A Software Driver for the
HPC Universal Peripheral
Interface Port

ABSTRACT

This application note covers the use of the National Semi-
conductor HPC46083 High-Performance microController as
an intelligent Peripheral Interface and Interrupt controller for
another “Host” CPU, using its 8-bit or 16-bit parallel UPI
(Universal Peripheral Interface) Port. Included in the discus-
sion is the source text of an HPC driver program, which can
be tailored as an ‘“executive” for a wide variety of HPC
tasks. A simple application is built from this software, which
interfaces a National NS32CG16 CPU to a typical front pan-
el (LED indicators, LCD alphanumeric display, pushbuttons
and beeper).

1.0 INTRODUCTION

The National Semiconductor HPC family of microcontrollers
includes as a feature the ability to be slaved to another
“Host” processor over that processor’s memory bus. This
feature, called the Universal Peripheral Interface (or UPI)
Port, allows:

1. Transfer of either 8-bit or 16-bit data in a single bus trans-
action,

National Semiconductor
Application Note 550
Brian Marley

April 1992

2. Polling to determine the status of the port from either side
(Ready for Write/Ready for Read), and

3. Interruption of the host by the HPC with full vectoring.

The HPC, then, can serve as a front-end controller for the
host, freeing it from control and/or communication tasks
that might burden its capacity for interrupt service, and pro-
viding vectored interrupting for higher-level (and therefore
less frequent) communication.

2.0 THE UPI PORT

2.1 Internal Structure

Figure 1 shows the internal structure of the UPI Port. It con-
nects via three registers to the HPC’s on-chip data bus, and
via a set of pins (Port A) to the host’s bus. The control
interface between the HPC and the host consists of two
low-active strobe signals (URD and UWR) and an address
signal (UAO) output by the host, and two handshake signals
(RDRDY and WRRDY) output from the HPC.

T

»{Bi5] RORDY PIN
»[B11] WRRDY PIN
l B10 ] UAC PIN
™\ URD PIN
UPI
H Control
Register
(UPIC)
UPI
%] Bus
a Pins
< (Port
= Output A)
[=) H Buffer
— Register
=z (0BUF)
[
[}
=
=
Input
H Buffer
Register
(IBUF)
N\ o]

FIGURE 1. UPI Internal Structure

{iz] OwR PN

TL/DD/9976-1

©1995 National Semiconductor Corporation TL/DD/9976

RRD-B30M105/Printed in U. S. A.

110d 9oealu| [esaydiiad [esdaAIun DdH 9Yi 10} J9ALIQ 94eM}J0S

09S9-NV



The UPI Port may be configured either as a 16-bit bus (using
all of Port A: pins AO-A15) or as an 8-bit bus (pins A0-A7),
allowing pins A8-A15 to be used as general-purpose bit-
programmable 1/0 pins. This selection is made by HPC firm-
ware.

2.2 Basic Operations

Three types of operation may be performed over the UPI

Port:

1. Transfer of a byte or word of data from the host to the
HPC’s IBUF register. This is called a “UPI Write” opera-
tion.

2. Transfer of a byte or word of data from the HPC’s OBUF
register to the host. This is called a “UPI Read” opera-
tion.

3. Polling by the host to determine whether the HPC is ready
for the next UPI Write or UPI Read operation. This in-
volves the host reading the UPIC (UPI Control) register,
which contains the states of the WRRDY and RDRDY
pins as two of its bits.

As shown in Figure 2, whenever the host writes to the HPC

(by pulsing the UWR signal low) data is latched into the

HPC’s IBUF register. At this time also, the value on the UAO

pin is latched into the UPIC (UPI Control) register, allowing

HPC

HPC firmware to route the data just written. (For example,
this bit can be used by the HPC firmware to distinguish be-
tween commands and data written to it.) The rising edge of
UWR is detected by an edge-trigger circuit on-chip, which
may be used to trigger an interrupt or for polling, to alert the
HPC firmware to the presence of new data. The WRRDY
handshake signal, normally low, goes high until the HPC
firmware has sampled the data written to it (by reading inter-
nally from the IBUF register).

Figure 3 shows the sequence of events in reading data from
the HPC. The transfer starts when the HPC writes a value to
the internal OBUF register. The RDRDY handshake signal,
normally high, goes low to indicate that data is present for
the host. (This pin can be used to interrupt the host as well.)
By pulsing the URD pin low while holding the UAO pin to a
“1”, the host reads the contents of the OBUF register, and
the RDRDY pin goes back high.

The polling operation (Figure 4) allows the host to monitor
the RDRDY and WRRDY conditions as data bits, by pulsing
the URD pin low with a “0” held on the UAO pin. This effec-
tively reads from the UPIC register; the WRRDY condition
appears on bit 0 (the least-significant bit), and the RDRDY
condition appears on bit 1 (the next most significant bit).
Polling in this manner does not affect the state of the
RDRDY bit.

READ
IBUF

WRRDY

BUS
(PORT A)

UWR
(CPU WRITES DATA TO IBUF)

UAO

W VALID K

TL/DD/9976-2

FIGURE 2. UPI Write Operation




HPC
WRITE
(T OBUF)

RDRDY

BUS
(PORT A)

URD
(CPU READ FROM OBUF)

UAO

RDRDY

BUS
(PORT A)

URD
(CPU READ FROM UPIC)

UAO

/'l

X

[
VALID \ A

WV

FIGURE 3. UPI Read Data Operation

VALID (HIGH) \

(NOT AFFECTED)

\y VALID

AN

\\ VALID (LOW) &

FIGURE 4. UPI Poll Operation

TL/DD/9976-3

TL/DD/9976-4




2.3 Typical Hardware Configurations

Typical connections between the host and the HPC are
shown in Figures 6 through 7.

2.3.1 Polled Synchronization

In the simplest case (Figure 5), the WRRDY and RDRDY
signals are not used, and the host synchronizes itself with
the HPC strictly by polling the UPIC register for the Read
Ready and Write Ready conditions. The only additional logic
always required is a pair of OR gates to activate URD and
UWR only when the HPC is selected by the host’s address
decoder. Depending on the host, it may also be necessary
to add WAIT states, as is often required in peripheral inter-
faces to match the bus timing characteristics of the two
ends.

Sophisticated synchronization schemes are not available
using this simple an interface, but it does save the HPC
RDRDY and WRRDY pins for any other general-purpose
170 functions.

2.3.2 Interrupt-Driven Synchronization

Assuming that the host has interrupt control capability, the
circuit above can be enhanced to implement an interrupt-
driven synchronization scheme, as shown in Figure 6. A fall-
ing edge on either RDRDY or WRRDY will trigger an inter-
rupt to the host, informing it when the HPC becomes ready
for either direction of data transfer. No additional logic is
required (except for possible buffering or inversion), but only
dedication of the WRRDY and/or RDRDY pins for the inter-
rupt function. It is not necessary for both RDRDY and
WRRDY conditions to trigger interrupts; one can be polled
and the other interrupt-driven, as dictated by the require-

ments of the system and the structure of the host and HPC
software. Also, depending on the host, it is often possible
for the HPC itself to provide interrupt vectoring, thus elimi-
nating the need for an external interrupt controller entirely.
The approach taken in the driver program, described below,
implements the HPC as the interrupt controller, with inter-
rupts asserted only by the RDRDY pin.

2.3.3 Hardware Synchronization

Figure 7 shows the connections required to implement hard-
ware synchronization between the host and the HPC. In this
scheme, there is no host software involved in synchronizing
with the HPG; if the host attempts a UPI transfer for which
the HPC is not prepared, the host is held in “Wait states”
until the HPC is ready. Note that the UPIC register is an
exception; Wait states are not to be inserted when the CPU
polls the UPI port’s status (UAO = 0).

The main advantage of this scheme is speed: the CPU and
HPC transfer data as fast as they can both run the transfer
loop. (One will generally find that the HPC stays ahead of
the CPU; the CPU tends to be in the critical path due to
more complex buffer management algorithms.) The main
disadvantage is that if the HPC is allowed to be interrupted
in the middle of the transfer, the CPU is not free to do any-
thing else at all, including servicing its own interrupts.

In addition to the logic to detect when to hold the host (at
the bottom of the figure), additional gating is required on the
UWR signal, to prevent it from being asserted until the
WRRDY signal is active. This is required because the IBUF
register of the HPC is a fall-through latch, and its contents
would be lost if UWR were allowed to go active too soon.

HOST CPU HPC SELECT HPC
ADDR.
ADDRESS DECODE
UPI ADDRESS BIT
» uAo
DATA BUS
DATA PORT A

TL/DD/9976-5

FIGURE 5. Polling Interface




FIGURE 6. Interrupt-Driven Interface

INT1 |« RDRDY
INTZ |« WRRDY
HOST CPU HPC SELECT HPC
ADDR.
ADDRESS DECODE
UPI ADDRESS BIT
»] UAD
DATA BUS
DATA PORT A

TL/DD/9976-6

N rgD > 0RO
WR o
HPC SELECT 9 R
HPC SELECT
HOST CPU e
ADDR.
ADDRESS DECODE
UPI ADDRESS BIT
1 UAD
DATA BUS
DATA PORT A
WRRDY
WAIT
RDRDY
< WAIT
INSERTION
LOGIC (INTERRUPT) 4----
(SYSTEM
DEPENDENT)

FIGURE 7. Hardware-Synchronized Interface

TL/DD/9976-7




Figures 8 and 9 illustrate the timing involved in hardware
synchronization. Figure 8 shows the host attempting two
UPI Read accesses in quick succession; the second Read
access is held pending until the HPC has supplied the data.
Figure 9 shows the host attempting two UPI Write accesses
in quick succession; it is held in Wait states (with the UWR
signal suppressed) until the HPC has emptied the first value
from the IBUF register.

HPC

This scheme and the interrupt-driven scheme above are not
mutually exclusive; as shown in Figure 6, one might tie
RDRDY or WRRDY, or both, to CPU interrupts. The applica-
tion hardware described implements both schemes, leaving
CPU software the option of using hardware synchronization
or not. The driver program in the HPC operates the same,
independent of the option used.

WRITE
(T0 0BUF)

RDRDY

L

BUS
(PORT A)

VALID \N w VALID X

—

g

\

UR
(CPU READ FROM OBUF)
= T

WAIT

VALID (HIGH)

TL/DD/9976-8

FIGURE 8. Hardware Synchronization: Read Operations

HPC

READ
(FROM IBUF)

L

WRRDY

BUS

(PORT A) VALID

L1

A

WX

/ VALID

N~

HOST WR
(CPU WRITE TO IBUF)

X
k) P

HPC UWR

LT
L]

WAIT

TL/DD/9976-9

FIGURE 9. Hardware Synchronization: Write Operations




3.0 A UPI DRIVER AND SAMPLE APPLICATION

The circuit and program described below implement an
interface between the HPC and a National microprocessor,
the NS32CG 16, as the host CPU. The UPI port is configured
to be 8 bits wide. The hardware supports both interrupt-driv-
en (RDRDY only) and hardware synchronization, as well as
polling.

In order to demonstrate some real commands to support, a
set of simple interfaces is attached to the HPC, typical of a
front panel.

— Up to 8 pushbuttons

— Up to 8 LED indicators

— A 16-character alphanumeric LCD display

— A speaker for “beeps’ on alert conditions or input errors

— A real-time clock interrupt function, giving the CPU the
means to measure time intervals accurately.

This application by itself is admittedly not enough to justify
the presence of an HPC in a system, but it is a simple appli-
cation, and we expect that this will often be part of the
HPC’s job. For a much more comprehensive application,
which includes this one as a subset, see the next applica-
tion note in this series: “The HPC as a Front-End Proces-

»

sor”.
We will describe in this section a specific set of hardware
and software, and a UPI command and response protocol
to make these interfaces play.

3.1 UPI Port Connections to NS32CG16

The attached schematic shows the HPC UPI port as it has
been used a real application. On Sheet 1, a block diagram is
given, showing the components involved. The CPU is an

3.1.1 Schematic

NS32CG16 microprocessor, running at a 15 MHz clock rate
(crystal frequency 30 MHz). The HPC component is the
HPC46083, running at a crystal frequency of 19.6608 MHz.

It would be unrealistic to present only the UPI interface sec-
tion, since tradeoffs and implementation considerations
abound when dealing with fast processors and large ad-
dressing spaces. For this reason, we include on sheets 5, 6
and 7 the circuitry involved in NS32CG16 address decoding
and dynamic RAM control.

The UREAD and UWRITE UPI strobes are generated for the
HPC in area B1 of Sheet 6. In addition, the latched CPU
address bit BA09 is used as the UAO addressing bit.

Hardware and Interrupt synchronization are accomplished
as follows. On Sheet 6, area D8, the HPC signals URDRDY
and UWRRDY enter a synchronizer, and emerge as
URDRDYS and UWRRDYS. The URDRDYS signal goes to
the CPU as its Maskable Interrupt signal (Sheet 5, area C8).
After gating, which yields URDRDYSQ and UWRRDYSQ,
they enter the PAL16L8 in area C7 of Sheet 6. This PAL’s
relevant outputs are WAIT1 and WAIT2, which go to the
CPU for Wait State generation, and ACWAIT, which also
goes to the CPU (as CWAIT) after passing through the
PAL20R8 device in area D4 of Sheet 6.

In addition, the HPC provides from Timer T4 a square wave
at approximately 68 kHz, which triggers refreshes of dynam-
ic RAM. The signal involved is called “68 kHz”, and goes
from the HPC on Sheet 4, area D1, to Sheet 6, area D8.
Note that the detector in area D7 is held on at Reset, to
preserve RAM contents by continuous refreshing while the
HPC is being reset.

UPI Demo Functional Block Diagram

32CG16 CPU [¢—»| 32081 FPU

BD00-BD15

REFRESH

DRAM INTERFACE

DYNAMIC RAM

ROM/EPROM

PANEL
INTERFACE

HPC46083
MICROCONTROLLER

TL/DD/9976-10




L1-9/66/0d/1L

YOINd
SORT
JEEE]
YLVQON3
SIS 50va
X10031
PRGN
1Y [ 16 P 1 1O 1Y 1 P Y P
Yol Yoi ZE2RZ2BEIRTRARTSE [
a8z a8z NV A o Moz
om W3
o o &) - o—)
14
—] s QHM/AQY 91z
o+ ECE T 13534 ZHK 809961 —) Wi
s [.Y24 91z |
(%] v 51 ¢ 1%
£008-0008 37 i o)
[ETIEE "
SO a
2004 5 ov o 9 avaan
ETIEN M W E M0
SERECTIT P al®
5008 34 ™ H6Z al 6
\y_ o0t o7 | o g0970dH LI
I oa |2
e
ofs]elzfo [ z 8OVL40d ¥ | o a B 0aLy0d or|efls]z]s|ls]v]<c|cz
U A s Hl e I = —eovmod | o ) TaL80d ed-d- - - -}~ |- -} -} -
[ covidod b4
: ' oWLod_or | L o K1 ZaL0d > > 2 e H
' ' —_twmod 6] o TaL80d '
H H [ zvodee] (o a2 7aLd0d H
SIVIIOd LS D SAL80d g g g g g g g
[N 7Y 9 f
ol TR oy a2 901404 H0l
208 " SIvHod S5 [3 ZaL40d 982
a8=23 N
ofslelzfo]s|v|e]e
m— [ [y cm e
| << << << <<
¥3d338 155355555353 £01¥0d-00L40d
TNV < Z -
< [ ]
oL T anoL B LT TP pey e N
80812 ok
az 962

ZHX 89

ONIAIL HSYIR

19]103U020.01 DdH




¢l-9/66/aa/1L

VLVQON3

(aasn 10N)

NI VLYQ 3LVN¥31TY

ANANANAAANANAAN

SLLSVN3

ANANNANANT

¥3TIONINOD 001 0L 4=
%:
~
0 v
0002 wM aE
o] sle]z]o]s]|v]c]z aiod S}, oo 2
pad B LA CH R el IR I I 004 n oz
' Av“ ¢0130d 8
' S TN R 13
. " s b
lllllllllllllllll‘..— G+ 90130d 9 08 a8 L
NE'E £0140d 6 8
VLSSTL
162
&
30 N3
oL
2 or als
2 or |
om A
e LR o
hn 1 K
e A )
e R
SLSSTL
108

£0140d=-00140d

0O/13dH

SIHOLIMS T3NVd
NOLLNGHSNd WOy

N




€1-9/66/00/1L

v/a 71N N10A
("1s¥10)
A LSVAINOD A 1001
~
0001 0y
280 <
. . D o & oo N
* ® (No = mo1) D or e[ wc« WM N
01 = > o ar [
¥IT0uIN0D | 08C = SQIT TINVA OL ¢ =os a2 v mnu
o AN Dy % % B —sviod
08LY¥OH < 1% LT vied
|A;>_ _O| ozz < srL°% 98 fer—civivod
sy §
Y = dAL slv]¢]z vLESTL
A R4 B2 KA N o
3 S S SS S
3 = >SS S S
: H NG
SNOILOINNOD G71 TOIdAL o+ e SRRt 1
H NOILOINNOD "
3 31 WOIdAL 30 N3
30 <
o v_““: o B3 NM “N_ T S0VIHOd )
DETSTE Z ¢ SOVId0d o 5 7 60VII0d )
LSVAINGD 01 7 <—egrs S NM oo —omm0a Y w3mounoo ] 9 NM o [—orvmoa
NG 3 7 0IvIE0d o 3 S 1IvIE0d )
S NN MM TIVI80d 0L V1v AIAE 77 Nw MM ST ZIVIE0d )
43 o ML/ o STl SIFTcrvmod
13 ol TTVIE0d PR o] oe T yivimod
13 Rl VIVId0d 01 ] T SIVIE0d
6l 1lelel:z clz SLESTVL
VLESWL -F- 192
05z
SIVL40d-80VL¥Od
ol
38081S T LU
TaNvd ¢ e v
3 = ¢Al ¢V A10Nd
L
VRZSWL
452

aoepIdu| O/] Isued

10




¥1-9266/00/1L

NIGod

Nigog

Ni0ag ,oAm

YOSYYL
a8

Nigag  Z 3
YOSYVL
as

£15-01S NIOJ 38H SOV 110 OSL ¥M QY 380

8N3dd
o+
%0l
¢108-000a 61y L o1
NI BV
[T: I — — l14/sa
e o e —L5] dus/1v
M VY —5e] 34
Y T i
ACEETE R v ] Shm
| <108 - V) | T
\_71a8 a8 v |2 v v [ Qg
Sias 6 v 7008 6 ooy | K o —ac Mag
SYISTVYL SYTSIvPL sy | W
9L i ols
1S ]
718 18v/1sy [Be— T 4
SIS
sava m“ Qm
YOSYHL
1 ag oy
0 N3 v
—
o O ] 9 o7 v
o 0z e az [+ To0T sav
[ QIA as Z00v »ay
o or ar sav
] o ]
0¢ 09 1 a9 = zav SAQHAEN
v S00Y
oL a a = sav
T v_) A ]
] T 8 Isr—z0av 0y
olay
£ Liav
ziay
siQY
S 1va=00va o oy 184
siay 310
A o e
w2 Y iV Cl 0 ods
9 21V S
oLs
i oez 2
W I eda e 23 1s
W Eti] (4 |9
w2 ] pad
T afil v
Seva-aive ovesie 919028
£2v8-91v8 9Z1
£2Y-91¥
510¥-000Y

