falling on I4 pin).

; STROBE/ leading edge service routine.

TL/DD/9977-41

53

cenol:

cenl:

cenerr:

1d
sbit
rbit

ifbit
Jjmpl

1d
1d
Xs
Jp
1d
1d
inc
ifgt
Jmpl

sbit
sbit

sbit
rbit

1fgt
Jmpl
sbit
sbit
sbit

sbit
rbit

ifeq
sbit

Jmpl

sbit

sbit

sbit
rbit

ifbit
Jp
jmpl

K, #ttopad ; Reg. K gets buffer top address.
astts,portbh ; Make sure pushbutton buffer is off.
cdata,portbh ; Enable Centronics data to Port D.

; Test vhether there is room for another byte
;s 1in the data buffer.
full,bstat ; If FULL bit set,
cenerr : process this character as an error
; {(Buffer Overflow).

B,cadin ; Get current buffer input address.
A,portd ; Get character.

A,[B+].b ; Store in table.

cenl ; If skip,

B,#botad H then wrap input pointer to beginning
cadin,bl.b H of buffer; else just increment it.
numchr ; Increment number of characters.

pascnt,numchr Check if buffer full enough to send.

cenlex No: end of service.
pass,bstat H Yes: indicate buffer ready to pass.
4,1cvs ; (DEBUG: report status in LCD Contrast latch.)
portah,lcvs
lcvclk,portbh
lcvclk,portbh
stpcnt, numchr ; Check if buffer too full for more
; host characters.
cenlex ; No: end of service.
cbusy,cps ; Yes: set Centronics port status busy.
stop,bstat H set Buffer Status as "STOPPED".
5,1cvs ; (DEBUG: report status in LCD Contrast latch.)

portah,lcvs
lcvclk,portbh
lcvelk, portbh

numchr ,#bufsiz ; Check if buffer completely full.
full,bstat : Yes: set condition.

cenlex ; Update Centronics latch and quit.

; Brror handler: invoked if BUSY flag fails to stop
: host processor and the HPC's data buffer overflovs
: as a result.
cbusy,cps ; Set busy indication in Centronics Port
H Status byte (to keep BUSY asserted to host
; wvhen ENCDATA/ signal is removed later).
H This should not be necessary except in case
H of an internal error in this program.

7,lcvs ; (DEBUG: report error in LCD Contrast latch.)
portah,lcvs

lcvclk,portbh

lcvclk, portbh

aerr,alerth.b ; If an error has already been posted,
ceneker : handle as a multiple error.
cenler ; Else, report single error.

TL/DD/9977-42

54

cenmer:

cenler:

cenlex:

cstrbt:

cenupd:

cenend:

sbit bufovf,errfgs ; OR in the buffer overflow condition.
sbit errovf,errfgs ; Update error conditions byte to also report

; an error overflov.
rbit i4,enir ; Disable STROBE interrupt until re-initialized

; by CPU.
jmpl cenlex ; Return from the interrupt.

shit aerr,alerth.b ; Signal an error.
1d errfgs,#x'10 ; Report buffer overflow as reason.
1ld errchr,portd ; Place character in ERRCHR slot for report to

H CPU.
1d fshlim,nuachr ; Establish limit on future flushes.
jmpl cenlex ; Return from the interrupt.

; Exit from Centronics STROBE/ leading edge.
1d A,Cps ; Prepare to keep BUSY active when ENCDATA/
sbit cbusy,A.b ;18 removed.
st A,portah ; Send CPS byte (vwith BUSY set) to Centronics

; status latch.
sbit cenclk,portph ; (Pulse latch strobe.)
rbit cenclk,portph
sbit cdata,portbh ; Remove Centronics data enable; loads BUSY

; signal with a "1".
rbit i4,ircd ; Set 14 strobe pin to trigger on STROBE/

; trailing edge.
ifbit i4,porti ; Check if strobe has already gone avay.

Jjapl cenend ; If not, just return (no ACK/ pulse).

) The “cstrbt" routine vill be activated then

H vhenever STROBE/ goes away, by means of the

H I4 interrupt.
jmpl cstrbt ; If so, there is a very small possibility

H that the interrupt request may have been

H lost due to it changing vhile the polarity

H bit in IRCD vas being changed above.

; Jump to trailing edge service routine

: directly from here.