Bupiayng pue Ja1sn|d NdD

1




§1-9/66/00/1L

-0l v
e [ = B
—al »
g s
. L ol_, ™
6EISTOL
ST 0SL 35 EECEISN
SAQHOEN SAQHAAN JAVLYD ¥l
8NG0 EECRR
Tshod Tror oY)
-9
5.0}
=9
79
79
=9 K
3 (3 T
Azd e ' NOLLYAIN3D 3OHLS 0/) e
8810714
Smu.wﬁ a0
T q Tw [ ’ [
00 Ei Tova o
—qw
- R
1 Al [}
— 5 —
ol [ Zova 7oV
9 o o Y S0va T0v8
9 T o0svrL N Nia0g
SSISTHL 2% OA Nidod Niggg
¥ 051 2 6 o5l osL
ey 7 1 osvrL
IR TIVR, g T 08 300030 0/1 ® WYY
faircy TN 20STV¥L
T == W —Js @
|5 0va
| [ T o [SUEEET) ST -M W_ M" SV
4 cJofz] cJof] o = _Sgo alior
Ao
on 3 » FaN a8y LIV 9 m_ |61V
91 ZVm o Y
¥ jo— ¥ o s g @
i 7S~ v [¥5]
o . 0 o e . 0 o J.M o ]
— ] % ¥ — ¥ TR Y A
TSVA0-OSHVAD CIZIN a 3 s a e A
] -
g M”uﬂn Mln 2 M B |M" 0 9 4819)7vd
Haw = -® a £ 9 %
—O0—-VW\—0r
_w_ﬂmw st _w_ﬂm st v ot s+ £2¥=91Y
i a1
A059A0
aid ] wo o
0
T L v_n__, L
[IERTE] [T [l
| " L 6
biEzs] IvAD o1 Mw M” TSAVAD Q
A EEE ZSAVAa [ L
hEasT] v 6l | UEEENEE] oosvrL A < ]
T AN 0T ww WW LESIIT] x 5 | Mm MM "AcHaan
Ji TR e A58y SAGHENN W ar 5
b QN3 22 o TR Sogoan 13 A I !
(6, LWV | [l
A WI|2 o |:_| Mﬂbﬁ M %0 0 M" e T
7Y % oo g g i) KT T ¢ s g WS
e ) aawuﬂ NOLYALIEYY i K53 l..w«l 1% w @ wlnt<<(.udA
. ) oi— # T0HINOO VI D T wa_"
Erry M T E YIZINOBHONAS *
TsIL <W SRONVY ==
D ==
o
= D XN ¥4V Hvda
[

21607 |043u09 Bujwi] pue s19p023Q SSAIPPY

12



91-9/66/A4d/1L

80Vi-00vY

SYOXITILINKN SSJAAY WY

uonelauan ssalppy NvHA

st 51 d
T ‘IT
—] Al AL VL
¥ [4 oovy al 14 10vE
< ¢__cova
—0| Az 5 v pE—=
—a| s ] A v P—rove
6 7oV as wp w«m
Of AV oA Av W
! Llvd covd z) gy [LL_£ove
FILE] <t 80va
8STSVFL 85TSYIL ¥av100
HSIN4TY ¢ T
oosvnl HS3Y43Y
' T A__ <) m 5 o oL
Y0SWL 20SVYL
o i ad 80STVYL
_ ) i
1Y L_ON, S e & ISy
% — O ) N
O 4 yOvY a1 — 14—
[4 L ON, ¢ 0lvd ) 1L
z TR Y] JR A4
L =0\ 4 SOvY az S ve o] () —
¥ 61 ) 9 ON, s ve |2 give sl w21
S0 0 o S _ON, 90V as b siva vISTL OF
e o L of i vy L8 292 I E—
804 <C Z 0l 3
01X02Tvd 85TSYIL
21vg-91va
¥IINNOD HSIHATY ¥OXITdILINA SSIHAAY WV Slva-love

13




3.1.2 PAL Equations

Name
Partno
Date

Revision
Designer

Company

Assembly
Location

Device

REFRESH.PLD ;

XXXXX 5
05/19/87;
1A;

FOX;

NSC;

X7A;

8B;
p20x10;

Schematic Sheet 7, Area 3D

/************>';**x‘mk***********:k**x'<*>.'<*:}:*************************x‘<*>k*****************:’;**********/

/* REFRESH:

= lrefresh

/** Outputs *%/

[ra0..8]

= l!refron

*

€ 5 B B PO B B P

*/

ra0;
ra0
ra0
ra0
ra0
ra0
ra0
ra0

R 8 8 8 R 8 K

ral;
ral
ral
ral
ral
ral
ral

Pin [15..23]=

Pin 14

/** Declarations and Intermediate
$define | #

/** Logic Equations
ra0.d = ra0;
'ral.d = Iral
lra2.d = ra2
lra3.d = ra3
ra4¢.d = lra4
ra5.d = !rab
rag.d = lrag
ra7.4 = Ira7
ra8.d = !ra8
refron.d= 'l

9 BIT REFRESH COUNTER

8 8 8 8 B K

refresh pulse

ram refresh address
refresh enabled output
Variable definitions *%*/

ra2;
ra2
ra2
ra2
ra2
ra2

8 8 8 8 &

rad;

ra3 &
rad &
rad &
ra3 &

ra4;

ra4 & ra5;

ra4 & rab & ra6;

ra4 & ra5 & raé & ra7;

*/
%/
*/

-

%/

-

%/

*/
*/

14




Name
Partno
Date
Revision
Designer
Company
Assembly
Location
Device

RAM.PLD ;
XXXXX;
07/25/87;
1A

FOX;

NSC;

X7A;

9F;
p20r8;

Schematc Sheet 6, Area 5D

/***X(*xk********************X(*xk********************X(**********************X(*xk*****************/

/*

/* RAM CONTROL: HARDWARE RMW BPU CYCLE, SEPARATE BUSES

/* 6/17: Two States of refadr

/* 6/19: Invert rsl

/***>{<*x‘<****>(<*x‘<*>k******>Z<*>)<******************>{<*x‘<****>{<*x‘<****>{<*x‘<********>1<***********************

/* Allowable Target Device Types: PAL20R8B
g e e e e e e LR L e Ly

/** Inputs

/** Outputs

Pin

[Nele RS B G I % I N

I =
w o

23

15
16
17
18
19
20
21
22

*% [

cttl

= l!ddin

= dramsl

= drams2
!bpurmw

= !bpuread
!ramsel

= busy

lacwait

Irsl

!srefreq
=tl
la23

w0 )
= l!refresh
= lcwait

= lcas

= l!rascart
= lraslecl
= l!ramwe

= laramrd
= !pending

min [refresh, cwait, cas,
/** Declarations and Intermediate Variable Definitions *%*/
field waitseq = [pending,
$define widle 0
$define busywt 3
$define cextwt 1

clock input

data direction in signal

DRAM state counter, bit 1

DRAM state counter, bit 2

BPU read modify write cycle

BPU source read (comb.)

Any RAM address decode

DRAM busy indication (rsl | refresh)
Advanced CWAIT from ROM, or I/O
ram cycle delayed by one Tstate
Refresh Request

/*Processor Tl state

/*

cwait];
* wait sequencer idle */

Address 23

refresh cycle

32C201 cwait

CAS, local & cartridge

RAS for DRAM cartridge

RAS for local DRAM

DRAM Write enable

DRAM read

DRAM cycle requested, but ctl busy

rascart, raslcl, ramwe, aramrd, pending] =

wait sequencer waiting for busy DRAM */
wait sequencer waiting for cycle extension */

23

15




Schematc Sheet 6, Area 5D (Continued)

field ctl = [refresh,cas,raslcl,rascart];

$define idle 0
$define cras 0
$define crascas 0
$define casend O
$define lras 0
$define lrascas O
$define refadr O
$define refras O
$define
field drscount =

/** Logic Equati

0
1
5
4
2
6
8
b

#

[drams2..dramsl] ;
ons  ¥*

lcl_sel = ramsel & !a23;
cart_sel = ramsel & a23;
lclread = l!a23 & ddin;
lclwrite = la23 & !ddin;
holdoff rsl;

/* busy = refresh\ holdoff; (generated externally)
cart_start = cart_sel & (tl1 | pending) & 'holdoff;
local_start = lcl_sel & (tl1 | pending) & 'holdoff;
ram_start = cart_start |local_start;
drrco = drscount: [6..7] & ramwe;

sequence waitseq
/* acwait &
present widle

present busywt

present cextwt

}
sequence ctl f
present idle

present cras

present crascas

present lras

{

ramsel are mutually exclusive conditions */

if (ramsel | bpurmw & bpuread) & busy & tl

if acwait | (ramsel & !busy & tl & !bpurmw)
next cextwt;

default next widle;

if busy next
if !busy & (bpurmw) next
if !busy & !(bpurmw) next

if ramsel & drscount: [0..1] | acwait next
default next widle;

if cart_start next
if local_start next
if !ram_start & srefreg next
default next idle;
if l!rsl next
if rsl next
if (!bpurmw & drscount: [4..7]) | (bpurmw &
next

default next crascas;
next

next busywt;

busywt ;
widle;

cextwt ;
cextwt ;

cras;
lras;
refadr;

cras;
crascas;
drrco)
casend ;

lrascas;

16




Schematc Sheet 6, Area 5D (Continued)

present lrascas if ( !bpurmw & drscount: [4..7]) | (bpurmw & drrco)
next casend;
default next lrascas;

present casend if srefreq next refadr;
if Isrefreq next idle;

present refadr if srefreq next refadr;
if !srefreq & !rsl next refras;
if !srefreq & rsl next idle;

present refras if ramwe next refadr;

default next refras;
}
/* remember ramwe & aramrd are delayed by one t-state */
ramwe.d = !refresh & (bpurmw & drscount: [6..7] & !ramwe
| 'bpurmw & !ddin & (ram_start | ctl: cras
| (cart_sel & drscount: [0..3]) | ctl:lras)

)

| ctlirefras & rsl & !ramwe;

aramrd.d = (bpurmw & drscount: [0..3] | !bpurmw & ddin)
& (ctl:icras | ctl:crascas | ctl:lras | ctl:lrascas);

17




Schematic Sheet 6, Area 7C

Name DCD1.PLD;
Date 07/03/87;
Revision 1A
Designer FOX;
Company NSC;
Assembly X7A;
Location 9G;
Device plel8;

[kttt stttk stttk soskoskoskotokoststotolkostok sotostolokotok sokostolotok skt soskolkokokokostostotolkoiokosokosolokostok soloslkololokoksololokoioR solokokok

/* DECODE 1: I/0 DECODE, PROM & HPC I/F WAIT CONTROL

/* ©8/3: two waits for hpc write

/* 6/4: 1 wait min. for ALL i/o, including HPC

/* ©6/4: 3 wait min. for i/o

/*

/* Allowable Target Device Types: PALlg
[k kool koot kool loloiololotololololok okl olokk
/** Inputs %%/

Pin [1..8] = [a23..18] HA
Pin 9 = ba8 /¥
Pin 11 = lddin $/*
Pin 13 = luwrrdys A
Pin 14 =tl A
Pin 17 = lurdrdys s/*
/** Outputs **/

Pin 12 = liosel A
Pin 15 = lwaitlo s/*
Pin 16 = lwait2o A
Pin 18 = lacwait s/*
Pin 19 = l!ramsel s/*

high order address bus
address bit 8

cpu ddin/

(HPC) UWRRDY/, synchronized
Tl state of CPU

(HPC) URDRDY/, synchronized

I/0 select decode

WAIT1 output

WAITZ output

Advance CWAIT for RAM ctl
DRAM address decode

/** Declarations and Intermediate Variable Definitions **/

$define | #

field address = [aR3..16] A
field waitv =

$define nowaits "b'000

$define waitlv ("b'100 & t1)

address field

[acwait,wait20,waitlo]; /* wait value field

/* note use of # in next 3 defines because $define not nestable

$define wait2v ("b'
$define waitdv ("b'
$define waitdv ("b'
$define cwaitonly "b'1l00

/** Logic Equations **

ramsel = address: [0780000
iosel = address: [0£fd0000
waitv wait3v & address:

wait4v & address:
wait3v & address:

( lur

101 & ("b'Oll # "b'100 & tl))
110 & ("b'Oll # "b'100 & tl))
111 & ("b'Oll # "b'100 & tl))

..07f££ff] | address: [0800000..0bffrff] ;
..OffPFff] & !ba8;

[0000000..00f££££f] /* main rom, 3 waits */
[0200000..05££££f] /* font rom, 4 waits %/
[0£fd0000..0f£LFLE] & 'ba8 /* ifo, 1 wait */

cwaitonly & address: Off0000 & !ba8 &

drdys & ddin | luwrrdys & !ddin);

*/
%/
*/
%/
*/
*/

sk

x/

-

*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/

*/

*/

18




Schematic Sheet 6, Area 7A

Name DCD2.PLD;
Partno XXXXX 5
Date 07/27/87;
Revision 1C;

Designer FOX;
Company NSC;
Assembly X74A
Location 10D;

Device p2018;
/>'ﬁ******>':-**a‘:*****>'ﬁ*—k—‘.:*—':-*r'ﬁ*—k**—'.‘-*—':-*r'ﬁ**—.‘-*—':-*r‘ﬁ*—k—‘.:*—':-*r'ﬁ*—k**—'.‘-*—l‘-*r'ﬁ**—.‘-*4‘-***—k—.‘:*—}‘-******#*#****—F*#******#*/
/* */
/* DECODE 2: ROM DECODE, BUFFER CONTROL, BPU DECODE

/* 5/24: included enbpu in bpucyc generation */
/* 5/28: added bpucyc to rdenb */
/* 5/31: added fexxxx to bdenb */
/* ©6/23: added buffer disable term for SPLICE */
/* 17/25: reconfigured for bpurmw & bpuread */
/* 17/27: inverted polarity of enbpu > enablebpu (for master enb) */
/*******************>{<*********************************************>{<**************************/
/* Allowable Target Device Types: PAL20B */

KRk kok kst ostoskoskokokok soskoslkoskokokottsotosotostoststoslolostok sokoslkoskootok skl skl skostosolkokorok stttk otttk solololokokoksokokokok

/** Inputs *%/

Pin 1 = !ddin ;/* ddin/ from cpu */
Pin = [2..9]=[aR3..16] ;/* high order address bus */
Pin 10 = lenablebpu ;/* BPU enable, static bit */
Pin 11 = l!bufdis ;/* buffer disable */
Pin 13 = !dbe s/* dbe/ from tcu */
Pin 14 = l!datacyc ;/* data cycle status decode */
Pin 23 = ramcyc ;/* ram cycle in progress */
/** Outputs **/

Pin 15 = !bdenb ;/* BD bus enable */
Pin 16 = l!romsel ;/* Main rom select */
Pin 17 = l!romcart ;/* rom cartridge select */
Pin 18 = !bpurmw ;/* BPU read modify write */
Pin 19 = !bpuread ;/* BPU read cycle (comb.) */
Pin 20 = lvramsel ;/* video ram select */
Pin 21 = rdbufin ;/* RAM data bus direction (in) */
Pin 22 = l!rdenb ;/* RAM data bus enable */

/** Declarations and Intermediate Variable Definitions *%*/

field address = [a23..186] ;/*% address field */
romspace = address: [0000000..05fffff];

ramspace = address: [0780000..0bfffff];

stack = address: [0780000..078ffff];

$define | #

min b_ddin = 03
/** Logic Equations *%/
romsel = address: [0000000..00fffff] ; /* main rom */
romcart = address: [0200000..05fffff]; * font rom */

19




Schematic Sheet 6, Area 7A (Continued)

vramsel = address: [0f00000..0fO0ffff]; /* video ram (scan buffer) */
/*
/* bpucyc & b_ddin are D latches implemented in the PAL
/*
/* basic d latch equation (w/o set or clear) is:
/* Q=(e&D) | (}G&Q) | (D&
/*
/* The b_ddin latch is fall through while ramcyc not asserted,
/* latched while ramcyc is asserted, therefore, for both latches:
*/

g = lramcyc;
/*
/* The bpurmw latch d input is ""bpurange'', defined as:
*/

bpurange= address: [0000000..05fffff] /* rom */

| address: [0790000..0bfffff]; /* dram, less stack */

/* This ""d'' input would use too many terms. The bpucyc output,
/* however, need only be latched when it is asserted, as this is
/* the situation that can allow the cpu and ram control to
/* not be synchronized. This simplification allows the simplification
/* of the latch to:
/* Q=D (!¢ & Q)
*/

bpurmw = enablebpu & (!ddin & bpurange & datacyc | (!g & bpurmw)) ;
bpuread = enablebpu & ddin & bpurange & datacyc;

/* rdenb enables cpu access to the ram data bus
*/
rdenb = dbe & bufdis &
( !bpurmw & bpuread & romspace /* buffer must be off for bpu
/* but on for source in rom */
/* no DRAM or bpu control writes are permitted */
/* while in inner loop of bitblt */
/* (within interrupt ok due to vector read!)
| ramspace
| address: [0fe0000..0feffff]) ; /* i/o access to bpu */
!rdbufin = (ramspace | address: [0fe0000..0feffff]) & !ddin
| romspace & bpuread;
bdenb = dbe & !bufdis & (romspace /* any rom */
‘ address: [0f00000..0fOffff] /* scan buffer */
| address: [0£d0000..0fdffff] /* cmnd/status */
\ address: [0ff0000..0ffffff] /* non-bpu i/o */

20




3.2 Application Connections

The connections made to the HPC are shown in schematic
sheets 2 through 4.

3.2.1LCD Data

An 8-bit parallel interface connects the upper half of Port A,
through buffers and latches on Sheet 4, to a Hitachi
HD44780 alphanumeric LCD display controller. The signals
in our application are inverted with respect to the HD44780
documentation, due to the nature of the front panel module
we used.

Sending data from the HPC to the LCD display involves the
following procedure:

1. Setup the RS signal: 1 for a command, 0 for data.
This is done by setting up LCD Contrast status on the
high-order byte of Port A (pins A8-A15), with the desired
RS state on pin A11, then pulsing the signal LCVCLK (pin
B9) high, the low.

2. Setup the panel data on HPC pins A8-A15.

3. Set the PNLCLK signal (pin B7) low for 1.2 us, then high.
This clocks the data into the LCD display controller. Note
that the latch in area B6 of Sheet 4 is effectively serving
only as a buffer; the PNLCLK Enable signal, being nor-
mally high, allows data to fall through whenever it chang-
es when used as described here.

4. Since the handshaking capability of the HD44780 is not
being used here, it is necessary for the HPC to use an
internal timer to determine when the controller is ready
after sending a command or data. The delay time is either
120 ws or 4.9 ms, depending on the type of command
sent.

3.2.2. LCD Contrast (LCD Voltage)

A three-bit value is presented for LCD contrast on signals
CTRSTO through CTRST2. A value of 000 is highest con-
trast, and 111 is lowest contrast. To change the contrast,
the value is placed on HPC pins A8 (LSB), A9 and A10
(MSB), the LCVCLK (pin B9) is pulsed high, then low.

Note that some other bits within this latch have other func-
tions: bit 3 (from HPC pin A11) is the RS signal to the LCD
controller, and bit 7 (from pin A15) is used by the HPC firm-
ware as a Fatal Error flag. These bits must be setup correct-
ly whenever the LCD Contrast latch is written to.

3.2.3 LEDs

Up to 8 LED indicators may be connected, through the latch
in area A6 of Sheet 4, to the upper byte of Port A. The
LED’s are assumed to be connected already to their own
current-limiting resistors.

The desired data is setup on Port A pins A8—A15, then a
pulse is presented on the LEDCLK signal (pin B14); high
and then low. Data is presented in complemented form by
the HPC (0 = on, 1 = 0ff). Any or all (or none) of the latch
bits may be connected to drive LEDs.

3.2.4 Speaker (Beeper)

A tone is produced on a speaker by enabling Port P pin P3
as the Timer T7 output, and running Timer T7 so as to pro-
duce a 3 kHz square wave. Since timer outputs toggle on
underflows, this corresponds to a timer underflow rate of
6 kHz. The tone signal is shown is area D1 of Sheet 2.