; Centronics STROBE/ trailing edge.
sbhit i4,ircd ; Set up for leading edge detection again.
1d irpd, #x'EF ; Clear interrupt I4, in case the leading edge

; routine came directly here. (No hardvare

; clear of the request occurs in that case.)
jmpl cenupd ; Go update Centronics port, with ACK/ pulse

if necessary.
Return from interrupt.

; With Centronics Port update.

Jsrl setcen ; Update Centronics Control signals
; from CPS byte.
; Without Centronics Port update.
pop K : Restore context from stack and return from
; Centronics interrupt.
pop B
pop A

TL/DD/9977-43

55

setcen:

aab:

aba:

baa:

noack:

pop
reti

psv

Subroutine SETCEN.
Sets up Centronics Port control signals according to CPS byte.
Generates ACK signal (if called for) according to current
Centronics timing mode (in ACKMD byte).

Trashes Accumulator.

ifbit
japl

1d

and
jid
.pt

1d
rbit
sbit
rbit
sbit
sbit
rbit
sbit
ret

1d
rbit
sbit
rbit
sbit
sbit
sbit
rbit
ret

la
sbit
rbit
sbit
rbit
sbit
sbit
rbit
ret

1d
sbit
rbit
sbit
ret

.form

.ipt

Return from Centronics interrupt.

rbit cdata,portbh ; Start with ENCDATA/ low, regardless

cbusy,cps
noack

A,acknd
A, #x'03

aab,aba,baa

portah,cps
cack,portah
cenclk,portph
cenclk,portph
cack,portah
cenclk,portph
cenclk,portph
cdata,portbh

portah,cps
cack,portah
cenclk,portph
cenclk,portph
cdata,portbh
cack,portah
cenclk,portph
cenclk,portph

portah,cps
cdata,portbh
cack,portah
cenclk,portph
cenclk,portph
cack,portah
cenclk,portph
cenclk,portph

portah,cps
cenclk, portph
cenclk,portph
cdata,portbh

'UART and Input

6,uarint

’

.

of previous state.

Check if BUSY flag should stay set.
If so, no ACK/ pulse.

Get ACK/ mode,
and extract the timing field.
Branch based on ACK/ timing mode.

BUSY low after ACK/ pulse.
ACK/ falling edge.
Pulse CCTLCLK to load latch.

ACK/ rising edge.
Pulse CCTLCLK to load latch.

Load BUSY flag.

BUSY lov during ACK/ pulse.
ACK/ falling edge.
Pulse CCTLCLK to load latch.

Load BUSY flag.
ACK/ rising edge.
Pulse CCTLCLK to load latch.

BUSY lov before ACK/ pulse.
Load BUSY flag.
ACK/ falling edge.
Pulse CCTLCLK to load latch.

ACK/ rising edge.
Pulse CCTLCLK to load latch.

BUSY high: Set Centronics latch.
Pulse CCTLCLK to load latch.

Load Centronics BUSY signal (high).

Prime Interrupt Handler'

UART Interrupt Vector

TL/DD/9977-44

56

varint:

uarchr:

uarout:

uicpu:

unicpu:

uartin:

push
push
push
push

ifbit
Japl
ifbit
Japl

Jsrl

Jmpl
ifbit
Jjapl
Jsri

.form

ifbit
jmpl
Jmpl
sbit
rbit
jmpl
Jjsrl

Jjmpl

.form

1d
ld
st
and

1d

; This interrupt can indicate any of three conditions:

H 1)

A character has been sent, and the transmitter

H is again ready (label "uarout").

H 2)
H 3)

push
A

psw
B
K
X

usel,ups
uvarchr
enprm,cps
uarprm

hangup

ifbit
vartin
tbmt ,enu
uarout
hangup

rbfl,enu

A character has been received (label "uartin").
A Centronics INPUT PRIME event has been detected
(label *uarprm").

; Check 1if UART selected.
If so, go process a character interrupt.
Check if PRIME interrupt enabled
from Centronics port. If so,
this means that the Centronics port
is selected, and it must be a PRIME
event.
: Else, there is an error.

Stop.

; Check for Receiver interrupt.
Go process input character if so.
Check for Transmitter interrupt.
Go process output interrupt if so.
Else, there is an error. Stop.

'UART Output Routine'

; Here, the interrupt is because a character has just

: been sent and the transmitter buffer is nov empty.

icpu,ups

uicpu

unicpu
auwack,alerth.b

; Check if the CPU needs to be informed.