3.2.5 Pushbutton Switches

Up to eight pushbuttons may be connected to the HPC’s
Port D pins, through the buffer in area D6 of Sheet 3. Each

pushbutton is assumed to be an SPST switch, shorting to
ground when depressed. The pull-up resistors present a “1”
level otherwise. The HPC must de-bounce the inputs in its
firmware before issuing them to the CPU.

The pushbuttons are examined every 10 ms, by setting the
ENASTTS signal (pin B13) low while ensuring that
ENCDATA (pin B12) is high. This presents the switch out-
puts onto Port D. Unused bits should be pulled high to avoid
triggering spurious pushbutton events.

3.3 Protocol Between CPU and HPC

The scheme supported by the UPI Driver program is asyn-
chronous full-duplex communication with CPU. That is, ei-
ther side is allowed to speak at any time. To avoid confu-
sion, however, any message is restricted to send data in
only one direction: in sequences initiated by the CPU
(“Command” sequences), only the CPU talks, and in se-
quences initiated by the HPC (“Interrupt” sequences), only
the HPC talks. Thus, a Command sequence and an Interrupt
sequence can be in progress simultaneously without confu-
sion.

Acknowledgement of a Command or an Interrupt sequency
is possible; a Command can trigger an acknowledgement
Interrupt sequence, and an Interrupt sequence can result in
a subsequent Command sequence. The critical distinction,
though, is that the acknowledgement need not come imme-
diately. If, for example, the HPC is already in the process of
sending an Interrupt message, and receives a Command, it
will complete the current Interrupt sequence before ac-
knowledging the Command with a new Interrupt.

Command sequences (from the CPU to the HPC) consist of
a one-byte command code, followed by any argument val-
ues necessary to complete the command. Each byte written
to the HPC triggers an internal interrupt (I13); the HPC buffers
up these bytes until a full command has been received, then
acts on it in the last byte’s interrupt service routine. Com-
mands taking a significant amount of processing time can
be scheduled within the HPC using interrupts, either from
external events or from one of the HPC’s eight timers; each
interrupt triggering the next step of the command.

Interrupt sequences (from the HPC to the CPU) operate
similarly, but with a small difference. Only the first byte pre-
sented by the HPC causes an interrupt to the CPU; this byte
is the interrupt vector value, which triggers the interrupt
(through the RDRDY pin) and selects the CPU’s service rou-
tine. The CPU remains in its interrupt service routine until
the transfer of data associated with that interrupt event is
finished, then returns to its previous task. This is not to say
that the CPU must keep all other interrupts disabled during
an Interrupt sequence, but only that no other interrupt oc-
curring during this time may cause the CPU to read from the
HPC, or to terminate reading, until the current Interrupt se-
quence is complete. With the NS32C016 processor as host,
the main challenge is to keep the Interrupt Acknowledge
bus cycles from other interrupts, which appear as Read cy-
cles, from causing URD pulses to the HPC. It is possible to
distinguish a Non-Maskable Interrupt from a Maskable Inter-
rupt by the address asserted by the CPU in acknowledging
the interrupt, and in a larger kind of system containing an
NS32202 Interrupt Control Unit, the NS32000 Cascaded In-
terrupt feature can be used to prevent unwanted reads from
the HPC from occurring as a result of other Maskable inter-
rupts as well. In our application hardware, the only type of
extraneous interrupt occurring is the Non-Maskable Inter-
rupt; address decoding logic isolates the HPC’s UPI port
from these.

21




3.4 Commands

The first byte (command code) is sent to address FFFCOO0,
and any argument bytes are then written to address
FFFE00. The CPU may poll the UPIC register at address
FDO0000 to determine when the HPC can receive the next
byte, or it can simply attempt to write, in which case it will be
held in Wait states until the HPC can receive it. Unless not-
ed, the CPU may send commands continuously, without
waiting for acknowledgement interrupts from previous com-
mands.

00 INITIALIZE This command has two functions. The
first INITIALIZE command after a hard-
ware reset (or RESET command) en-
ables the IRTC and IBUTTON-DATA
interrupts. The INITIALIZE command
may be re-issued by the CPU to either
start or stop the |RTC interrupts. There
is one argument:

RTC-Interval: One-byte value. If zero,
IRTC interrupts are disabled. Other-
wise, the IRTC interrupts occur at the
interval specified (in units of 10 ms per
count).
01 SET-
CONTRAST The single argument is a 3-bit number
specifying a contrast level for the LCD
panel (0 is least contrast, 7 is highest
contrast). There is no response inter-
rupt. Does not require INITIALIZE
command first.

This writes a string of up to 8 bytes to
the LCD panel. Arguments are:

flags: a single byte, containing the RS
bit associated with each byte of data.
The first byte’s RS value is in the least-
significant bit of the FLAGS byte.

#bytes: The number of bytes to be
written to the LCD display.
byte[1]—byte[ #bytes]:
bytes themselves.

The HPC determines the proper delay
timing required for command bytes
(RS = 0) from their encodings. This is
either 4.9 ms or 120 ps.

The response from the HPC is the
IACK-SEND-LCD interrupt, and this
command must not be repeated until
the interrupt is received. This com-
mand does not require an INITIALIZE
command first.

The single argument is a byte contain-
ing a “1” in each position for which an
LED should be lit.

There is no response interrupt, and
this command does not require the
INITIALIZE command first.

No arguments. This beeps the panel
for approximately one second. No re-
sponse interrupt. If a new BEEP com-
mand is issued during the beep, no er-
ror occurs (the buzzer tone is extend-
ed to one second beyond the most re-
cent command). Does not require INI-
TIALIZE command first.

02 SEND-LCD

The data

03 SEND-LED

04 BEEP

A5 RESET-HPC Resets the HPC if it is written to ad-
dress FFFCO0O. It may be written at any
time that the UPI port is ready for in-
put; it will automatically cancel any
partially-entered command. The CPU’s
Maskable Interrupt must be disabled

before issuing this command.

After issuing this command, the CPU
should first poll the UPIC register at
address FD000O to see that the HPC
has input the command (the least-sig-
nificant bit [Write Ready] is zero). It
must then wait for at least 25 us, then
read a byte from address FFFEQO. The
HPC now begins its internal re-initiali-
zation. The CPU must wait for at least
80 us to allow the HPC to re-initialize
the UPI port. Since part of the RESET
procedure causes Ports A and B to
float briefly (this includes the CPU’s
Maskable Interrupt input pin), the CPU
should keep its maskable interrupt dis-
able during this time. It also must not
enter a command byte during this time
because the byte may be lost.

3.5 Interrupts

The HPC interrupts the CPU, and provides the following val-
ues as the interrupt vectors for the CPU hardware. The CPU
then reads data from the HPC at address FFFEQO. All data
provided by the HPC must be read by the CPU before re-
turning from the interrupt service routine, otherwise the HPC
would either hang or generate a false interrupt. The CPU
may poll the UPIC register at address FDO00O to determine
when each data byte is ready, or it may simply attempt to
read from address FFFEOQO, and it will be held in Wait states
until the data is provided by the HPC.
Note: All CPU interrupt service routines, including the NMI interrupt routines,
must return using the “RETT 0” instruction. Do NOT use “RETI".
00-0F (Reserved for CPU internal traps and the NMI inter-
rupt.)
11 IRTC Real-Time Clock Interrupt. No data
returned. Enabled by INITIALIZE
command if interval value supplied is
non-zero. Note: this version of HPC
firmware issues a non-fatal IDIAG in-
terrupt if the CPU fails to service
each IRTC interrupt before the next
one becomes pending.

17 1ACK-SEND-LCD This is the response to the SEND-
LCD command, to acknowledge that
data has all been written to Panel
LCD display. No other data is provid-
ed with this interrupt. Always en-
abled, but occurs only in response to
a SEND-LCD command.

Pushbutton status has changed: one
or more buttons have been either
pressed or released. The new status
of the switches is reported in a data
byte, encoded as follows:

Any pushbutton that is depressed is
presented as a “1”. All other bit posi-
tions, including unused positions, are
zeroes. The pushbuttons are de-
bounced before being reported to

18 IBUTTON-DATA

22




the CPU. This interrupt is enabled by
the first INITIALIZE command after a
reset.

Diagnostic Interrupt. This interrupt is
used to report failure conditions and
CPU command errors. There are five
data bytes passed by this interrupt:
Severity

Error Code

Data in Error (passed, but contents
not defined)

Current Command (passed, but con-
tents not defined)

Command Status (passed, but con-
tents not defined)

The Severity byte contains one bit for
each severity level, as follows:

[x [ x I x[Flx[x[c]|nN]

1D IDIAG

N (Note): least severe. The CPU
missed an event; currently only the
IRTC interrupt will cause this.

C (Command): medium severity. Not
currently implemented. Any com-
mand error is now treated as a FA-
TAL error (below).

F (Fatal): highest severity: the HPC
has recognized a non-recoverable
error. It must be reset before the
CPU may re-enable its Maskable In-
terrupt. In this case, the remaining
data bytes may be read by the CPU,
but they will all contain the value 1D
(hexadecimal). The CPU must issue
a RESET command, or wait for a
hardware reset. See below for the
procedure for FATAL error recovery.
The Error Code byte contains, for
non-FATAL errors, a more specific
indication of the error condition:

T T T T
(Reserved for COMMAND)
| | | | | | |

RTC = Real-Time Clock overrun:
CPU did not acknowledge the RTC
interrupt before two had occurred.
The other bits are reserved for de-
tails of Command errors, and are not
implemented at this time.
The remaining 3 bytes are not yet de-
fined, but are intended to provide de-
tails of the HPC'’s status when anille-
gal command is received.

Note: Except in the FATAL case, all 5 bytes provided by the HPC must be

read by the CPU, regardless of the specific cause of the error.
Fatal Error Recovery:
When the HPC signals a IDIAG error
with FATAL severity, the CPU may
use the following procedure to recov-
er:
1. Write the RESET command (A5
hex) to the HPC at address
FFFCO0.

2. By inspecting the UPIC register at
address FD000O, wait for the HPC
to read the command (the
*WRRDY bit will go low).

Wait an additional 25 ps.

. Read from address FFFE0O. This
will clear the OBUF register and
reset the Read Ready status of
the UPI port. The HPC will guaran-
tee that a byte of data is present; it
is not necessary to poll the UPIC
register. This step is necessary be-
cause only a hardware reset will
clear the Read Ready indication
otherwise (HPC firmware cannot
clear it).

5. Wait at least 80 us. This gives the
HPC enough time to re-initialize
the UPI port.

6. After Step 5 has been completed,
the CPU may re-enable the Mask-
able Interrupt and start issuing
commands. Since the HPC is still
performing initialization, however,
the first command may sit in the
HPI IBUF register for a few milli-
seconds before the HPC starts to
process it.

4.0 SOURCE LISTINGS AND COMMENTARY

4.1 HPC Firmware Guide

Refer to this section for help in following the flow of the HPC
firmware in the listing below. Positions in the code are refer-
enced by assembly language labels rather than by page or
line numbers.

The firmware for the HPC is almost completely interrupt-
driven. The main program’s role is to poll mailboxes that are
maintained by the interrupt service routines, and to send an
interrupt to the CPU whenever an HPC interrupt routine re-
quests one in its mailbox.

On reset, the HPC firmware begins at the label “start”.
However, the first routine appearing in ROM is the Fatal
Error routine. This was done for ease of breakpointing, to
keep this routine at a constant address as changes were
made elsewhere in the firmware.

> ow

4.1.1 Fatal Error Routine

At the beginning of the ROM is a routine (label “hangup”)
that is called when a fatal error is detected by the HPC. This
routine is usually called as a subroutine (although it never
returns). It disables HPC internal interrupts, and then sets bit
7 of the LCD Contrast Latch as a trigger for a logic analyzer,
MOLE or ISE system.

Its next action is to display its subroutine return address in
hexadecimal on the LCD panel. This address shows where
the error was detected. The HPC then enters an infinite
loop, which continuously presents the !IDIAG interrupt. It
may be terminated either by a hardware reset or by sending
the RESET command from the CPU. On receiving the RE-
SET command, the HPC jumps to label “xreset”, which is
within the command processing routine. The “xreset” rou-

23




tine waits for the CPU to read from the UPI port, then clears
a set of registers to simulate a hardware reset and jumps to
the start of the program.

4.1.2 Initialization

On receiving a Reset signal, the HPC begins execution at
the label “‘start”. A required part of any application is to load
the PSW register, to select the desired number of Wait
states (without this step, the Reset default is 4 Wait states,
which is safe but usually unnecessary).

Other initializations here are application-dependent, and so
they relate to our application system and front-panel opera-
tions.

At label “srfsh”, the program starts the Refresh clock puls-
es running for the dynamic RAM on our application hard-
ware, from HPC pin PO (controlled by Timer T4). For debug-
ging purposes, a circuit within the RAM controller section
performs continuous refreshes during Reset pulses, so data
in dynamic RAM is never lost unless power is removed.

At “supi”, the UPI port is initialized for transfers between the
HPC and the CPU.

At label “sram”, all RAM within the HPC is initialized to zero.
This is done for debugging purposes, to help ensure that
programming errors involving uninitialized data will have
more consistent symptoms.

At “sskint”, the stack pointer is initialized to point to the
upper bank of on-chip RAM (at address 01C0). The address
of the fatal error routine “hangup” is then pushed, so that it
will be called if the stack underflows. This is not necessary
in all applications, since the Stack Pointer starts at address
0002, but for our purposes it was more convenient to relo-
cate it.

At “tminit”, the timers T1-T3 are stopped and any inter-
rupts pending from timers TO-T3 are cleared.

In addition, some miscellaneous port initializations are per-
formed here. The upper byte of Port A is set as an output
port (for data going to the LCD and LED displays), and the
Port B pins which select pushbutton data are initialized.

At “sled”, the LED control signals are initialized, and all LED
indicators on the panel are turned off.

At “stmrs”, all timers are loaded with their initial values, and
timers T5-T7 are stopped and any interrupts pending from
them are cleared. (Timer T4 keeps running for dynamic
RAM refresh.)

At “sled”, the panel LCD display is initialized to a default
contrast level of 5, then commands are sent to initialize it to
8-bit, 2-line mode, with the cursor visible and moving to the
right by default. This section calls a subroutine “wrpnl”, lo-
cated at the end of the program, which simply writes the
character in the accumulator out to the LCD display and
waits for approximately 10 ms. Note that if the CPU fails to
initialize the LCD display further, a single cursor (under-
score) character is all that appears: a recognizable symp-
tom of a CPU problem.

The program now continues to label “minit”, which per-
forms some variable initializations which are necessary for
operation of the UPI Driver itself (as opposed to the applica-
tion). This much must always be present, but any other ini-
tializations required by the application should appear here
as well. For our front-panel application, there are no such
initializations required.

At label ‘“runsys”, the necessary interrupts are enabled
(from the timers, and from pin I3, which is the UPI port inter-
rupt from the CPU), and the program exits to the Main Pro-
gram loop at label “mainlp”.

4.1.3 Main Program (UPI Output to CPU)

The Main Program is the portion of the UPI Driver that runs
with interrupts enabled. It consists of a scanning loop at
label “mainlp”, calling a set of subroutines (explained be-
low). It is responsible for interrupting the CPU and passing
data to it. The HPC is allowed to write data to the CPU only
after interrupting it. The main loop scans a bit-mapped vari-
able in on-chip RAM that is set up by interrupt service rou-
tines (a word called ‘“alert”) to determine whether any con-
ditions exist that should cause an interrupt to the CPU.

The “alert” word contains one bit for each interrupt that the
HPC can generate. If a bit is set (by an interrupt service
routine), the Main Program jumps to an appropriate subrou-
tine to notify the CPU. Each subroutine first checks whether
the UPI interface’s OBUF register is empty, and if not, it
waits (by calling the subroutine “rdwait”). It then writes the
32000 interrupt vector number to the OBUF register. This
has the effect of interrupting the CPU (Because the pin
URDRDY goes low), and the CPU hardware reads the vec-
tor from the OBUF register. If there is more information to
give to the CPU, the HPC places it, one byte at a time, into
the OBUF register, waiting each time for OBUF to be emp-
tied by the CPU. This technique assumes that the CPU re-
mains in the interrupt service routine until all data has been
transferred. If the CPU were to return from interrupt service
too early, the next byte of data given to it would cause an-
other interrupt, with the data value taken as the vector num-
ber. (Note, however, that a Non-Maskable interrupt is al-
lowed. It simply delays the process of reading data from the
HPC. Since the HPC is running its main program at this
point, with its internal interrupts still enabled, it is not stalled
by this situation.)

Subroutines called from the Main Program loop are:

sndrtc:  sends a Real-Time Clock interrupt to the CPU. No
data is transferred; only the interrupt vector.

interrupts the CPU to acknowledge that a string of
data (from a SEND-LCD command) has been
written to the LCD display. No data is transferred
for this interrupt.

interrupts the CPU to inform it that a pushbutton
has been pressed or released. A data byte is
transferred from variable “swisnt”, which shows
the new states of all the pushbuttons.

interrupts the CPU to inform it of a IDIAG interrupt
condition, when it is of NOTE severity. (Other
IDIAG conditions are handled at label “hangup”.)

sndlak:

sndbtn:

sndiag:

4.1.4 Interrupt Service Routines

All of the remaining routines are entered by the occurrence
of an interrupt.

4.1.4.1 UPI Port Input from CPU (Interrupt 13)

This interrupt service routine, at label “upiwr”, accepts com-
mands from the CPU. Each byte of a command triggers an
interrupt on the I3 pin. When the last byte is received, the
command is processed before the I3 interrupt routine re-
turns. The HPC is therefore immediately ready to start col-
lecting another command.

24




Any command that involves waiting is only initiated before
the I3 routine returns, and interrupts are set up to activate
more processing when the time is right. Therefore, this inter-
rupt service routine returns promptly, even for time-consum-
ing commands.

At any time, the “upiwr” routine may be in one of the follow-

ing states:

1. Waiting for the first byte of a command. In this state, the
variable “curcmd” (Current Command) has its top bit
(“cmdemp”) set, meaning that it is empty. When a byte is
received from the CPU in this state, this routine jumps to
the label “firstc”. The byte is placed in the “curcmd” byte
(clearing the top bit), and then a multi-way branch (jidw) is
performed, whose destination depends on the contents
of the byte. The possible destinations have labels starting
with the letters “fc”. If the command has only one byte
(for example, the command BEEP), it is processed imme-
diately in the “fc”” sequence, and the “curcmd” variable is
set empty again. If, however, the command is longer than
one byte, its “fc”” routine will place a value into the vari-
able “numexp”, which gives the number of additional
bytes that are expected for this command, and then will
return from the interrupt. Note that the “curcmd” byte
now appears to be full, because its top bit is no longer
set.

2. Collecting bytes of a command. The code that is relevant
in this state is between the labels “upiwr” and “lastc”.
This state is in effect while the “cmdemp” bit of
“curcmd” is zero and the “numexp” variable is non-zero.
Each I3 interrupt causes the routine to place the com-
mand byte into a buffer (“cpubuf’, with pointer variable
“cpuad”), decrement the “numexp” variable, and return if
the result is non-zero. If the result is zero, then the routine
has collected an entire command, and it goes to the label
“lastc”, and enters state (3) below.

Command Processing Routines
INITIALIZE 13 interrupt labels:

SET-CONTRAST 13 interrupt labels:

3. In this state, the requested number of bytes has been
collected, and this usually means that the entire com-
mand, except for the first byte, is in the “cpubuf” area of
RAM. The code for this state is at label “lastc”. First, the
“curcmd” byte is checked to see whether “extended col-
lection” is being performed (bit 6 set: see below). If not,
the “curcmd” byte is set empty. A multiway branch is
then performed (jidw), which transfers control depending
on the command byte in “curcmd”. All routines that are
destinations of this branch start with the letters “Ic”. The
“Ic” routine for each command uses the data in “cpubuf”
to process the current command. In some cases, this pro-
cessing is completed very quickly. For example, at label
“Icsled”, a value is simply transferred from “cpubuf” to a
latch that drives the LEDs on the front panel, and this
interrupt service routine returns. But a more complex
command can move data out of “cpubuf’ to other vari-
ables in RAM, and start a timer to sequence the process
of executing the command.

In some commands (for example, SEND-LCD), state (3)
above is entered twice. This is called “extended collection”,
and occurs when a command has variable length. State (3)
is entered once to collect enough information to determine
the exact length of the command. It then sets up the
“numexp” variable again, re-entering state (2) to collect the
remainder of the command. When state (3) is entered the
second time, it processes the command. A bit in the
“curcmd” variable (bit 6, called “getcnt”) is set in state (1),
which indicates that another collection will be performed,
and prevents state (3) from setting the “curcmd” byte emp-
ty the first time it is entered.

State 1 = fcinit State 3 = Icinit

State 1 = fcslev State 3 = Icslcv

At label “Icslcv” (Set LCD Voltage), the LCD Contrast
latch is loaded from the value supplied by the CPU.

SEND-LCD 13 interrupt labels:

State 1 = fcsled State 3 = Icslcd

This command uses the “extended collection” feature. At label “fcslcd”, two
bytes are requested for collection, but the “getcnt” bit of “curcmd” is set,
meaning that these are not the last bytes of the command. At label “Icslcd”
(jumping to label “Icslc1”), the length of the instruction is determined from the
#bytes value supplied by the CPU, and a second collection of bytes is
requested, this time with the “getcnt” bit off. When the last byte has been
collected, control is transferred to the label “Icslcd”, then to “Icslc2”. Here, the
data bytes for the panel are unloaded from the CPU buffer area “cpubuf” into the
LCD string buffer “lcdbuf”. The flag (RS) bits are loaded into variable “Icdsfg”,
and the number of bytes to be sent to the LCD display is placed into variable
“lcdsct”. Timer T6 is now started, to provide scheduling interrupts for writing the
bytes from the LCD string buffer to the LCD display.

On occurrence of each T6 interrupt (labels “t6int” and “t6nxtc”), one byte is
written to the LCD display. Depending on the state of the RS flag for that byte,
and the value sent to the panel, T6 may run for either 120 us or 4900 us before it
triggers the next transfer. When the last character has been transferred, and
Timer T6 has provided the proper delay after it, the bit “alcdak” is set in the
“alert” word, requesting the main program to send an !ACK-SEND-LCD interrupt

to the CPU.




SEND-LED 13 interrupt labels:

State 1 = fcsled State 3 = Icsled

At label “Icsled”, the byte provided by the CPU is written to the LED latch.

BEEP 13 interrupt labels:

State 1 = fcbeep State 3 = (none)

At label “fcbeep”, Port P pin P3 is enabled to toggle on each underflow of Timer T7,
which has been initialized at the beginning of the program (label “stmrs”) to
underflow at a rate of 6 kHz. Pin P3, then, presents a 3 kHz square wave to the panel
buzzer. To time out the duration of the beep tone, interrupts from Timer TO are
enabled, which then occur once every 53 ms. The variable “beepct” is set up with
the number of TO interrupts to accept, and is decremented on each TO interrupt.
When it has been decremented to zero (meaning that one second has elapsed), pin
P3 is reset to a constant zero to turn off the tone.

4.1.4.2 Background Timer (T1) Task

The Timer T1 interrupt service routine represents a task that
is not triggered directly by CPU commands. Its functions are
to interrupt the CPU periodically for the Real-Time Clock
function, and to present the IBUTTON-DATA interrupt
whenever the pushbutton inputs change state.

Timer T1 is loaded with a constant interval value which is
used to interrupt the HPC at 10 ms intervals. When the Tim-
er T1 interrupt occurs (labels ‘tmrint”, to “t1poll”, to “t1int”),
then if the real-time interrupt is enabled, the variable
“rtcent” is decremented to determine whether an IRTC in-
terrupt should be issued to the CPU. If so, the bit “artc” in
the “alert” word is set, requesting the main program to is-
sue the interrupt. The main program, at label “sndrtc”, actu-
ally interrupts the CPU. No other data is passed to the CPU
with the interrupt.

At label “kbdchk” the panel pushbutton switches are also
sampled. If the pattern matches the last sample taken
(saved in variable “swlast”) then it is considered to be sta-

4.2 HPC Firmware Listing

NSC ASMHPC, Ver D1-BetaSite (Sep 14 14:39 1987)

VRNV WN =

-
s

HPCUPI

ble, and it is then compared to the last switch pattern sent
to the CPU (in variable ‘“‘swisnt”). If the new pattern differs,
then it is placed in “swisnt”, and the bit “abutton” in vari-
able “alert” is set, requesting the main program to send a
IBUTTON-DATA interrupt. The main program, at label
“sndbtn”, triggers the interrupt and passes the new pattern
to the CPU from variable “swisnt”.

4.1.4.3 Timer T6 Interrupt

Because the LCD controller's command acknowledgement
capability was not used in our application, Timer T6 is used
to time out the LCD controller’s processing times. See the
description of the SEND-LCD command above.

4.1.4.4 Timer TO Interrupt

The interrupt service routine for Timer TO (labels “tmrint”, to
“tOpoll”, to “t0int”) is used simply to provide timing for the
duration of the speaker tone. The interrupt is enabled in
response to the BEEP command from the CPU, and is dis-
abled on occurrence of the interrupt. It provides an interval
of approximately one second.

25-+eb-88 19:05
PAGE 1

.title HPCUPI,'UPI PORT INTERFACE DEMO'

Demo program for HPC46@83 UPI Port:
Demonstrates use of the HPC as an interface
between an NS32C816 CPU and some typical
front-panel types of devices:
LED indicators (up to 8)
Pushbuttons (up to 8) R .
LCD alphanumeric display controtler (Hitachi HD44789)
Speaker for error beeps
Also generates Real-Time Clock interrupts at a
selectable rate.

Generates !DIAG interrupt on errors; .
severity code of NOTE (e.g. real-time event lost),

or FATAL (e.g. bad command).

Recovery from fatal errors provided by RESET command.

TL/DD/9976-17

26




NSC ASMHPC, Ver D1-BetaSite (Sep 14 14:39 1987)
UPI PORT INTERFACE DEMO
Declarations: Register Addresses

21 form
22

23 pecp psw =
24 poC8 al =
25 Ppco ah =
26 ppcc bt =
27 8pCD bh =
28 PBCE xl =
29 P9CF xh =
39

31 p@op enir =
32 PQ02 irpd =
33 @04 ired =
34 pP06 sio =
35 9908 porti =
36 PPEQ obuf =
37 PRE1 portah =
38 PpE2 portb =
39 ppE2 portbl =
49 PPE3 portbh =
41 PRES upic =
42 PpFQ ibuf =
43 PPF1 dirah =
44 PPF2 dirb =
45 PBF2 dirbl =
46 BPF3 dirbh =
47 PRF4 bfun =
48 PPF4 bfunt =
49 PQF5 bfunh =
59

S1 9194 portd =
52 9129 enu =
53 @122 enui =
54 9126 rbuf =
55 9126 tbuf =
56 9128 enur =
57

58 8149 t6 =
59 9142 r4 =
69 9144 t5 =
61 9146 5 =
62 9148 t6 =
63 P14A ré =
64 914C t7 =
65 P14E 7 =
66 9159 prmode =
67 9150 pwmdl =
68 9151 pumch =
69 9152 portp =
79 8152 portpl =

NSC ASMHPC, Ver D1-BetaSite (Sep 14 14:39 1987)
UP1 PORT INTERFACE DEMO
iDeclarations: Register Addresses

71 9153 portph =
72 915C eicon =
73

74 9182 t1 =
75 9184 r1 =
76 9186 r2 =
77 9188 t2 =
78 P18A r3 =
79 918C t3 =
89 918t divby =
81 18€ divbyl =
82 P18F divbyh =
83 9199 tmmode =
84 9199 tondl =
85 2191 tmmch =
86 9192 tPcon =
87

88

HPCUP1

‘Declarations: Register Addresses'

x'CP:w
x'C8:b ;
x'C9:b ;
x'CC:b ;
x'CD:b ;
x'CE:b ;
x'CF:b ;

x'D@:b
x'D2:b
x'Db:b
x'D6:b

:b

x'@194:b
x'9120:b
x'9122:b
x'9124:b
x'P126:b
x'9128:b

x'P14Q:w
x'P142:w
x'9144:w
x'P146:w
x'P148:w
Xx'P14AW
X'@14C:w
x'Q14E:w
x'9150:w
x'§150:b
x'9151:b
x'P152:w
x'§152:b

x'9153:b
x'@15C:b

x'9182:w
x'9184:w
X'9186:w
x'9188:w
x'P18A:w
x'P18C:w
x'@18E:w
x'918E:b
x'@18F:b
x'9190:w
x'8198:b
x'9191:b
x'8192:b

PSW register

Low byte of Accumulator.
High byte of Accumulator.
Low byte of Register B.
High byte of Register B.
Low byte of Register X.
High byte of Register X.

; (Low byte of PORTA.)
; High byte of PORTA.

Low byte of PORTB.
High byte of PORTB.

(Low byte of DIRA.)
High byte of DIRA.

Low byte of DIRS.
High byte of DIRB.

Low byte of BFUN.
High byte of B8FUN.

; Low byte of PWMODE.
; High byte of PWMODE.

; Low byte of PORTP.

HPCUPI

; High byte of PORTP.

; Low byte of DIVBY.
; High byte of DIVBY.

; Low byte of TMMODE.
; High byte of TMMODE.

25-Feb-88 18:085
PAGE 2

TL/DD/9976-18

25-Feb-88 19:05
PAGE 3

TL/DD/9976-19

27




NSC ASMHPC, Ver D1-BetaSite (Sep 14 14:39 1987)
UP1 PORT INTERFACE DEMO
Declarations:

136
137
138

0004
2905
P006

Register Bit Positions

.form

L T T T T T T TR T T T

HPCUP1

'Declarations:

2
2
3
4
S
6
7

CUVRUNSBNOVAUWASE FURNS® NWNASNOWNVS 2 ©a

Regis

enir

enir,
enir,
enir,
enir,
enir,
enir,

ircd

irpd

Register Bit Positions'

ter(s)

irpd, ircd
irpd, ircd
irpd, ired
irpd
irpd
irpd

25-Feb-88 19:05
PAGE 4

TL/DD/9976-20

28




NSC ASMHPC, Ver D1-BetaSite (Sep 14 14:3@ 1987) HPCUP1
UPI PORT INTERFACE DEMO
Declarations: Register Bit Positions
139 pea7 t3ack = 7 ; tomdh
149
141 9909 totie = ] 3 pwndl
142 9991 thpnd = 1 : pwmdt
143 9002 téstp = 2 ; pwmdl
144 9993 tbhack = 3 ; pwmdl
145 9904 tStie = 4 5 pwmdl
146 90P5 tSpnd = 5 5 pwmdl
147 PPP6 t5stp = 6 ; pwmdl
148 9097 tSack = 7 5 pwmdl
149 9pPP tétie = [} : pwmdh
150 9001 tépnd = 1 ; pwmdh
151 99p2 téstp = 2 ; pwmdh
152 9eP3 téack = 3 : pwmdh
153 pps t7tie = 4 ; pwmdh
154 0pR5 t7pnd = H ; pwmdh
155 §PR6 t7stp = 6 ; pwmdh
156 #0907 t7ack = 7 ; pwmdh
157
158 @90 thout = '] ; portpl
159 0993 totfn = 3 ; portpl
169 #9094 tSout = 4 ; portpl
161 8097 t5tfn = 7 ; portpl
162 9909 téout = 4 ; portph
163 9003 t6tfn = 3 ; portph
164 BPR4L t7out = 4 ; portph
165 9Pp7 t7tfn = 7 ; portph
166
167 2999 eipol = '] ; eicon
168 2901 eimode = 1 ; eicon
169 9992 eiack = 2 ; eicon
178
171 9985 so = 5 ; portbl, dirbl, bfunl
172 0006 sk = 6 ; portbl, dirbl, bfunl
173 0p97 pnlclk = 7 ; portbl, dirbl
174
175 9091 levelk = 1 ; portbh, dirbh
176 ; uaf would be 2 , but requires no setup.
177 9093 uwrrdy = 3 ; portbh, dirbh, bfunh
178 9004 cdata = 4 ; portbh (enables non-pushbutton data to Port D).
179 9095 astts = 5 ; portbh (enables pushbutton data to Port D).
180 9996 ledelk = 6 : portbh, dirbh
181 PPP7 urdrdy = 7 ; portbh, dirbh, bfunh
182
183 H CONSTANTS
184 H
185 9911 xon= x'1n ; XON character: Control-Q
186 9913 xoff= x*13 ; XOFf character: Control-S
187
188

25-F=b-88 19:95
PAGE S

TL/DD/9976-21

29




NSC ASMHPC, Ver D1-BetaSite (Sep 14 14:39 1987) HPCUPI 25-Feb-88 19:95
UPI PORT INTERFACE DEMO PAGE 6
Space Declarations

189 .form  'Space Declarations!'

190 99P0 .sect DSECT,BASE,REL ; Basepage RAM variables (addresses §@PP-P@8F)

191

192 ; WORD-ALIGNED

193 Pp@p dummy: .dsw 1 ; x'p@,p1 ; Destroyed on reset (address 9).

194 pP@P .set upicsv, dummy ; Temporary image of UPIC register.

195 pp@2 alert: .dsw 1 ; Alert status bits to main program:

196 ; generate interrupts to CPU.

197 pep3 .set alerth,alert+1:b ; Declare top byte of ALERT word.

198 PPR4 cpuad: .dsw 1 ; Current address within CPU command buffer.

199 9pP6 cpubuf: .dsw 4 ; Buffer for accepting command parameters from CPU.

209 PPRE ledsix: .dsw 1 ; Pointer into LCD character string buffer.

2p1

2p2 ;BYTE-ALIGNED

293 ppi1@ curcmd: .dsb 1 ; Current command byte from CPU being processed.

204 g1 numexp: .dsb 1 ; Number of parameter bytes expected before command processing

285 ; begins.

2p6 pp12 levs: .dsb 1 ; Image of LCD Voltage (Contrast) latch setting; needed with

2p7 ; LCD RS (PAUXP) signal coming from this latch.

298 P13 : .dsb 1 ; Holds flag bits for characters sent to Panel LCD display.

2P9 PR14 .dsb 1 ; Number of characters to be sent to LCD display.

219 9215 ledsfg: .dsb 1 ; Flag bits associated with characters in LCD String Buffer.

211 pg16 ledsct: .dsb 1 ; Counter for characters being sent to LCD display from String

212 ;  Buffer.

213 pp17 swlast: .dsb 1 ; Last-sampled switch values.

214 9p18 swlsnt: .dsb 1 ; Last switch values sent to CPU.

215 9819 beepct: .dsb 1 ; Beep duration count. Counts occurrences of TR interrupt.

216 PRIA rtcivt: .dsb 1 ; Real-Time Clock Interval (units of 19 milliseconds).

217 @18 rtcent: .dsb 1 ; Real-Time Clock Current Count (units of 18 milliseconds).

218 p@1iC rtevs: .dsb 1 ; Events to check for on Timer T1 interrupts.

219 981D dseve: .dsb 1 ; Diagnostic Interrupt: Severity Code.

229 PP1E derrc: .dsb 1 ; Diagnostic Interrupt: Error Code.

221 PO1F dbyte .dsb 1 ; Diagnostic Interrupt: Error Byte.

222 p929 dcemd:  .dsb 1 ; Diagnostic Interrupt: Current Command.

223 po21 dqual: .dsb 1 ; Diagnostic Interrupt: Quatifier (Command Status).

224

225

226 H BIT POSITIONS

227

228

229 ; ALERT status word (low-order byte) bits:

239

231 pppR abutton = ['] ; Pushbutton switch state change.

232 9pR1 artc = 1 ; Real-Time Interrupt detected.

233 ppp2 adiag = 2 ; Diagnostic interrupt.

234 p0@3 alcdak = 3 ; LCD Panel Write Acknowledge.

235 ; (Other bits not defined.)

236

237 ; ALERT status word (high-order byte, named alerth) bits:

238

TL/DD/9976-22

NSC ASMHPC, Ver D1-BetaSite (Sep 14 14:39 1987) HPCUPI 25-Feb-88 18:05
UPI PORT INTERFACE DEMO PAGE 7
Space Declarations

239 ; (Other bits not defined.)

249

261

242 ; CURCMD byte: Current CPU command. The lower 5 bits contain the

243 H command code. The upper two bits contain

244 H further information about command collection:

245 9PP7 cmdemp= 7 ; Bit 7 (MSB) of curemd = 1 means that no command is being

246 ; processed and curcmd byte is "empty".

247 PPP6 getent= 6 ; Bit 6 of curemd = 1 means that the count is being received

248 ; for a variable-length command.

249

259 ; LCVS byte: LCD Voltage (Contrast) Latch memory image.

251 H Contains voltage value in its least-significant 3 bits,

252 H RS signal to LCD controller in bit 3, and debugging

253 H information in its top 4 bits.

254 pPR3 pnlrs= 3 ; Bit 3 is (inverted) RS signal to panel.

255

256

257 ; RTEVS byte: Events to check for at 18-millisecond intervals,

258 H (T1 Underflows)

259 pp9p rtcenb= @ ; 1 = Real-Time Clock interrupts enabled to CPU.

269

261

262 9990 .sect  STACK,RAM16,REL ; On-chip RAM in addresses @1CR-P1FF.

263 9999 stackb: .dsw 16 ; Space for 8 words beyond

264 ; interrupt context.

265 §020 avail: .dsw 12 ; Spare portion of this space.

266 pR38 ledbuf: .dsw 4 ; LCD String Buffer.

267

TL/DD/9976-23

30




INSC ASMHPC, Ver D1-BetaSite (Sep 14 14:3@ 1987)
.UPI PORT INTERFACE DEMO
Code Section

268 .form
269 pPRP .sect
279

271 ;
272

273 Ppep .spt
274 pPRY .spt
275

276

277

278

279 9pPR 96018 hangup: rbit
28p PPP3 96120F sbit
281

282 PpR6 961208 R sbit
283 pp@9 8C12E1 R td
284 PPAC 96E3P9 sbit
285 PROF 96E319 rbit
286 PR12 B6PIS1PA sbit
287 PP16 B6P15118 rbit
288 PR1A 40 nop
289 p@18 B6P15119 rbit
299 PR1F 3FPR pop
291 P21 B7APRRCL R td
292 9925 991 td
293 PR27 2E R jsri
294 PP28 961218 R rbit
295 @Pp2B 8C12E1 R ld
296 PP2E 96E3P9 sbit
297 PP31 96E319 rbit
298 pR34 8801 td
299 P@36 38 swap
300 PA37 99PF and
3p1 PP39 AGPRTACEB8 R \d
302 PR3E 2E jsrl
393 Po3F 88p1 td
394 PR4T 990F and
305 P@4L3 AGPPTACBS8 R td
306 P@48 2E jsri
397 P49 889D ld
3p8 pg4B 3B swap
399 PR4C 99PF and
319 PRLE A6PPTACBSS R td
311 @953 2E R jsrt
312 9854 88p9 ld
313 9956 990F and
314 PPS8 A6PPTACESB8 R td
315 @@5D 2E R jsrl
316

317 PASE 96E611 hgupi: ifbit

; Program starts at label
error handler, located

HPCUPI

'Code Section'
CSECT,ROM16,REL ;

rdwait
wrpnl

"start"

gie,enir
7,lcvs

pnlrs,lcvs
portah, lcvs
tevelk, portbh
{evelk, portbh
téstp, pwmdh
tétie, pwndh

tépnd, pumdh
?