; Request main program to interrupt CPU for
; UART acknovledge.

icpu,ups ; Reset "Interrupt CPU" status on UART.

unicpu ; Continue processing of interrupt.

ifbit xonb,uflow ; If XON mode selected,

setuar ; check UART handshake status and take any
; appropriate action.

uarret ; Return.

'UART Input Routine’

A,enur
uinchr,rbuf
A,enrimg

A, #x'CO

X,uinchr

; UART data input routine.

Get image of error flags and RBIT9.

Get character.

Save image of ENUR for further processing.
Check for hardware-detected errors.

Mask for error bits (Overrun/Framing).

; Prepare for parity check.

TL/DD/9977-45

57

ld

jid
.pt
.pt

uiod8: 1d
ulev8: x
ifbit
Jp
jp
ufer8: ifgt
Jp
ifbit
Jp
ifbit
Jp
sbit
Jjp
u82brk:
rbit
sbit
u8nbrk:
uBdopr:
sbit

ifbit

xor
uinpok:

Jmpl

Jmpl

uiod7: 1d
uiev7: x
1fbit
ip
Jp
ufer7: ifgt
Jp
1fbit
Jjp
sbit
Jp
u72brk:
rbit
sbit
u7nbrk:
u7dopr:
ifbit
Jp
Jjmpl
uipe7: sbit
Japl

unopar:

B,#evntbl ; Initialize B to point to Even Parity table.
A,uframe ; Parity processing depends on selected

; frame format, so branch to proper

; parity processing routine.
uiod8,uiev8,unopar,unopar
uiod7,uiev7,uiod7,uiev?

; Processing for 8-bit characters with parity.

B, #oddtbl ; For odd processing, change parity table base.
A,uframe : Recover cumulative errors in accumulator.
frm,A.b ; Check for BREAK condition: 1if framing error,
ufers8
u8nbrk
uinchr, #0 :+ and data field is all gzeroes,
u8nbrk
rbit9,enrimg ; and 9th bit also zero,
u8nbrk
onebrk,ups : then check if this is the second
u82brk H consecutive BREAK.
onebrk,ups ; If not, then flag only the framing error,
u8dopr H and do not report break status yet.
sbit brk,A.b : If so, then set Break bit in error image and
eri,enul H disable UART receiver until re-selected.
brkmd,ups H Also shov receiver disabled in UPS byte.
rbit onebrk,up
1fbit X,[B).b ; Check parity of 8-bit character. Set "par"
par,A.b : bit of Accumulator if it would be incorrect
; without parity bit.

rbit9,enrimg ; Check parity bit for 8-bit character. Toggle
A, #x'20 ; parity error indication 1if set.
ifeq A, #x'00 ; Branch based on presence of error.
uingd
uinerc

; Processing for 7-bit characters with parity.
B,#oddtbl ; For odd processing, change parity table base.

A,uframe : Recover cumulative errors in accumulator.

frm,A.b ; Check for BREAK condition: if framing error,
ufer?
u7nbrk
uinchr,#0 ; and data field is all zeroes (incl. parity),
u7nbrk
onebrk,ups
u72brk
onebrk,ups
u7dopr
sbit brk,A.b ; then set Break bit in error image and
eri,enui ; dlsable receiver.
brkmd,ups ; Also shov receiver disabled in UPS byte.
rbit onebrk,ups
rbit 7,uinchr ; Seven-bit data: clear parity bit in memory.
X,[B].b ; Perform bit-table lookup: 1 means error.
uipe?
uinpok
par,A.b ; Set parity error indication in A.
uinerc
; For 8-bit character frames with no parity:
X A,uframe : Restore frame value to UFRAME, and continue

; (no parity check in these modes).

TL/DD/9977-46

58

uferr:

un2brk:
unbrk:
unobrk:

uingd:

uing:

uinl:

uin2:

ifbit
Jp
Jp
ifgt
Jmp
ifbit
Jmp
sbit
Jp

rbit
sbit
rbit

ld
1d

ifbit
Jmpl

1d
XS
Jp
ld
1d

inc
ifgt
Jjmpl

sbit
sbit

sbit
rbit

ifgt
Jmpl

sbit
sbit
Jsrl
ifbit
Jp
ifbit
Jsril

sbit

sbit

frm,A.b H
uferr

unbrk

uinchr,#0 H
unbrk

onebrk,ups ;
un2brk

onebrk,ups ;
unobrk

sbit brk,A.b
erl,enui H
brkmd,ups H
onebrk,ups

Jjmpl uinpok

; Here, a good character vas received.

Check for BREAK condition: 1if framing error,

and data field is all zeroes (incl. parity),
then BREAK condition: if previous character
vas not a BREAK, then just note this one.

; If it was, then set Break bit in error image

and disable receiver.
Also show receiver disabled in UPS byte.

Start buffer

; processing.

A,uinchr H
K,#topad H

Get character again.
Reg. K gets buffer top address.

; Test whether there is room for another byte
; 1n the data buffer.

full,bstat H
uinerf H

B,cadin H
A,[B+}.b ;
uin0 :
B,#botad H
cadin,bl.b H

numchr H
pascnt,numchr H
uinex H

pass, bstat ;
4,1cvs H
portah,lcvs
lcvclk,portbh
lcvclk,portbh

stpcnt, numchr
uinex

cus,ups ;
stop,bstat ;
dtroff H
eti,enui H
uin2

xonb,uflovw H
setuar H

5,lcvs H
portah,lcvs
lcvclk,portbh

If FULL bit set,
process this character as am error
(Buffer Overflow).

Get current buffer input address.
Store character in table.
If skip,
then wrap input pointer to beginning
of buffer; else just increment it.

Increment number of characters.
Check if buffer full enough to send.
No: end of service.

Yes: indicate buffer ready to pass.
(DEBUG: report status in LCD Contrast latch.)

Check if buffer too full for more
host characters.

No: end of service.
Yes: set UART input port status busy.
set Buffer Status as "STOPPED".
set DTR handshake appropriately.

check 1f UART transmitter busy.

if not, then if XON mode selected,
then invoke flow control routine.
(othervise it will happen on next
UART transmitter interrupt
automatically).

(DEBUG: report status in LCD Contrast latch.)

TL/DD/9977-47

59

rbit

ifeq
sbit

impl

uinerc:
ifbit
Jp
jmpl

uinmce:

or
sbit
ifbit
Jp
ifbit
Jjsril

sbit
1d

sbit
rbit

ifbit
Jp
japl

uinmef:
sbit

sbit
rbit
ifbit
Jp
1fbit
jsrl

uinme2:

lcvelk, portbh

numchr, #tbufsie
full ,bstat

uinex

aerr,alerth.b
uinmce
uinlce

sbit

errfgs,A.b
cus,ups
eti,enui
uinmc2
xonb,uflov
setuar

jsrl dtroff

eri,enui

mcend, ups
uinex

aerr,alerth.b

errovf, errfgs

.
’

i

’

Check if buffer completely full,
Yes: set condition.

Character error handler.

If an error has already been posted,
handle as a multiple error.

Else, report single error.

; Update error conditions byte to also report
a lost error.

; OR in the errors from this character.

Yes: set UART input port status busy.

check if UART transmitter busy.

1f not, then if XON mode selected,
then invoke flow control routine.
(othervise it will happen on next
UART transmitter interrupt
automatically).
; Remove DTR handshake if flow mode requires it.
Disable UART input interrupt until
re-initialized by CPU.
Also flag receiver disabled in UPS byte.
Return from the interrupt.

Request CPU interrupt from main program.

A,errfgs ; Report error flags from Accumulator.
errchr,uinchr ; Report error character.
fshlim,numchr ; Establish limit on future flushes.
uinex ; Return from the interrupt.
: FULL error handier: invoked if HPC's data buffer
: overflovs.
7,1lcvs ; (DEBUG: report error in LCD Contrast latch.)

portah,lcvs
lcvclk,portbh
lcvelk, portbh

aerr,alerth.b
uinmef
uinlef

shit
errovf,errfgs

cus,ups
luss,ups
eti,enui
uinme2
xonb,uflov
setuar

jsrl dtroff

.
’

'

bufovf,errfgs

‘

’
.
'
’

If an error has already been posted,
handle as a multiple error.

; Else, report single error.

; Signal buffer overflovw as another error.

; Update error conditions byte to also report

a lost error.

Set UART input port status busy.

(This is done to force flow control action.)
Check 1if UART transmitter busy.