W
sp,#stackb

A #x D1

wrpnt

pnlrs, levs
portah, levs
levelk, portbh
levelk, portbh
A1.b

In case

Process

A

A, #x'DF

A, hextab(Al.b
wrpnl

A1.b

A, #x ' BF

A, hextablAl.b
wrpnl

A,0.b

A

Display
Process

Display
Process

A, #x'PF

A, hextab[A]l.b
wrpnl ; Display
A, 0.b ; Process
A, #x'QF

A, hextabfA] .b
wrpnl

rdrdy,upic

Code space.

Fatal error:
Signal error on most-significant bit of
LCD Contrast Latch.

Select command mode for LCD controller.
Place error on Port A for latch.

Clock LCD Contrast Latch high,

then low to load it.

25-Feb-88 19:95
PAGE 8

(On-chip ROM)

Declarations of subroutines called by one-byte JSRP instruction.

Waits for CPU to read a value from UP] port.
Writes to LCD panel (for initialization only).

on reset. This routine is the fatal

here for convenience in setting breakpoint.

signal it and halt.

Set up Timer T6 for non-interrupt use.

Clear Pending bit.
Get error address from stack.

of stack underflow, re-initialize SP.

Clear LCD panel.

Set up panel for data.

Place error on Port A for latch.
Clock LCD Contrast Latch high,
then tow to load it.

first character of return address.

it on LCD panel.
second character of return address.

it on LCD panel.
third character of return address.

it on LCD panel.
last character of return address.

Display it on LCD panel.

Check to see if OBUF register is full.

TL/DD/9976-24

31




NSC ASMHPC, Ver D1-BetaSite (Sep 14 14:39 1987)
UPI PORT INTERFACE DEMO
Code section

;}g Pp61 971DER \d
320 9064 96D213 ifbit
321 9R67 41 ip
322 pP68 6A ip
323
324 PR69 B2ASFROC hgupit: ifeq
325 ppéD 41 ip
326 BR6E 47 ie
327 @R6F 96E612 hgrst: ifbit
328 9p72 43 ip
329 PP73 B4P2TA Jmpl
330
331
332
333 Pp76 97FTD2 hgupi2: Id
334 PP79 78 jp
335
336
337 p07A 39 hextab: .byte

9078 31

pa7c 32

9870 33

PR7E 34

907F 35

2089 36

2981 37
338 @82 38 .byte

8083 39

9984 41

99885 42

9086 43

9087 44

9988 45

0989 46
339

NSC ASMHPC, Ver D1-BetaSite (Sep 14 14:39 1987)
UPI PORT INTERFACE DEMO
Hardware Initialization

349 .form
341

342 PPBA 9798CP start: d
343

344 pp8O srfsh:

345

346 PPBD B6P15288 sbit
347

348 P91 B6P1SPPA sbit
349

350 PR95 83098814PAB ud
351 PP9A B6R1581A rbit
352 PP9E B6R1520B sbit
353 PPA2 83p8P142AB td
354

355 PPAT7 supi:

356 POAT 9718E6 td
357

358

359 PBAA 96F5PB sbit
36@ PPAD 96F308 shit
361 ppBR B3FP ld
362

363

364 PPB2 96FSOF sbit
365 PPB5 96F30F sbit
366

367

368 PPBB 96D4LBA sbit
369 PP8B 97FBD2 ]
378

37

372

373 POBE 960498 sbit
374 @POC1 97F7D2 ld
375

376

377 epch sram:

378

379 PPC4 8DPPBE ld
380 @aC7 P@ sraml1: clr
381 99C8 E1 xs
382 PRCY 62 ip
383

384

385 PPCA A7PICPPIFE td
386 POCF 99 sraml2: clr
387 9909 E1 xs
388 9901 62 ip
389

HPCUP1

obuf, #vdiag ; 1f not, fitl it with IDIAG vector
; continuously.

i3,irpd ; Check for UPI data ready.

hgupil

hgupi

ibuf ,#x'A5 ; Check for RESET commend.

hgrst

hgupi2

lag,upic

hgupi2

xreset ; If so, then go reset the HPC.
; This is part of the outer loop, waiting for
; the RESET command.

irpd,#x'F7 ; Clear the UMR detector,

hgupi ; and keep looking. This is an
; infinite loop until RESET is seen.

TP, N1, 020,030 140 151 agr T

181,191 1AV, 1B I, D!, EY, VF!

HPCUPI

'Hardware Initialization'
psw.b, #x'p8 ; Set one WAIT state.

; Start dynamic RAM refreshing,
; as quickly as possible.

t4out, portpl ; Trigger first refresh

; immediately.
t4stp, pwmdl ; Stop timer T4 to

; allow loading,
té.w, 48 ; then load it.
téstp, pemdl ; Start timer T4.
tétfn,portpl ; Enable pulses out.
r4.w #8 ; Load R4.

; Set up UPI port.
upic,#x'18 ; 8-Bit UPI Mode

; enabled.
uwrrdy, bfunh ; Enable UWRRDY/ out.
uwrrdy,dirbh
A, ibuf ; Empty IBUF register,

; in case of false trigger.

urdrdy,bfunh ; Enable URDRDY/ out.
urdrdy,dirbh

; Set up UREAD/ interrupt.
i2,ircd ; Detects rising edges.
irpd,#x'FB ; Clear any false interrupt

; due to mode change.

; Set up UWRITE/ interrupt.
i3,ircd ; Detects rising edges.
irpd, #x'F7 ; Clear any false interrupt

; due to mode change.

; Clear all RAM locations.

; Clear Basepage bank:
BK, #x'@p0@, #x ' PPBE ; Establish loop base and limit.
A

A, [B+].w
sraml1

; Clear Non-Basepage bank:
BK,#x'@1CP, #x'P1FE ; Establish loop base and limit.
A

A, [B+) .w
sraml2

25-Feb-88 19:85
PAGE 9

TL/DD/9976-25

25-Feb-88 19:95
PAGE 19

TL/DD/9976-26

32




NSC ASMHPC, Ver D1-BetaSite (Sep 14 14:3@ 1987)

UPI PORT INTERFACE DEMO
Hardware Initialization

398 992
391

392 ggo2
93

394 #PD6
395

396 pgoC
397

398

399 PEDF
4pp PPEG
481 PREA
482

493 PPEF
494

485

496 PRFS
497 POF8
498 POFB
499 PRFE
419 9191
41

412 9194
413 §197
414 P1PA
415 P1go
416 P19
417

418 9113
4

424 P13
425 9119

429 BI1F
439 8125
431 9126
432 p127

436 9120

438 9133
439 9138

B7@pp2CsH
870002000998
979909
8398p19288
B744400190A8
8355918€A8
87CCC8P199AB

97FFF1

96F38C
97FFE1

872FFFP182AB
B72FFFP184AB

874449915048
4P
49
87ccceg159a8

B7FFFF@14AAB

83CCP14CAB
B83CCPI4EAB

R

sskint:

tminit:

sled:

stmrs:

td

sbit
sbit
sbit
sbit

d

rbit
sbit
sbit
rbit

ud
td

ud
nop
nop
d

td
\d

HPCUP1

; Set up Stack and remove
; individual interrupt enables.

sp, #staci’tmz

stackb.w, #hangup

enir, #x'99

t@con,#x'98
tmmode , #x 14449
divby, #x'9055

tmmode, #x'CCC8

dirah #x'FF
astts,portbh
astts,dirbh
cdata,portbh
cdata,dirbh

portah, #x'FF
ledclk,portbh
ledclk,dirbh

ledclk,portbh
ledc Lk, portbh

t1,#12287
r1,#12287

pwmode , #x ' 4440

pwmode, #x'CCC8

ré #x'FFFF

t7, 4204
7, 8204

Move stack to high
bank of on-chip RAM.
; Safeguard against

; stack underflow.
Disable interrupts
individually.

Stop timers T1, T2, T3.
Timers T2 and T3 set to
clock externally.
Clear and disable timer
T8-T3 interrupts.

H
;
’
H
‘

Initialize Port A upper byte for output.
Enable and de-assert ENASTTS/ signal
(enables pushbutton data to Port D).
Enable and de-assert ENCDATA/ signal.
(enables other data to Port D).

Set up to turn off LED's.
Start with LEDCLK low,
(enable output),

then high,

then low again.

Set up remaining timers.
(71-T3 already stopped
and pending bits cleared
at tminit above, as
part of MICROWIRE init.)

T1 runs at 1@-millisecond real-time interval.

Timer remains stopped, and interrupt
disabled, until INITIALIZE command.

Stop timers T4-T7.

Wait for valid PND
bits.

Clear and disable
interrupts from all
PUM timers.

’
H
;
H
i
B

No modulus for LCD Display Ready timer.

Set 17 to underflow at 6 KHz rate
(= 3 KHz at pin).

25-Feb-88 19:95
PAGE 11

TL/DD/9976-27

33




NSC ASMHPC, Ver D1-BetaSite (Sep 14 14:3p 1987) HPCUPI 25-Feb-88 19:85
UPI PORT INTERFACE DEMO PAGE 12
Hardware Initialization

449 P13D B6@1531F rbit t7tfn,portph ; Disable beep tone to panel speaker.

441 9141 B6R1S1IE rbit t7stp, pwmdh ; Start T7 runmning.

442

443

444 P14S sled: ; Set up LCD display.

445 ; Requires use of timer 16, so

446 ; appears after timer initiatization.

447

448 ; First, set up LCD contrast.

449 P145 97pA12 R ld tevs, #x' A ; Initialize memory image of LCD Voltage

459 ; latch, containing RS (PAUX@) bit also.

451 9148 8C12E1 R td portah, lcvs ; Arbitrary initial contrast level of 5,

452 ; and RS/ (PAUX@/) is high (="command").

453 P14B 96E319 rbit levelk, portbh ; Start with LCVCLK low,

454 P14E 96F3p9 sbit levelk,dirbh ; (enable output)

455 B151 96E3R9 sbit tevelk,portbh  ;  then high,

456 P154 96E319 rbit levelk, portbh ; then low to get it into LCV latch.

457

458 ; Initialize PNLCLK (Panel “E" signal).

459 P157 96E2PF sbit pnlclk,portbl ; Start with PNLCLK high

460 B15A 96F20F sbit pnlcik,dirbl ; (enable output).

461

462 ; Wait for worst-case command

463 ; execution time (4.9 ms, twice), in case

464 ; a panel command was triggered while

465 ; PNLCLK was floating.

466 P1SD B6R15198 sbit téack, pwmdh ; Clear Té PND bit.

467 P161 B732C8p148AB td t6, #1390 ; Set Té to twice 4.9 milliseconds.

468 B167 B6P1S11A rbit téstp, pwmdh ; Start timer T6.

469 P168 B6P15111 ledlpt: ifbit  tépnd, pwmdh ; Wait for Té PND bit

479 ; to be set.

471 B16F 41 ir Lcdgol

472 P179 65 ip ledlpt

473 P171 B6P151PA ledgot: sbit téstp, pwndh ; Stop timer T6.

474 P175 B6P1S1@8 sbit téack, pwmdh ; Clear T6 PND bit.

475

476 ; Reset Panel controller (per Hitachi HD44789

477 ;  User's Manual).

478

479 ; (Panel RS signal was set

489 ; in LCD Contrast initialization above,

481 ; so no change needed here to

63% ; flag these as commands.)

4

484 P179 9938 d A, #x'38 ; Send "8-Bit Mode, 2 Lines" command: one;

485 @178 2E R jsrt wrpnl

486 P17C 9938 \d A, #x'38 . two;

487 P17E 2E R jsrt wrpnl

488 P17F 9938 td A, #x'38 ; three;

489 9181 2E R jsrl wrpnl

TL/DD/9976-28

NSC ASMHPC, Ver D1-BetaSite (Sep 14 14:3p 1987) HPCUPI 25-Feb-88 19:05
UPI PORT INTERFACE DEMO PAGE 13
Hardware Initialization

499 9182 9938 td A, #x'38 ; four times.

491 9184 2E R jsrt wrpnt

492 9185 9008 ld A, #x'98 ; Disable display.

493 9187 2E R jsrl wrpnl

494 9188 9991 id A#x'1 ; Clear display RAM.

495 918A 2E R jsrt wrpnl

496 .

497 ; Initial default mode settings.

498

499 9188 9996 td A, #x'86 ; Set mode to move cursor to the right, no

509 918D 2€ R jsrl wrpnl ; automatic shifting of display.

501 P18E 99PE ld A, #x'9E ; Enable display: non-blinking cursor mode.

502 $199 2E R jsri wrpnl

503

5p4

595 H CONTEINUES TO MAIN PROGRAM INITIALIZATION

TL/DD/9976-29

34




NSC ASMHPC, Ver D1-BetaSite (Sep 14 14:3p 1987)
UPI PORT INTERFACE DEMO
Main Program Initialization

.form

2191 minit:

2191 978019
P194 B7BPRORL
p198 979811

ld
td

8198 B790PR02

P19F runsys:

524 sbit
525
526
527 P1A2 96DPPB
528 P1AS 96DPR3
529

539

P19F 960990

sbit
sbit

NSC ASMHPC, Ver D1-BetaSite (Sep 14 14:3p 1987)
UPI PORT INTERFACE DEMO
Main Scan Loop

-form

o811
8017
18

281D

vrtc
vlcdak
vbutton

vdiag

level
.ipt
.ipt
.ipt
.ipt
.ipt

FFFC
FFFA
FFF6
FFF2
FFFO

EE-E T

B1A8 mainlp:

P1A8 R chkalt:

ifeq
P1AC j

p
ifbit
jsrt

82pP82FC
64

91AD
p18g

g182
9185

968211
3019

969213
3913

ifbit
jsrl

p1B7
g1BA

968219
3p16

ifbit
jsrl

567 §1BC
568 p1BF

569
57¢ 91c1
571

969212
3923

ifbit
jsri

79 jmpl

NSC ASMHPC, Ver D1-BetaSite (Sep 14 14:38 1987)
UP1 PORT INTERFACE DEMO

Main: Send Real-Time Clock Interrupt

572 .form

573

574 ; No data trans

575

576 @1C2 sndrtc:

S77 @1C2 969219 R rbit

578 R1C5 2F R jsrt

579

589

581 @1C6 9711EQ ld
ret

582 p1C9 3¢
583

HPCUPI 25---0-88 19:95

PAGE 14

'Main Program Initiaslization’'

; Once-only initializations.
curcmd, #x'89 ; Current Command: top bit set means "none".
cpuad, #cpubuf  ; Set CPU command index to beginning of buffer.
numexp, #8 ; Arbitrary starting value.

Arbitrary set of initialization values for variables,
in effect until receipt of the first INITIALIZE
command .

i
H
H

alert,#p ; No events pending.

Enable interrupts, start timers and go to main loop.

tmrs,enir ; Enable timer interrupts. (Done here
; to allow certain commands without an
; INITIALIZE command first.)

i3,enir ; Enable CPU Command interrupt.

gie,enir ; Enable interrupt system.

TL/DD/9976-30

25-/~=0-88 19:95
PAGE 15

HPCUPI

'Main Scan Loop'

Declarations

x'11 ; Real-Time Clock vector number.

x"17 ; Acknowledge finished writing to LCD panel.

x'18 ; Pushbutton status change: a button pressed or
; released.

x'1D ; Diagnostic Interrupt.

; Error Vectors for unimplemented or

;  unexpected interrupts.

@ is Reset, provided by assembler.

1,hangup : NM never expected.

2,hangup ; UPI READ READY: never expected.

4 hangup ; 14 Interrupt Vector: never expected.

6, hangup ; UART Interrupt Vector: never expected.

7., hangup ; EI Interrupt Vector: never expected.

Check for alert conditions.
If none, keep looping.

atert.w,#x'gp
chkatt

artc,alert.b
sndrtc

Check for RTC interrupt request.
1f so, then send Real-Time Clock

interrupt.

Check for LCD Panel write done.
If so, then send LCD Acknowledge

alcdak,alert.b
sndtak

interrupt.

abutton,alert.b
sndbtn

Check for a pushbutton change.
If so, then report the change to

the CPU.

adigg,alert.b Check for Diagnostic Interrupt.

sndiag ; If so, then send interrupt and data.
chkalt ; No "responses" defined yet; just close loop.
TL/DD/9976-31
HPCUPL 25-%2b-88 19:95
PAGE 16
‘Main: Send Real-Time Clock Interrupt'
fer; just trigger interrupt and continue.

artc,alert.b Clear ALERT bit.

rdwait : Check that UPI interface is ready.
; If not, loop until it is.
obuf, #vrtc Load Real-Time Clock vector into OBUF for CPU.

Return to main loop.

TL/DD/9976-32

35




NSC ASMHPC, Ver D1-BetaSite (Sep 14 14:39 1987) HPCUPI 25-f¢h-88 19:05
UPI PORT INTERFACE DEMO PAGE 17
Main: Send LCD Write Acknowledge Interrupt

584 .form 'Main: Send LCD Write Acknowledge Interrupt’

585

586 ; No data transfer; just trigger interrupt and continue.

587

588 P1CA sndlak:

589 B1CA 968218 R rbit alcdak,atert.b ; Clear ALERT bit.

599 @iCD 2F R isrl rdwait ; Check that UPI interface is ready.

591 ; If not, loop until it is.

592

593 P1CE 9717€9 ld obuf , #vicdak ; Load LCD-Acknowledge vector into OBUF for CPU.

594 9101 3C ret ; Return to main loop.

595

TL/DD/9976-33

NSC ASMHPC, Ver D1-BetaSite (Sep 14 14:3p 1987) HPCUPI 25-Feb-88 19:05
UPI PORT INTERFACE DEMO PAGE 18
Main: Send Pushbutton Status to CPU

ggg .form 'Main: Send Pushbutton Status to CPU'

598 #102 sndbtn:

599 9102 2F R jsrt rdwait ; Check that UPI interface is ready.

gg? ; I1f not, toop until it is.

2g§ 9103 9718EQ ud obuf ,#vbutton ; Load BUTTON-DATA vector into OBUF for CPU.

694 PID6 2F R jsrt rdwait ; Check that UPI interface is ready.

6P5 ; 1f not, loop until it is.

696

687 B1D7 96018 rbit gie,enir ; *** Begin Indivisible Sequence ***

608 P1DA BC1BEP R td obuf, swlsnt ; Load Pushbutton Data Byte into OBUF for CPU.

609 #10D 969218 R rbit abutton,alert.b ; Clear ALERT bit.

619 P1EQ 96DPP8 sbit gie,enir ; ** End Indivisible Sequence ***

611 §1E3 3C ret ; Return to main loop.

TL/DD/9976-34

36




NSC ASMHPC, Ver D1-BetaSite (Sep 14 14:39 1987) HPCUPT 25-%+»-88 19:05
UPI PORT INTERFACE DEMO PAGE 19
Main: Send Diagnostic Interrupt to CPU

613 .form 'Main: Send Diagnostic Interrupt to CPU'

614

615 P1E4 sndiag:

616 B1E4 2F R jsrl rdwait ; Wait for UPI interface ready.

617 P1ES 971DED \d obuf ,#vdiag ; Load vector into OBUF for CPU.

618 P1E8 2F R jsrt rdwait ; Wait for UPI interface ready.

619 P1E9 960918 rbit gie,enir ; *** Begin Indivisible Sequence ***

620 P1EC 8CIDEPR R id obuf,dseve ; Transfer Severity Code.

621 B1EF 97991D R ld dsevc, #9 ; Clear it.

622 B1F2 B81E R td A,derrc ; Get Error Code.

623 B1F4 97PP1E R d derrc, #9 ; Clear it,

624 BIF7 96821A R rbit adiag,alert.b ; Clear ALERT bit.

625 B1FA 960908 sbit gie,enir ; *** End Indivisible Sequence ***

626 P1FD 2F R jsrt rdwait ; Wait for UPI interface ready.

627 B1FE BBE@ st A, obuf ; Transfer Error Code.

628 8299 2F R jsrl rdwait ; Wait for UPI interface ready.