If not, then if XON mode selected,
then invoke flow control routine.
(othervise it will happen on next
UART transmitter interrupt automatically).
: Remove DTR handshake if flow mode needs it.

TL/DD/9977-48

60

rbit

sbit
jmpl

uinlef:
1d

1d
sbit
rbit
ifbit
ip
ifbit
jsrl

uinlf2:
Jmpl

uinex:
Jmpl

; Parity Bit Lookup Table

evntbl:
.byte

oddtbl:
.byte
.byte
.byte

eri,enuil

mcemd,ups
uinex

sbit
errfgs,#x'10
errchr,uinchr

fshlim,numchr
cus,ups
luss,ups
eti,enui
uinlf2
xonb,uflov
setuar

Jsrl dtroff

uinex

.
'
v
’

aerr, alerth.b

Disable UART input interrupt until
re-initialized by CPU.

Also flag receiver disabled in UPS byte.
Return from the interrupt.

; Signal an error.

; Report buffer overflow as reason.

Place character in ERRCHR slot for report to
CPU.
Establish limit on future flushes.
Set UART input port status busy.
(This is done to force flow control action.)
Check if UART transmitter busy.

If not, then if XON mode selected,
then invoke flov control routine.
(othervise it will happen on next
UART transmitter interrupt automatically}.
; Remove DTR handshake if flow mode needs it.
Return from the interrupt.

; Exit from UART input character processing.

uvarret

.byte

Return.

X'96,X'69,X'69,X'96,X'69,X'96,X'96,X'69

X'69,X'96,X'96,X'69,X'96,X'69,X'69,X'96

.byte

X'69,X'96,X'96,X'69,X'96,X'69,X'69,X'96

X'96,X'69,X'69,X'96,X'69,X'96,X'96,X'69
X'96,X'69,X'69,X'96,X'69,X'96,X'96,X'69
X'69,X'96,X'96,X'69,X'96,X'69,X'69,X'96

; A one in the table means incorrect parity for the mode,
; the mode being expressed as the base address (evntbl or oddtbl).

‘Centronics INPUT PRIME'

; Centronics INPUT PRIME service.

aprime,alert.b

’
'
’

'

'

; Set PRIME bit in Alert mailbox to Main prog.
Set BUSY bit in Centronics status byte.

; Go set up Centronics port itself.
; Disable interrupt until it goes away.
; Return.

Common return from UART interrupt.

‘Subroutine to Wait for OBUF Empty'

vaits until the CPU has read a byte from the

UPI interface.

.form
uarprm: sbit
sbhit cbusy,cps
jsrl setcen
rbit uart,enir
Jjapl uarret
uarret: pop X
pop K
pop B
pop A
pop psv
reti
.form
: RDWAIT subroutine:
rdvait: ifbit

rdrdy,upic

; Check to see if OBUF register 1is full.

TL/DD/9977-49

61

ret
Jp

.form

wrpnl: comp
st
rbit
sbit

1d

rbit
vrplp: ifbit

Jp

vrpgo: sbit
sbit
ret

.form
setuar:

1d
and
shl
.odd
jidv
.ptw

usnmat:
ifbit
Jjmpl

ugo: 1d
jsrl
rbit
jmpl

ustop: 1d
Jsrl
sbit
jepl

usmat:

ifbit
Jmpl

rdvait
'Write to Panel Subroutine’

; Write Panel subroutine.

; Used only at initialization or to report a

; fatal protocol error, since it performs

; the timing delay using timer T6é without interrupts.
H (Panel RS signal must be set up previously in the
H LCV latch by the calling routine.)

A ; Complement value for bus.
A,portah ; Put value on panel bus.
pnlclk,portbl ; Set Panel Clock low,
pnlclk,portbl ; then high again;

; pulse wvidth approx.
¢ 1.2 microsec.

: Wait for another
; 4.9 milliseconds (tvice).

t6,#13000 ; Twice 4.9 milliseconds.
téstp,pvmdh ; Start timer T6.

tépnd, pvadh ; Wait for PND to be set.
vrpgo

vrplp

téstp, pwndh ; Stop timer T6.
t6ack,pvmdh ; Clear T6 PND bit.

; Return from subroutine.
‘Set up UART flowv control/output’
: Subroutine SETUAR: checks status of UART output
H section, and initiates a transfer 1f needed.