629 ; Remaining bytes will have meaning onty for

639 ; command errors.

631 9291 BCIFEQ R \d obuf,dbyte ; Transfer Byte Received.

632 8294 2F R jsrt rdwait ; Wait for UPI interface ready.

633 9295 BC2PEP R id obuf , dcemd ; Transfer Current Command.

634 9298 2F R jsrl rdwait ; Wait for UPI interface ready.

635 92p9 BC21EP R ld obuf, dqual ; Transfer Command Count.

636 920C 3C ret ; Return to main program loop.

637

TL/DD/9976-35

NSC ASMHPC, Ver D1-BetaSite (Sep 14 14:3p 1987) HPCUPI 25---p-88 19:05
UPI PORT INTERFACE DEMO PAGE 29
UPI (13) Interrupt: Data from CPU

638 .form ‘WPl (I3) Interrupt: Data from CPU'

639

z? FFF8 PDP2 R .ipt 3,upinr ; Declare upiwr as vector for Interrupt 3.

642 9200 upiwr: ; Write Strobe received from CPU.

643 9200 AFC8 push A ; Save Context

644 P2PF AFCP push psw

645

646 P211 BCESPR R ld upicsv.b,upic ; Save UPIC register image for LA@ bit test.

647

648 P214 961917 R ifbit  cmdemp,curcmd  ; If expecting first byte of a command,

649 P217 94cC jmpl firstc ; then go process it as such.

659

651 P219 88FP ld A, ibuf ; 1f not, input it for entry into cpubuf.

652

653 §218 9CAS ifeq A, BX'AS ; Check for RESET command.

654 9210 46 ip lerst

655 B21E 969912 R ifbit  la@,upicsv.b ; Check for command argument written to proper

656 . address.

657 9221 48 ip lcord . 1f so, go process as a normal argument.

658 P222 3622 jsrl hangup ; If not, process as a FATAL error, generating

659 ; IDIAG interrupt.

669

661 P24 96E612 lerst:  ifbit lap,upic ; Continue checking for a RESET command.

662 p227 42 ip lcord

663 P228 94C6 jmpl xreset ; If so, go reset the HPC.

664

665 P22A ADP4LBE R lcord: x A, {cpuad)] .b ; If not, place it in next available cpubuf

666 ; entry.

667 922D A9P4 R inc cpuad

668 B22F 8A11 R decsz  numexp

669 9231 B4P1PF jmpl upwret : If not final byte of command, then return.

679

671 9234 8819 R lastc: d A, curemd : Else, process current command.

672 9236 96C816 ifbit getent,A.b ; Check if extended collection is being made.

673 9239 47 ip lastct ; If not, then:

674 P23A 96109F R sbit cmdemp,curcmd ;  Set command slot available again.

675 923D B7PPP6RL R ld cpuad,#cpubuf ;  Reset CPU buffer pointer to beginning.

676

677 @261 991F lastc1: and A X IF ; Mask off flag bits.

678 9243 E7 shl A ; Scale by two, and then

9244 4P

679 9245 .odd

68p 9245 EC jidw ; jump based on command value:

681

682 P246 PARPP lastab: .ptw lcinit : @ = INITIALIZE command.

683 9248 2CP9 .ptw teslev ; 1 = SET-CONTRAST command.

684 P24A 429D -ptw lesled ; 2 = SEND-LCD command.

685 P24C 8CPP .ptw {csled ;3 = SEND-LED command.

686 P24E F399 .ptw ille ; (BEEP command has only one byte. Error.)

TL/DD/9976-36

37




NSC ASMHPC, Ver D1-BetaSite (Sep 14 14:3p 1987)
UPI PORT INTERFACE DEMO
UPL (13) Interrupt: Data from CPU

687

688

689

699 9259 97@11C R lcinit: Id
691 P253 829PP6DC R ifeq
692 9257 961C18 R rbit
693 P25A 8CP6IA R td
694

695 925D 8CP61B R td
696

697 9268 B691999C sbit
698

699 9264 B6P19PIE rbit
799

791 9268 B7PRPPR2 R ld
702

793 @26C 979917 R d
704 P26F 979918 R ud
;05

06 P272 94CF jmpl
707 ™
798

709

719

711 274 8896 R leslev: Ud
712

713 276 91 c
714 9277 9997 aﬂp
715 9279 82F81209 R and
716 927D 8pC8120A R or
717 9281 8C12E1 R ld
718 P284 96E3P9 sbit
719 9287 96E319 rbit
720 928A 9487 jmpl
721
722
723
724
725 028C 961916 R lesled: ifbit
726 P28F 9435 jmpl
727
728 p291 lesle2:
729
739 9291 A1060038A8 R d
731 9296 A108pP3AAB R td
732 9298 A1PAPP3CAB R ld
733 P2AR A1PCPP3EAB R ld
734 P2AS 8C1416 R ud
735
736 B2A8 8916 R inc

NSC ASMHPC, Ver D1-BetaSite (Sep 14 14:3p 1987)
UPI PORT INTERFACE DEMO
UPI (13) Interrupt: Data from CPU

737

738

739 @2AA B79P380E R ld
749 §2AE 8C1315 R d
741

742 9281 87FFFFP14AAB ld
743 §2B7 83pPR148AB ld
744 928C B6R15108 sbit
745 B2CP B6P15T1A rbit
746

747 92C4 947D jmpt
748

749 92C6 leslel:

750

751 §2C6 8CP613 R td
752 @2C9 8CP714 R \d
753

754 §2CC 8C1411 R \d
755

756

757 P2CF B7PPR6Rs4 R d
758

759 9203 961P1E L3 rbit
769

761 9206 9468 jmpt
762

763

764

765

766 @208 8896 R lcsled: Ud
767 P20A P1 comp
768 p208 8BEY st
769 920D 96E3QE sbit
770 P2eP 96EZNE rbit
771 P2E3 945E jmpl
772

73

HPCUP1

; Process INITIALIZE Command.

rtevs, #x'p1
cpubuf.b, #9
rtcenb, rtevs
rtcivl,cpubuf.b

rtcent, cpubuf.b

Enable only Real-Time Clock interrupts, but
disable them again if

the command argument is zero.

Put argument into Real-Time

Clock interval.

Put argument into Real-Time

Clock count.

titie, tmmdl Enable Timer T1 interrupt, if not already
enabled.
tistp, trmd!l Start timer, if not already running.
alert.w, #9 ; Set no events pending.
swlast,#9 ; Set up initial switch values.
swisnt, #9 ; (Both current and last sent)
upwret ; Return.
; Process SET-CONTRAST Command.
A, cpubuf.b ; Load LCD Voltage latch (Contrast) from byte
; supplied by CPU,
A ; (3-bit value is in complemented form.)
A, #x'97 ; Use only lower three bits.
lovs, #x'F8 ; Clear field in memory image.
levs,Ab ; Merge new field into image.
portah, levs ; Place on Port A (input to latch).
levelk,portbh  ; Clock latch.
Lcvelk, portbh
upwret
; Process SEND-LCD Command.
getent, curcmd ; Check for first or second collection
teslet ; phase.
; Second phase: begins execution of the LCD
H command .
Ledbuf .w, cpubuf . w ; Copy CPU buffer to LCD string buffer.

ledbuf+2.w, cpubuf+2.w
ledbuf+4 . w, cpubuf+é .w
lcdbuf+6.w,cpubuf+6.w
ledsct, lednum Move number of characters to string
count byte

(incremented by one because of

ledsct

HPCUPI
H extra interrupt occurring after
H last character has been sent).
ledsix, #lcdbuf ; Set string pointer to first byte.
ledsfg, Lcdfgs ; Move flag bits to string location.
r6,#x'FFFF ; Set up R6 and T6 to trigger string
t6,#9 ; transfer.
tétie, pwmdh ; Enable timer T6 interrupt.
téstp, pwmdh ; Start timer to trigger (immediate)
; interrupt from timer Té.
upwret

; First phase: Prepare to collect up to 8
; more bytes of command.
Get flag bits supplied by CPU.

ledfgs, cpubuf.b H
; Get character count from CPU.

tcdnum, cpubuf+1.b

numexp, | cdoum.b ; Request another collection of
; data from the CPU (the string of
; data for the panel).
cpuad, #cpubuf ; Reset CPU collection pointer to start
; of command buffer.
getent, curemd ; Declare that it will be the final
; collection.
upwret

; Process SEND-LED Command.

A, cpubuf.b ; Load LED latch from byte supplied by CPU.
A ; (Data goes to LED's in complemented form.)
A,portah ; Place new value on Port A (input to latch).
ledclk,portbh ; Clock latch.

ledclk,portbh

upwret

25- eb-88 19:95
PAGE 21

TL/DD/9976-37

25-Feb-88 19:95
PAGE 22

TL/DD/9976-38

38




NSC ASMHPC, Ver D1-BetaSite (Sep 14 14:39 1987)
UPI PORT INTERFACE DEMO
Processing of First Byte of Command (Code)

HPCUPI 25-Feb-88 19:95
PAGE 23

%A .form 'Processing of First Byte of Command (Code)'
776 ; One-byte commands are processed in this section.
777 ; Longer commands are scheduled for collection of
778 H remaining bytes, and are processed in routines
779 H above.
780
781 B2E5 88F9 firste: Ud A, ibuf ; Get command from UPI port.
782 P2ET7 969912 ifbit ta@,upicsv.b ; Check for out-of-sequence condition
783 ; (argument instead of command).
784 P2EA 36EA jsri hangup ; If so, process as a FATAL error (previous
785 ; command was too short).
786
;gg ; Processing of RESET command.
789 P2EC 9CAS ifeq A, H#x'AS ; Check for RESET command.
798 P2EE 41 ip xreset
791 B2EF 59 ip fcord
792
793 ; This code is entered whenever a RESET
794 ; command is received.
795 @2F9 xreset:
796 92F@ 971DEQ ld obuf, #vdiag ; Present dummy value for CPU,
797 X ; (in case a value was already in OBUF),
798 @2F3 2F R jsrt rdwait ; and wait for it to be read by CPU.
799 92F4 9909 ld 9 ; Initialize registers.
8p@ P2F6 8BES st A,upic
801 @2F8 ABFP st A,ibuf.w ; (Actually all of DIRA.)
802 B2FA ABF2 st A,dirb
803 P2FC ABF4 st A,bfun
804 B2FE 8BD4 st A,ircd
895 9309 B6P152A8B st A, portp
806 P304 ABC4 st A,sp ; Then, through RESET vector,
897 9396 ABCP st A,psw
ggg 9388 3C ret ; jump to start of program.
g:? ; Here, process an ordinary command (not RESET).
812 9309 fcord:
813 P399 991F and A #x'1F ; Use only least-significant 5 bits.
814 9398 9011 ifgt A#x 11 ; Check for command out of range.
815 P390 9432 jmpl ille
g:_é[ $30F 8819 R st A, curcmd ; Save as current command.
818 9311 E7 shl A ; Scale by two, and then
0312 49
819 9313 .odd
gg? P313 EC jidw ; jump based on command value:
822 9314 PARY firstab: .ptw fcinit ; @ = INITIALIZE command.
TL/DD/9976-39
NSC ASMHPC, Ver D1-BetaSite (Sep 14 14:39 1987) HPCUPI 25-Feb-88m1_01g2
UP1 PORT INTERFACE DEMO PAI
Processing of First Byte of Command (Code)
823 9316 pDoP .ptw feslev ; 1 = SET-CONTRAST command.
824 p318 ProQ .ptw fesled ; 2 = SEND-LCD command.
825 P31A 1499 ptv fcsied ; 3 = SEND-LED command.
826 931C 1609 .ptw fcbeep ; 4 = BEEP command.
827
828 P31E 979111 R fcinit: Ud numexp, #1 ; First byte of INITIALIZE comma nd.
829 ; Expects 1 more byte (RTC interval).
830 9321 9429 jmpl upwret ; Return.
gg; ; First byte of SET-CONTRAST command.
833 9323 979111 R feslev: Ud numexp, #1 ; Set up to expect one more byte.
834 §326 5C jmpl upwret
835
; First byte of SEND-LCD comll;and.
837 @327 979211 R fesled: Ud numexp, #2 ; Set up to expect one more byte.
838 gBZA 96190E R sbit getent,curemd  ; Note extended collection mode in Current
839 ; Command byte.
849 9320 55 jmpl upwret
841
842 ; First byte of SEND-LED command.
843 @32E 979111 R fecsled: Id numexp, #1 ; Send to LED's: Set up to expect one more byte.
844 9331 51 impl upwret
845
846 ; Process one-byte BEEP command.
847 P332 96198F R fcbeep: sbit cmdemp,curcmd  ; No arguments; set CURCMD byte empty.
848 9335 BOP153PF shit t7tfn,portph ; Ensble beep tone to panel speaker.
849 9339 B6P19998 sbit tPtie, tmmdl ; Enable Timer TP interrupt. .
850 9330 971319 R d beepct,#19 ; Initialize duration count (approximately
851 ; 1 second, in units of Timer TP overflows).
852 P34P 42 jmpl upwret
853
854 R :
855 9341 3741 ille:  jsrl hangup ; Process illegal command codes.
856 e
857 ; Return from UPI Write interrupt.
858 @343 upwret: ; Restore Context
859 9343 3FCP pop psw
869 §345 3FC8 pop A
861 §347 3E reti
2

TL/DD/9976-40

39




NSC ASMHPC, Ver D1-BetaSite (Sep 14 14:3p 1987)
UPI PORT INTERFACE DEMO
Timer Interrupt Handler

863 .form
864
865 FFF4 4803 R .ipt
866 .
867 §348 AFC8 tmrint: push
868 P34A AFCC push
869 P34C AFCH push
87g o
871 @34E B6P19915 tipoll: ifbit
872 9352 54 jmpl
873 .
874 9353 86915111 tépoll: ifbit
875 P357 944C jmpt
876 .
877 $359 B6@19911 tPpotl: ifbit
878 P35 41 ip
879 P35E 46 ip

)
882 @35F B6R19R19 tépdg: ifbit
883 9363 9488 jmpt
884 8365 t@notp:

5
886 @365 3765 noint: jsri
887
888

NSC ASMHPC, Ver D1-BetaSite (Sep 14 14:39 1987)
UPI PORT INTERFACE DEMO
Timer Tt Interrupt Service Routine

889 .form
899

891 @367 B6P190PF tlint: sbit
892 @368 961C19 R ifbit
893 P36E 41 ip
894 P36F 57 jmpl
895 9379 8A1B R tlint1: decsz
896 P372 54 jmpl
897

898 #373 8C1A1B R d
899 P376 969211 R ifbit
999 9379 44 ip
991 937A 960299 R sbit
992 P37D 49 ip
993 P37E 9610p8 R tirerr: sbit
994 §381 961EQF R sbit
905 P384 9620A R sbit
996

987 9387 kbdchk :

998 P387 96E31D rbit
999 B38A B6P1p488 ld
919 P38E 96E3PD sbit
911 8391 98BFF xor
912 9393 8€17 R

913 §395 9617DC R ifeq
914

915 9398 41 jp
916 P399 49 Jmpl
917

918 939A 96180C R kbint1: ifeq
919

920 #390 45 jmpl
921

922 939€ 8818 R st
923 P3AP 969208 R shit
924

925

926 P3A3 tmochk:

927

928

929 P3A3 9459 Jmpl
939

931

HPCUP1

tTimer Interrupt Handler'

5, tmrint ; Declare entry point for Timer Interrupt.
A ; Save context.
8 H
psw H
t1pnd, tmmdl ; Poll for Timer T1 interrupt (Real-Time Clock).
tlint ; 1f set, go service it.
t6pnd, pumdh : Poll for Timer T6 interrupt (LCD Panel Timing
téint ;  Interrupt).
tPpnd, tmmdl ; Poll for Timer TP interrupt (Beep Duration).
t@pdg ; 1f set, check the Enable bit; T@ is not
tdnotp ; always enabled to interrupt, but it runs

; continuously.
tPtie, tmmdl ; If enable is also set, then go service T@.
tPint

; (This label is deliberately here.)
hangup ; Error: no legal timer interrupt pending.

HPCUPI

'Timer T1 Interrupt Service Routine'

tlack, tmmdl ; Acknowledge T1 interrupt.

rtcenb, rtevs ; Check if RTC interrupts are enabled.

tlintt

kbdchk ; 1f not, then go check other events.

rtcent ; Decrement interval vatue.

kbdchk ; 1f interval has not elapsed, then go check
; for other events,

rtcent,rtecivl  ; Reload counter value for next interval.

artc,alert.b ; Check if CPU has received previous interrupt

tirerr ; request; report error if not.

artc,alert.b ; Set Real-Time Interrupt request to main

kbdchk ; program.

9,dsevc ; Signal NOTE severity.

7,derrc ; Signal multiple-RTC error.

adiag,alert.b Request IDIAG interrupt from main program.

Check keyboard switches.

;
astts,portbh ; Enable pushbutton data to Port D.
A, portd ; Sample pushbutton switches.
astts,portbh ; Disable pushbutton data to Port D.
A HEX'FF ; Complement low-order 8 bits of A.
A,swlast ; Exchange with last sample.
A, suwlast ; Check if the data is stable (same as last
; sample).
kbint1
tmochk ; 1f not, go check other events (if any).
A, swlsnt ; Check if the data differs from the last
; pattern sent to the CPU.
tmochk ; If not, go check other events (if any).
A,swlsnt ; Place new pattern in "last sent” location.
abutton,alert.b ; Request "BUTTON-DATA" interrupt to CPU.

; *** Insert any other RTC events here. ***

tmrret ; Return from Timer T1 interrupt.

25-Feb-88 19:05

PAGE 25

TL/DD/9976-41

25-Feb-88 19:05
PAGE 26

TL/DD/9976-42

40




NSC ASMHPC, Ver Di1-BetaSite (Sep 14 14:39 1987) HPCUP1 25-Feb-88 19:95
UPI PORT INTERFACE DEMO PAGE 27
Timer Té Interrupt Service Routine

932 .form 'Timer 76 Interrupt Service Routine'

933

934 ; Timer Té interrupt routine: sends characters from
935 ; LCD String Buffer to the panel.

936 P3AS B6P151BA téint: sbit téstp, pwmdh ; Stop timer T6.

937 P3A9 86915198 sbit téack, pwmdh ; Acknowledge T6 interrupt.

939 P3AD 8A16 R decsz  ledsct ; Decrement LCD character count.

94P P3AF 45 jmpl ténxtc ; If not done, go send another character.
941

942 P3BP 969208 R sbit alcdak,alert.b ; If done, request main program to send LCD
943 ; Acknowledge interrupt to CPU.

944 D3B3 9449 jmpl tmrret

945

946 9385 8815 R ténxtc: ld A, lcdsfg Get flags byte (for panel RS signal).
947 9387 C7 shr A shift right, LSB into carry.

Store shifted value back.
Determine proper state for RS signal from
current character's flag (= flag inverted).

948 9388 8815 st A, lcdsfg
949 @3BA 961208 sbit pnlrs,levs
95@ 9380 B7 ifc

e

951 @3BE 961218 R rbit pntrs,levs
952 93C1 8C12E1 R ld portah, levs ; Send new RS value to LCD Voltage (LCV) latch.
953 93C4 96E3P9 sbit levelk,portbh  ; Clock the latch. RS signal is now valid.
954 B3C7 96E319 rbit Levelk, portbh
955
956 P3CA ADPESS R d A, [ledsix).b ; Get next LCD character from string buffer.
957 B3CD A9RE R inc ledsix ; Increment character pointer.
958 93CF 91 comp A ; Complement character, then
959 9309 8BE1 st A,portah ; place it on Port A for LCD display.
969 P3D2 96E21F rbit pnlelk,portbl  ; Clock it into panel.
961 P3D5 96E20F sbit pnlelk,portbl
962 9308 @1 comp A ; Restore A to uncomplemented form for
963 ; test performed below.
964
965 P309 83949148A8B ud t6,#148 ; Set up normal delay time in timer Té
966 : (129 microseconds).
967 P3DE 9093 ifgt A, #x'03 ; Check whether the longer delay
968 P3EP 47 ip ténxt2 ; (4.9 milliseconds) is necessary.
969 ; This happens if RS=§ and the byte sent to
979 P3E1 96 ifnc ; the panel is a value of hex 3 or less.
971 P3E2 8717869148AB d t6, #6922 ; If so, change timer to 4.9 milliseconds.
972
973 P3E8 B6PIS11A ténxt2: rbit téstp, pwmdh ; Start Timer T6é to time out the character.
974 P3EC 51 jmpl tmrret ; Return from the interrupt.
975
976
TL/DD/9976-43
NSC ASMHPC, Ver D1-BetaSite (Sep 14 14:39 1987) HPCUPI 25-Feb-88 1p:95
UPI PORT INTERFACE DEMO PAGE 28
Timer T@ Interrupt Service Routine
g;? .form ‘'Timer TP Interrupt Service Routine'
8
979 P3ED tPint: ; Count duration of beep tone. Restore beep signal
98 ; to zero and re-enable switch sampling interrupt
981 ; when done.
982 P3ED B6P1999B sbit tPack, tmmdl ; Acknowledge interrupt from Timer T@.
983 §3F1 BA19 R decsz  beepct ; Check whether beep time has finished.
984 P3F3 4A jmpl tmrret ; No: return from interrupt.
985 P3F4 B6P19918 rbit tPtie, tmmd( ; Yes: disable Timer TP interrupts and
986 ; continue,
987 P3F8 83PFP15309 and portph, #x'BF ; Disable speaker output.
988 P3FD 4P jmpl tmrret ; Return from interrupt.
989
999 ; Common return for timer interrupt service routines.
991 P3FE 3FCO tmrret: pop pswW ; Restore context.
992 P4PR 3FCC pop B
993 P4p2 3FC8 pop A
994 P4pst 3E reti
995
996
TL/DD/9976-44
NSC ASMHPC, Ver D1-BetaSite (Sep 14 14:39 1987) HPCUP! 25-Feb-88 19:05
UPI PORT INTERFACE DEMO PAGE 29
Subroutine to Wait for OBUF Empty
gg .form 'Subroutine to Wait for OBUF Empty"'
999 ; RDWAIT subroutine: waits until the CPU has read a byte from the
:BDB H UPI interface.
91
1992 9495 96E611 rdwait: ifbit rdrdy,upic ; Check to see if OBUF register is full.
1983 9498 3C ret
19046 B4P9 64 ip rdwait
1905
1996

TL/DD/9976-45

41




NSC ASMHPC, Ver D1-BetaSite (Sep 14 14:3p 1987) HPCUP1 25-Feb-88 19:95
UPI PORT INTERFACE DEMO PAGE 39
Write to Panet Subroutine

1097 .form ‘'Write to Panel Subroutine'

1208

1999 ; Write Panel subroutine.

1919 ; Used only at initialization or to report a

1911 ; fatal protocol error, since it performs

1912 ; the timing delay using timer T6 without interrupts.

1913 ; (Panel RS signal must be set up previously in the

1914 H LCV latch by the calling routine.)

1915

1916 P4PA 91 wrpnl: comp A ; Complement value for bus.

1917 @498 BBE1 st A, portah ; Put value on panel bus.

1918 P4PD 96E21F rbit pnlclk,portbl  ; Set Panel Clock low,

1919 P419 96E20F sbit pnlclk,portbl ; then high again;

1920 ; pulse width approx.

1921 ; 1.2 microsec.

10922

1923 ; Wait for another

1924 ; 4.9 milliseconds (twice).

1925 §413 8732C8p148A8 td t6,#13009 ; Twice 4.9 milliseconds.

1926 P419 B6PISTIA rbit téstp, pwmdh ; Start timer T6.

1927 41D B6P15111 wrplp: ifbit  tépnd, pwmdh ; Wait for PND to be set.

1928 p421 41 ip Wrpgo

1929 9422 65 ip wrplp

1939 423 B6P151PA wrpgo: sbit téstp, pwmdh ; Stop timer T6.

1831 P427 B6S15198 sbit tback, pwmdh ; Clear T6 PND bit.

1932 9428 3C ret ; Return from subroutine.

1033

1034 ; END OF PROGRAM: RESET VECTOR SET TO LABEL "start".

1935

1936 p42c .end start

TL/DD/9976-46

NSC ASMHPC, Ver D1-BetaSite (Sep 14 14:3p 1987) HPCUP| 25-Feb-88 19:95
UP1 PORT INTERFACE DEMC PAGE 31

Write to Panel Subroutine

abutton 8998  Abs Null
adiag 902  Abs Null
ah 99CY  Abs Byte
al #pC8 Abs Byte
alcdak 9983  Abs Null
alert #pP2 Rel Word BASE
alerth  9pP3  Rel Byte BASE
artc 2001 Abs Null
astts PPB5  Abs Null
avail 9928  Rel Word RAM16
b2stp pRA7  Abs Null
b8ori6  PPP4  Abs Null
b8or9 PoRs  Abs  Null
beepct #B19 Rel Byte BASE
bfun BAF4  Abs Word
bfunh BRFS  Abs Byte
bfunl BPF4  Abs Byte
bh PBCD  Abs Byte
bl PACC  Abs Byte
cdata PPP4  Abs Null
chkalt P1A8 Rel Null ROM16
cmdemp  @PP7  Abs  Null
cpuad PPp4L  Rel Word BASE
cpubuf  PAP6  Rel Word BASE
curcmd P@19 Rel Byte BASE
dbyte P@1F  Rel Byte BASE
decemd 9928 Rel Byte BASE
derrc PP1E  Rel Byte BASE
dirah PPF1  Abs Byte
dirb 8BF2  Abs Word
dirbh $PF3  Abs Byte
dirbl PBF2  Abs Byte
divby §18E  Abs Word
divbyh  @18F Abs Byte
divbyl @18E Abs Byte
doeerr  @PP7  Abs Null
dqual #8217 Rel Byte BASE
dsevc 991D  Rel Byte BASE
dummy 8000 Rel Word BASE
ei 9087  Abs Null
eiack BpP2  Abs Null
eicon P15C  Abs Byte
eimode  PPP1  Abs Nutl
eipol PepA  Abs Null

enir PPDP  Abs Byte
enu 9120 Abs Byte
enui 9122  Abs Byte
enur 9128 Abs Byte
eri 2081 Abs Null
eti PRRP  Abs Null

TL/DD/9976-47

42




NSC ASMHPC, Ver D1-BetaSite (Sep 14 14:3p 1987)
UP1 PORT INTERFACE DEMO
Write to Panel Subroutine

fcbeep P332 Rel Null ROM16
fcinit B31E Rel Null ROM16
fcord #3809 Rel Null ROM16
fesled 8327 Rel Null ROM16
fecsley 9323 Rel Null ROM16
fcsled @326 Rel Null ROM16
firstab §314 Rel Null ROM16
firstc P2ES  Rel Null ROM16
frmerr  P@R6  Abs Null

getent  @PP6  Abs  Null

gie 9028 Abs Null

hangup  9@P@ Rel Null ROM16
hextab @@7A Rel Byte ROM16
hgrst PB6F  Rel Null ROM16
hgupi PRSE  Rel Null ROM16
hgupil @PB6Y Rel Null ROM16
hgupi2  PP76 Rel Null ROM16

i2 POg2  Abs Null
i3 PP@3  Abs Null
i4 PRR4  Abs Null
ibuf PRFP  Abs Byte
ille P341 Rel Null ROM16

ircd pED4  Abs Byte

irpd PPD2  Abs Byte

kbdchk 9387 Rel Nutl ROM16
kbint1 P39A  Rel Null ROM16
Lap #0082  Abs Null

lastab @246 Rel Null ROM16
lastc 9234 Rel Null ROM16
lastcl 9241 Rel Null ROM16
tedbuf PB38 Rel Word RAM16
lcdfgs pp13 Rel Byte BASE
lcdgot p171 Rel Null ROM16
ledlpl P16B  Rel Null ROM16
{cdnum  @@14 Rel Byte BASE
ledsct @916 Rel Byte BASE
lcdsfg PP15 Rel Byte BASE
ledsix  PPPE  Rel Word BASE
lcinit 92580 Rel Null ROM16
Lcord 9224  Rel Null ROM16
terst @224 Rel Nult ROM16
leslel @206 Rel Nult ROM16
leslc2  $291  Rel Null ROM16
lested 928C  Rel Null ROM16
lestey @274 Rel Null ROM16
lecsted P208 Rel Nutl ROM16
tevelk  PPR1  Abs  Null

levs PP12  Rel Byte BASE
ledclk  PPP6  Abs Null

mainlp @1A8 Rel Null ROM16

HPCUPI

25-Feb-88 18:85
PAGE 32

TL/DD/9976-48

43




NSC ASMHPC, Ver D1-BetaSite (Sep 14 14:39 1987)
UP1 PORT INTERFACE DEMO
Write to Panel Subroutine

minit
noint
numexp
obuf
pnlcik
pnlrs
portah
portb
portbh
portbl
portd
porti
portp

rbfl
rbit9
rbuf
rdrdy
rdwait
rtcent
rtcenb
rtcivl
rtevs
runsys
sio

sk
sled
sled
sndbtn
sndiag
sndlak
sndrtc
so
sram
sraml 1
sramt2
srfsh
sskint

B191
9365
p211

Rel
Rel

Nul L
Null
Byte
Byte
Null
Null
Byte
word
Byte
Byte
Byte
Byte
word
Byte
Byte
Word
Byte
Byte
Word
Word
Word
Word
Word
Word
Word
Word
Null
Null
Byte
Null
Nult
Byte
Nult
Byte
Byte
Null
Byte
Nult
Nutl
Null
Null
Null
Null
Null
Null
Nult
Null
Null
Null
Null

ROM16
ROM16
BASE

HPCUP!

25-Feb-88 19:95
PAGE 33

TL/DD/9976-49

44




NSC ASMHPC, Ver D1-BetaSite (Sep 14 14:3p 1987)
UPI PORT INTERFACE DEMO
Write to Panel Subroutine

stackb
start
stmrs
supi
swlast
swlsnt
tPack
tBcon
t@int
t@notp
t@pdg
t@pnd
tPpol L
ttie
t1
tlack
tlint
tlint1
tipnd
tipoll
tirerr
tistp
titie

Rel
Rel
Rel
Rel
Rel
Rel
Abs
Abs
Rel
Rel
Rel
Abs
Rel
Abs
Abs
Abs
Rel
Rel
Abs
Rel
Rel

word
Null
Null
Null
Byte
Byte
Null
Byte
Null
Null
Null
Null
Null
Null
Word
Null
Null
Nutl
Null
Null
Null
Null
Null
word
Nul L
Null
Null
Null
Word
Null
Null
Null
Null
Word
Nul{
Null
Null
Null
Null
Null
Word
Null
Null
Null
Null
Null
Nul l
word
Null
Null

RAM16
ROM16
ROM16
ROM16
BASE
BASE

ROM16
ROM16
ROM16

ROM16

ROM16
ROM16

ROM16
ROM16

ROM16

HPCUP1

25-Feb-88 19:05
PAGE 34

TL/DD/9976-50

45




NSC ASMHPC, Ver D1-BetaSite (Sep 14 14:39 1987) HPCUPI
UPI PORT INTERFACE DEMO
Write to Panel Subroutine

ténxt2  @3E8 Rel Null ROM16
ténxtc @385 Rel Null ROM16
téout 908  Abs Null
t6pnd 9981 Abs Null
tépoll 8353 Rel Null ROM16
téstp PeP2  Abs Null
tétfn 9803  Abs Null
tétie $9P9  Abs Null
t7 p14C  Abs Word
t7ack 99@7  Abs MNull
t7out 904 Abs Null
t7pnd 9985  Abs Null
t7stp PPR6  Abs Null
t7tfn 907  Abs Null
t7tie 90B4  Abs Null
thmt Pppe  Abs  Null
tbuf 9126  Abs Byte
tminit  @@DF  Rel Null ROM16
tmmdh 9191 Abs Byte
tomdl @199 Abs Byte
tmmode @199  Abs Word
tmochk  $3A3  Rel Null ROM16
tmrint  P348 Rel Null ROM16
tmrret  P3FE  Rel Null ROM16
tmrs 9205  Abs Null
uart P06  Abs Null
upic PRE6  Abs Byte
upicsv  #@@@ Rel Word BASE
upien gPR3  Abs Null
upiwr 9290 Rel Nuill ROM16
upwret @343 Rel Null ROM16
urdrdy 8807  Abs Null
uwdone  @@@P  Abs Null
uwnode 8891 Abs Null
uwrrdy 8093  Abs Null
vbutton @818 Abs Null
vdiag 9910  Abs Null
vicdak @817  Abs Null
vrte 8811 Abs Null
wakeup 9992  Abs Null
wrpgo 8423 Rel Null ROM16
wrplp 410 Rel Null ROM16
wrpnl P4PA  Rel Null ROM16
wrrdy 9909  Abs Null
xbit9 80PS5  Abs Null

xh @ACF  Abs Byte
xl POCE  Abs Byte
xoff #P13  Abs Nutl
xon #9117 Abs Null

xrclk Pp3  Abs Null

NSC ASMHPC, Ver D1-BetaSite (Sep 14 14:3p 1987) HPCUPI
UPI PORT INTERFACE DEMO
Write to Panel Subroutine

Xreset P2F2  Rel Null ROM16
xtclk P9P2  Abs Null

#u%k Eprors: @, Warnings: [']

25-feb-88 19:95
PAGE 35

TL/DD/9976-51

25-Feb-88 19:95
PAGE 36

TL/DD/9976-52

46




4.3 Two Demo Programs (NS32CG16 Source Code) Group or the Microcontroller Applications Group, phone

The following two programs run on the NS32CG16 CPU, (408) 721-5000. These modifications are also a standard
and exercise the functions implemented in the HPC firm- part of the MONCG monitor program for the NS32CG016
ware. microprocessor.

One thing to note in this software is that the interrupt service 4.3.1 Panel Exerciser Program

routines are not written as such; they are glmple subrout_mes This program for the NS32CG16 CPU exercises several
called by the actual service routines, which are contained functions of a panel consisting of the following:

within a modified version of the MON16 monitor program.

The reasons for modifying MON16 were two-fold:

. There is no RAM in the application system within the first
64k of the addressing space. The presence of RAM there

® A two-line (8 chars. per line) LCD panel, arranged hori-
zontally into a single 16-line display.

® A speaker, activated by the BEEP command.

—_

is necessary for MON16 to support custom interrupt han- ® Six pus_hbuttons, which are presented by the IBUTTON-
dlers without internal modification. DATA interrupt to the CPU as follows:

2. The HPC requires use of the “RETT 0” instruction, rather Keyboard Status Byte
than “RETI”, to return from maskable as well as non- | 0 | PB6 | PB5 | PB4 | 0 | PB2 | PB1 | PBO |

maskable interrupts.

Given these two constraints, it was considered most useful * Five LED's, activated in the SEND-LED command by the

to modify MON16 to contain a set of interrupt service rou- following bits:

tines, which would then use a set of addresses in RAM (a LED Control Byte

table at address ‘“vex”) to call custom interrupt servers as | — | — | LD5 | LD4 | LD3 | LD2 | LD1 | — |
standard subroutines. An interrupt service routine calls its

custom subroutine after saving the dedicated registers and The intended layout for the front panel is as shown below.
the general registers, RO, R1 and R2 on the stack. (Please pardon the apparently haphazard assignment of the
The symbol “vex” is defined externally, and must be de- pushbuttons and LED’s; this was dictated by the nature of
clared to match the address used by the modified MON16. the module we used for developing this application.)

Details of the modified MON16 are available from National
Semiconductor Corporation, Microprocessor Applications

Front Panel Layout

Cursor 00 o1 02 03 04 05 06 07 40 41 42 43 44 45 46 47
Addr. —

wos: | - | | |- | -7 [ [-[ [ [-[ [ [-]
LeD's: (Bccp)
PB’s: PB5 PB1 PBO PB4 PB6 PB2
The locations shown with asterisks on the LCD panel above Each time a pushbutton (except PB2) is pressed, the corre-
will display an asterisk character while the corresponding sponding LED indicator above it is toggled. Rather than tog-
pushbutton below it is depressed. (The number above each gling an LED, PB2 causes a BEEP command to be issued.
LCD location indicates its cursor address in hexadecimal.) The program starts up the panel with the LCD display blank,

and LED’s LD1 and LD2 on.

47




GNX Series32@@@ COFF ASSEMBLER Version 2.5 6/6/88 Page:

O ONON S WN

36

37

38

39

4p

41

TPRPPPRRP

TPPPRRRRa

TO0P0P014

TRP0PPR1e

TPPPPB28

TP000PP32

TPP0P903c

TOPPPRPLE

67ddcPpB
$25a0000
2000
67ddcPpp
p25p9000
ppRL
67ddcoop
P21cpPPP
2908
67ddcpop
923cpP0P
200c
67ddcppp
92320009
2919
67ddcppp
92280000
pR14
67ddcp0p
P21e0000
2018
67ddcPpQ

start:

Note:

.globl
.globl
.globl
.globl
.globl

.set
.set
.set

.set
.set
.set
.set
.set
.set
addr
addr
addr
addr
addr
addr

addr

addr

1

Front Panel Exerciser Program.

nyex" contains absolute address of NMI service routine entry point.
nyex"+4 starts list of maskable interrupt routine entry points;
first is interrupt Px1@.

This code assumes that it is running in Supervisor Mode.
Before running, make sure to set PSR to @2@@ hex.

Also, all unused interrupts automatically branch to tabel
"badint"; a breakpoint should be set there.

start,main
rtcint
ledint
swint
badint

hpeetrl,@xFFFCRAP
hpcdata, §xFFFEQR
hpcpol L, @xFDRRRP

INIT, Px@
SET_CONT, Px1
SEND_LCD, Px2
SEND_LED, X3
BEEP, Pxé
RESET_HPC, BXAS

# HPC Control/Status [/0 location.
# HPC Data 1/0 location.
# HPC Poll address (UPIC).

# Fill interrupt vector locations.

badint, vex

badint, vex+4

rtcint,vex+8

badint,vex+12

badint,vex+16

badint, vex+2@

badint, vex+24

badint, vex+28

#

I*

It

I

It

*

Interrupt

Interrupt

Interrupt

Interrupt

Interrupt

Interrupt

Interrupt

Interrupt

NMI.

Px19.

Px11.

Px12.

Px13.

Pxi4.

Px15.

Px16.

(Unimplemented)

(Unimplemented)

Real-Time Clock.

(Unimplemented)

(Unimplemented)

(Unimplemented)

(Unimplemented)

(Unimplemented)

TL/DD/9976-53

48




GNX Series32@@@ COFF ASSEMBLER Version 2.5 6/6/88 Page: 2

LCD data written.

Pushbutton event.

(Unimplemented)

(Unimplemented)

(Unimplemented)

(Unimplemented)

Diagnostic: stop.