A, ups : Check if UART handshake status needs update.
A,#x'03

usmat,usnmat ,usnmat ,usmat

; Here, UART status last sent does not match
: current status. Needs flowv control action.

cus,ups
ustop
X,#xon ; Get XON (Control-Q) code.
uecsnd ; Format it and send.
luss,ups
sturet : Return.
X, #xoff : Get XOFF (Control-S) code.
uecsnd : Format it and send.
luss,ups
sturet ; Return.
: No flow control needed. Check if CPU character is
; waiting to be sent.
schr,ups
uscpc

TL/DD/9977-50

62

unopnd:

rbit
japl

uscpc:
1d
Jsrl
rbit
sbit
japl

sturet:
.form

uecsnd:

.pt

suB8odd:

su8evn:
sbit
14
sbit
ret

su7o0dd:
su7evn:
xor
lad
sbit
ret

su8: ld
sbit
ret

.form

dtroff:
Jp
ret

doff: ifbit

Jp
sbit
ret
d2off: rbit
ret

dtron: ifbit
jp

; Here, no characters pending to be sent. Turn off
; transamitter interrupt and return.

eti,enui ; Turn off transmitter interrupts.
sturet ; Return.

; Here, a character is wvaiting to be sent from CPU.
X,uschr ; Get character.
uecsnd ; Format character for current frame and send.
schr,ups ; Remove character send request.
icpu,ups ; Set CPU interrupt request on completion.
sturet ; Return.
ret ; Return from subroutine.

‘Format and transmit UART character'

; Subroutine to encode a character according to the
B currently-selected frame format and send it.
H Character is passed in Register X.
B,ttevntbl
xbit9,enu
A,uframe ; Jump based on frame format.

su8odd, su8evn,su8,su8
su7o0dd, su7evn,su7odd, su7evn

1d B,#o0ddtbl
ifbit X, [B].b
xbit9,enu
tbuf,X.b

eti,enui

1d B,#oddtbl

ifbit X,[B].b

X.b,#x'80 ; Toggle parity to ignore bad top bit.
tbuf ,X.b

eti,enui

tbuf , X.b
eti,enui

'‘DTR Handshake Routines'
; Subroutine DTROFF - Sets printer not ready using DTR.
ifbit dtrbl ,uflow ; Action taken depends on UFLOW mode.

doff ; If DTR is in a permanent state, return.

dtrbO,uflov

d2off
dtr,portbl ; For lov-active DTR mode.
dtr,portbl ; For high-active DTR mode.
; Subroutine DTRON - Sets printer ready using DTR.
dtrbl,uflov ; Action taken depends on UFLOW mode.
dton ; If DTR is in a permanent state, return.

TL/DD/9977-51

63

The HPC as a Front-End Processor

AN-551

ret

dton: ifbit dtrb0,uflov
Jp d2on
rbit dtr,portbl ; For low-active DTR mode.
ret

d2on: sbit dtr, portbl ; For high-active DTR mode.
ret
.end start

LIFE SUPPORT POLICY

TL/DD/9977-52
Lit. # 100551

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2.

systems which, (a) are intended for surgical implant
into the body, or (b) support or sustain life, and whose
failure to perform, when properly used in accordance
with instructions for use provided in the labeling, can
be reasonably expected to result in a significant injury
to the user.

A critical component is any component of a life
support device or system whose failure to perform can
be reasonably expected to cause the failure of the life
support device or system, or to affect its safety or
effectiveness.

o)

National Semiconductor
Corporation

1111 West Bardin Road
Arlington, TX 76017

Tel: 1(800) 272-9959
Fax: 1(800) 737-7018

National Semiconductor

Europe

Fax:
Email:
Deutsch Tel:
English Tel:
Francais Tel:
ltaliano Tel:

(+49) 0-180-530 85 86
cnjwge @tevmz2.nsc.com
(++49) 0-180-530 85 85
(+49) 0-180-532 78 32
(+49) 0-180-532 93 58
(+49) 0-180-534 16 80

National Semiconductor
Hong Kong Ltd.
18th Floor, Straight Block,

Ocean Centre, 5 Canton Rd.

Tsimshatsui, Kowloon
Hong Kong

Tel: (852) 2737-1600
Fax: (852) 2736-9960

National Semiconductor
Japan Ltd.

Tel: 81-043-299-2309
Fax: 81-043-299-2408

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