(Unimplemented)

(Unimplemented)

(Unimplemented)

(Unimplemented)

# Initialize LEDs to normal state.

gs:éﬂﬂﬂﬂ

c

42 TPPPPPRSP 67ddcPRp addr ledint, vex+32 # Interrupt Px17.
0180900
9020

43 TPPPPRRSa 67ddcPpp addr swint, vex+36 # Interrupt §x18.
2120200
pR24

44 TPPPPBP6L  67ddcPPP addr badint, vex+49 # Interrupt #x19.
P1160000
0928

45 TPPPRPR6e  67ddcpRd addr badint, vex+44 # Interrupt @x1A.
Plecpppp
pp2c

46 TPPPPPRE78 67ddcPpp addr badint,vex+48 # Interrupt Px1B.
21e2p9PP
2039

47 TPPPPRRE82 67ddcppp addr badint, vex+52 # Interrupt §x1C.
21d8pPPp
2034

48 TPPPRPR8c  67ddcPpp addr badint, vex+56 # Interrupt 8x1D.
P1cedPpp
9938

49 TPPPRPRYS 67ddcPPd addr badint, vex+6@ # Interrupt @x1E.
01c49000
993c

50 TPPPPPRaP 67ddcPPR addr badint, vex+64 # Interrupt @x1F.
21bapppp
0048

51 TP0PPPPaa 67ddcPPP addr badint, vex+68 # Interrupt @x20.
91bp0200
0944

52 TPPPPRRbs 67ddcPPP addr badint,vex+72 # Interrupt Px21.
91260900
9948

53

54  TPRPPRRbe S54aSPPcP movb SINIT hpcctrl  # INITIALIZE command.
fffcpp

55 TPPPPRAcS 54aSPPcP movb $0,hpcdata # RTC value: feature disabled.
fffepp

56

57 TPPPAPBcc S54a5P3ch movb $SEND_LED, hpeetrl
fffcpp

58 TPPPAPAd3  S4a5P6ch movb $PxP6, hpcdata
fffepp

59 TPPPPPRda d4abPbeP movb $PxP6, leds # Save in memory image.
90P145

69

61 run

62 TPPPPRPel 7da3P8PR bispsrw $0x898 # Enable interrupts from HPC.

63

64

65 main: # Main program starts here.

66

67 TPOPPPPeS Scd8cPpp movgb %9, lcdflg # Set waiting for LCD.

TL/DD/9976-54

49




GNX Series32pP@ COFF ASSEMBLER Version

106

T9090Peb
TPPPPRf2
TOPPP0P 9
TOPP00100
TO0000187

T9000010e
TP09P9115
TP0PPP117

TPPPPR11d
TPRRRI24

TOPRPRP126
T0P0RP12a

TPPRPR139
TPPPPP136

TPPPPP149
TOPPPR146
TeP000146a
T0000014c
TO0PPP14e
TPERRR150
TePPPR152

TPPPPR159

TPRARPR 169
TRPPPP163
TP0909166

9139

54a5@2cP
fffcpp
54a500cP
fffepp
54a502cP
fffepd
54a5@ccP
fffepp
54a5@1cP
fffepp

f4abpPcp
o8p119
9a79

5cd8c@pg
p1ps

f4abPPch
ppppfe
9a79

7da1p809
14d8cpp9
ppf2
54d8cPP0
PPed
dédecppd
PPebcpPP
pPe7
5cd8cppgp
20db
7da30809
5f19

7800
1cP8
1a1@

54a5@3cP
fffcpp
54a520cP
fffepp

6e8498
8abfba
4e4819

kbdlp:
12:

ledip:

2.5 6/6/88 Page: 3

movb
movb

movb

movb

tbitb
bfc

movab

tbitb
bfc

bicpsrw
movb

movb

movb

movgb
bispsrw
movad
xorb
cmpgb
bne
movb

movb

ffsb
bfs
cbitb

$SEND_LCD,hpcctrl # Turn off LCD cursor and clear panel.
$@,hpcdata

$2,hpcdata

$PxPC, hpcdata

$1,hpcdata

$8, lcdflg # Wait for panel available.
(8]
$0, kbdflg

$9,kbdflg # Wait for keyboard data.
L2

$Px809 # Sample, and update semaphores.
kbdnew, ro

kbdold, r1
kbdnew, kbdold

$9,kbdflg

$Px80P

$9,r2 # Initialize offset pointer in r2.

rg,rl # Generate map of differing bits.

Tgé[; # Check that a change actually occurred.

$SEND_LED,hpcctrl # If not, error is shown by turning on

$@x20,hpcdata #  ALARM LED.

rl,r2 # Find first differing bit.
kbdlp # If none, go wait for another keyboard event.
re,rl # Clear difference flag.

TL/DD/9976-55

50




GNX Series32PP@ COFF ASSEMBLER Version 2.5 6/6/88 Page: 4

197
198

189
119

m
12

13
14

115
116

17
118

119
129

121
122

123
124

125
126

127
128
129
139

131
132
133

134
135

136
137
138
139
149
141
142
143

144

TPPPPP169

TOPPPR16F
TPPPPP176
TPPPPP178
TPRPPP1 7
T000PP186
0900188
TPPPPP18F
T0PPPR196
TPPPPR198
TR0P0P19f

TPPPR 126
TPPPRP1a8

TPPPPP1b3
T0900P1ba
TP2PPP1be
09000 1be
TOPPRP1cP
TOPPPRICT

TPPPPP1ca

TPPPRR1d1
TPPPP1d8
T0pPPP1da
TePPPR1dd
TPPRPR1df
TPPP0P1e6
TP00001e8

TPP0001ef

5cd8cPpp
P9b5

74a5pPcP
fdpeep
8a79
54a5@2cP
fffcop

74a5@PcP
£dpPep
8a79
54a5p2cP
fffedp

74a500cP
fdpeop
8ar9
54a502c@
fffepp

7425000
fdpRee
8a79
54e5dac@
P90P78cP
fffepd

74a59pcP

8afPc
54a52pc@
fffepp
eaBp4s

54a52ac
fffepp

74a5p0cP
fdpppp
8a79
34app2
9apb

54a5Q4cP
fffcep
ea2?

54a5@3cP
fffcop

f8ebdac@
909039cP

up:

movgb

tbitb
bfs
movb
tbitb
bfs
movb
tbitb
bfs
movb
tbitb

bfs
movb

$9, ledflg # Do LCD command: first clear Acknowledge flag.

$9, hpcpol L
13

$SEND_LCD,hpcctrl # Start command to display new bit state.

$9, hpepot L
L4

$2,hpcdata # Flags: One command followed by one data.

$9,hpcpoll

15

$2,hpcdata # Two data bytes follow.
$9, hpcpoll

L6
tedloc[r2:b] ,hpcdata # Send cursor position byte.

$@, hpcpol l

17
re,rg

$Px2@,hpcdata # If new bit is zero, send blank.
lout

$Px2A,hpcdata # If bit is one, send asterisk instead,

$9,hpepol L

19

$2,rp # and if the key is MENU,
119

$BEEP ,hpcctrl  # then beep,

lout

$SEND_LED, hpcctrl # else toggle appropriate LED.

ledloc(r2:b], leds

TL/DD/9976-56

51




GNX Series320P9 COFF ASSEMBLER Version 2.5 6/6/88 Page: 5

20930
145 TPPR@RIfa 74a50PcP 111: tbitb  $@,hpcpoll
fdpeeo
146 TPRRPP201  8a79 bfs 11
147 TPPP@P293 54ddcPPp movb leds,hpcdata
pRtccpff
fepp
148
149 T199PPP20d f4abPBcP lout: tbitb  $@, lcdflg # Wait for LCD Acknowledge interrupt.
20011
158 TPPPR@E214 9a79 bfc lout
151
152 T@PPPR216 eabféda br ledlp # Go check for any more differing bits.
153
154
155  TPPPRR219 1299 ret [’} # End of main program.
156
157
158 maindat: # Data for Main Program.
159
160 TOPPAR21L 90 kbdflg: .byte @ # Keyboard data ready.
161 TPPPBP21c 99 kbdnew: .byte @ # New keyboard data (from interrupt service).
162 TOPRRP21d 99 kbdold: .byte @ # Saved (previous) keyboard states.
163 1Ppppp21e 0P tedflg: .byte P # LCD display ready.
164 TEPRPP21f 90 leds: .byte @ # LED states.
165
166 TPPPPP22@ 8683c781 ledloc: .byte  @x86,@8x83,0xC7,0x81,0xC1,9x80,PxC4,Px81
c18pc481
167 TPPPPP228 P2P8APAH ledloc: .byte @x92,0x88,PxP,0xP,0x20,PxB4 ,Px 10, PxP
20041009
168
169
179
171 # Start of Interrupt Service Routines.
172 # Invoked by ROM interrupt service. Registers RP..R2 are already
173 # saved, but no ENTER instruction has been performed yet.
174 # Because ROM monitor returns using "RETI", we must bypass it
175 # and return directly with “RETT @".
176
177 rtcint: # Interrupt @x11. Real-Time Clock.
178
179 TPPPPP23Q eala br badint # UNEXPECTED (bypass code below)
180 # Interrupt return procedure:
181 TPPP@P232 1fb8 cmpaqd  $9, tos # Discard return address to monitor.
182 TPPPPR234 72eP restore [r@,r1,r2] # Restore registers saved by monitor.
183  TPPPPE236 4209 rett # Return from interrupt directly.
184
185 ledint: # Interrupt #x17. LCD data written.
186 TPPPPP238 dcd8ffff movgb  $1, lcdflg # Flag that interrupt has occurred.
ffeb
187 # Interrupt return procedure:
188 TPPPPP23e 1fb8 cmpgd P, tos # Discard return address to monitor.
189  TPPPPR24LP  72eP restore [r@,r1,r2] # Restore registers saved by monitor.
1990 TPPPPR242 4209 rett ] # Return from interrupt directly.
191
TL/DD/9976-57
GNX Series32P@@ COFF ASSEMBLER Version 2.5 6/6/88 Page: 6
192 sWwint: # Interrupt @x18. Pushbutton event.
193 TPPPPP244  dcdBffff movgb  $1,kbdflg # Flag that interrupt has occurred.
ffd7
194 TPPPPP24a dbaecPff movb hpcdata, kbdnew # Save new keyboard state.
feppffff
ffd2
195 # Interrupt return procedure:
196 TRPPPP254  1b8 cmpad  $P,tos # Discard return address to monitor.
197 TPRPPP256 T72eP restore [r@,r1,r2} # Restore registers saved by monitor.
198 TPPPPP258 4209 rett [} # Return from interrupt directly.
199
209 badint: # Trap for unimplemented interrupts. PLACE BREAKPOINT HERE.
21
202 # Interrupt return procedure:
203 TPPPRE25a 1fb8 cmpad  $9, tos # Discard return address to monitor.
204 TPRPPP25c  72eP restore [r§,r1,r2) # Restore registers saved by monitor.
205 TPPPPP25e 4209 rett ] # Return from interrupt directly.
206

TL/DD/9976-58

52




4.3.2 Real-Time Clock Display Program

This program (rtc.s) enables the Real-Time Clock interrupts from the HPC, and counts them to generate a display of elapsed
time on the LCD panel.

GNX Series32@P@ COFF ASSEMBLER Version 2.5 6/6/88

VRNV S WN =

36

37

38

39

49

41

TPPPPRPRP

TPPPPPRRa

TP0P0PR14

TPP000B1e

T0000Pp28

TP0009p32

T0P00PP3c

TPPPRPRLE

67ddc@99p
P24ePPPP
2009

67ddc@p@
02449000
Pp94

67ddc09
P2040900
2008

67ddcppp
02300009
990c

67ddcppp
02269009
2919

67ddc@op
P21cpPRp
Pp14

67ddcppp
92120000

pp18
67ddcppp

# Real-Time Clock Exerciser:
#

# "vex"

I*

Note:

.globl
.globl
.globt
.gtobl
.globl
.set
.set
.set
.set
.set
.set
.set
.set
.set

start:

addr

addr

addr

addr

addr

addr

addr

addr

Page:

1

Places elapsed time in seconds onto
LCD Panel.

contains absolute address of NMI service routine entry point.
# "vex"+4 starts list of maskable interrupt routine entry points;

first is interrupt @x19.

This code assumes that it is running in Supervisor Mode.
Before running, make sure to set PSR to §20@ hex.
Also, all unused interrupts automatically branch to label

"badint";

start,main
rtcint
tedint
swint
badint

hpcctrl, @xFFFCAP
hpcdata, @xFFFEPP
hpcpol L, @xFDRRRR
INIT,@xP
SET_CONT,@x1
SEND_LCD, @x2
SEND_LED,@x3
BEEP, Bx4
RESET_HPC,@xAS
badint, vex
badint,vex+4
rtcint,vex+8
badint,vex+12
badint,vex+16
badint,vex+2Q

badint,vex+24

badint,vex+28

a breakpoint should be set there.

# HPC Control/Status I/0 ltocation.
# HPC Data 1/0 location.
# HPC Poll address (UPIC).

#

*

*

*

3t

*

S

F*

Interrupt NMI.

Interrupt §x1@.

Interrupt 9x11.

Interrupt 9x12.

Interrupt 9x13.

Interrupt 9x14.

Interrupt Px15.

Interrupt Px16.

# Fill interrupt vector locations.

(Unimplemented)

(Unimplemented)

Real-Time Clock.

(Unimptemented)

(Unimptemented)

(Unimplemented)

(Unimplemented)

(Unimplemented)

TL/DD/9976-59

53




GNX Series32@p@ COFF ASSEMBLER Version 2.5 6/6/88 Page: 2

42

43

44

45

46

47

48

49

59

51

52

T30PP0P58

TPPRPRPR5a

TPPRPPRSL

TPPPPP06e

TPPRPPR78

09090082

T90909P8c

TPPPRPSE

T0PPPPPaP

TPPPPPPaa

TEPPPRPLA

TPPPPPPbe

TPPPRRRCS

TPPP090cc

TP00PpRd2
TPPPPPRdY

TRPPRPRdf

02089909
291c

67ddcpe@
P1e49p00
9029

67ddcpe@
91289000

67ddcpP9
P1epppRg
p92c
67ddcp9p
P1d6ppRp
2930

67ddcppp
21ccPppp
2034

67ddcppp
91c20009
9038
67ddcdpp
910300999
P93¢
67ddcppp
Plaepppp
Pp4p
67ddcPpP
21a4ppPp
044
67ddcppp
219a0ppP
9948

54a500ch
fffcep
54a5@5¢cP
fffedp

5cd8cPPp
P13e

dbabl4cp
209139
5fd8coep
9133

7da3p800

addr ledint, vex+32
addr swint,vex+36
addr badint,vex+4f
addr badint, vex+44
addr badint, vex+48
addr badint,vex+52
addr badint, vex+56
addr badint, vex+6@
addr badint, vex+64
addr badint, vex+68
addr badint, vex+72
movb $INIT, hpcetrl  #
movb $5,hpedata #
movgb  $@,flags #
.set rtcflg, #
.set ledflg, 1 #
movb $2@,rtectr #
movaqd  $@,timent #
bispsrw $9x899 #
# Neither

# Interrupt Px17. LCD data written.

I*

Interrupt @x18. Pushbutton event.

It

Interrupt @x19. (Unimplemented)

I+

Interrupt Px1A. (Unimplemented)

3+

Interrupt Px1B. (Unimplemented)

*

Interrupt §x1C. (Unimplemented)

It

Interrupt Px1D. Diagnostic: stop.

I

Interrupt @x1E. (Unimplemented)

# Interrupt Px1F. (Unimplemented)

I}t

Interrupt Px28. (Unimplemented)

I*

Interrupt Px21. (Unimplemented)

INITIALIZE command.

RTC value: interval of 5@ milliseconds.

Clear interrupt flags.

Bit P means RTC interrupt detected.
Bit 1 means LCD interrupt detected.
Clear RTC modulus counter (div by 20).

Clear seconds counter.

Enable interrupts from HPC.

communication port is selected yet.

TL/DD/9976-60

54




GNX Series32P@@ COFF ASSEMBLER Version 2.5 6/6/88 Page: 3

68 main: # Put main program here.

69

79 TP000PPPe3 4ecBabPl cbitb $lcdflg,flags # Place cursor at first character of panel.
cppep127

71 T000PPPeb 54a5p2cP movb $SEND_LCD, hpectrl
fffcpp

72 TP00PPRf2 S4a5PPch movb $0,hpcdata
fffepp

73 TPPPPPRf9 54a5@1cP movb  $1,hpcdata
fffepp

74 TPP0PP19P  S54a58PcP movb $Px8P, hpcdata
fffepp

75 100000187 f4abPich (S tbitb  $lcdflg, flags
089103

76 TPP0PR1Pe 9a79 bfc 1

77

78 TP0000119 4ecBabpi cbitb $ledflg,flags # Write initial value of zeroes.
cPpRoRfa

79 199PPR118 54a5@2cP movb $SEND_LCD, hpectrl
fffcpp

89 TOPPPR11f 54a5ffch movb $PxFF, hpcdata
fffedp

81 TPPPRP126 54a5P8cH movb $8,hpcdata
fffepd

82 TpPPPR12d 54a53@cP movb $0x30, hpcdata
fffepp

83 TPPPPR134 54a530cP movb $0x3@, hpcdata
fffepd

84 TPRRPP13b S4a53@ch movb $@x30,hpcdata
fffedp

85 T@PPPP142 54a53@ch movb $Px30, hpcdata
fffedp

86 T9PPPP149 54a53@ch movb $0x3@, hpcdata
fffepp

87 TPPPER15P 54a53QcP movb $px3@, hpcdata
fffepd

88 TPPBPP15S7 54a53Pch movb $9x30, hpcdata
fffepp

89 TPPPPP15e 54a530ch movb $0x38, hpcdata
fffepd

9P TPPPPR165 f4abPich L2: tbitb  $lcdflg, flags
PpPPas

91 TPPPRR16c 9a79 bfc 12

92

93 TPPPPPI6be fLabPAcP mainlp: tbitb  $rtcflg,flags
PPBR9Cc

94 TOPPPP175 9a79 bfc mainlp

95 TPPPPP177 LecBabpp cbitb  $rtcflg,flags
cPPRRR93

96

97 TPPPRRI7E  7calPl bicpsrb $@xp1 # Clear carry.

98 TPPPPPI82 4effadpp addpd  $@xP1, timent # Increment BCD elapsed time.
200001c@
P0PP8a

99

TL/DD/9976-61

55




A Software Driver for the HPC Universal Peripheral Interface Port

AN-550

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL
SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or

systems which, (a) are intended for surgical implant
into the body, or (b) support or sustain life, and whose
failure to perform, when properly used in accordance
with instructions for use provided in the labeling, can
be reasonably expected to result in a significant injury

to the user.

2. A critical component is any component of a life

support device or system whose failure to perform can
be reasonably expected to cause the failure of the life
support device or system, or to affect its safety or

effectiveness.

National Semiconductor
Corporation
1111 West Bardin Road

Arlington, TX 76017
Tel: 1(800) 272-9959
Fax: 1(800) 737-7018

National Semiconductor

Europe

Fax:
Email:
Deutsch Tel:
English  Tel:
Francais Tel:
ltaliano  Tel:

(+49) 0-180-530 85 86
cnjwge @tevmz2.nsc.com
(++49) 0-180-530 85 85
(+49) 0-180-532 78 32
(+49) 0-180-532 93 58
(+49) 0-180-534 16 80

National Semiconductor
Hong Kong Ltd.

18th Floor, Straight Block,
Ocean Centre, 5 Canton Rd.
Tsimshatsui, Kowloon

Hong Kong

Tel: (852) 2737-1600

Fax: (852) 2736-9960

National Semiconductor
Japan Ltd.

Tel: 81-043-299-2309
Fax: 81-043-299-2408

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.




