
TL/DD/9976

A
S
o
ftw

a
re

D
riv

e
r
fo

r
th

e
H

P
C

U
n
iv

e
rs

a
l
P
e
rip

h
e
ra

l
In

te
rfa

c
e

P
o
rt

A
N

-5
5
0

National Semiconductor
Application Note 550
Brian Marley
April 1992

A Software Driver for the
HPC Universal Peripheral
Interface Port

ABSTRACT

This application note covers the use of the National Semi-

conductor HPC46083 High-Performance microController as

an intelligent Peripheral Interface and Interrupt controller for

another ‘‘Host’’ CPU, using its 8-bit or 16-bit parallel UPI

(Universal Peripheral Interface) Port. Included in the discus-

sion is the source text of an HPC driver program, which can

be tailored as an ‘‘executive’’ for a wide variety of HPC

tasks. A simple application is built from this software, which

interfaces a National NS32CG16 CPU to a typical front pan-

el (LED indicators, LCD alphanumeric display, pushbuttons

and beeper).

1.0 INTRODUCTION

The National Semiconductor HPC family of microcontrollers

includes as a feature the ability to be slaved to another

‘‘Host’’ processor over that processor’s memory bus. This

feature, called the Universal Peripheral Interface (or UPI)

Port, allows:

1. Transfer of either 8-bit or 16-bit data in a single bus trans-

action,

2. Polling to determine the status of the port from either side

(Ready for Write/Ready for Read), and

3. Interruption of the host by the HPC with full vectoring.

The HPC, then, can serve as a front-end controller for the

host, freeing it from control and/or communication tasks

that might burden its capacity for interrupt service, and pro-

viding vectored interrupting for higher-level (and therefore

less frequent) communication.

2.0 THE UPI PORT

2.1 Internal Structure

Figure 1 shows the internal structure of the UPI Port. It con-

nects via three registers to the HPC’s on-chip data bus, and

via a set of pins (Port A) to the host’s bus. The control

interface between the HPC and the host consists of two

low-active strobe signals (URD and UWR) and an address

signal (UA0) output by the host, and two handshake signals

(RDRDY and WRRDY) output from the HPC.

TL/DD/9976–1

FIGURE 1. UPI Internal Structure

C1995 National Semiconductor Corporation RRD-B30M105/Printed in U. S. A.

The UPI Port may be configured either as a 16-bit bus (using

all of Port A: pins A0–A15) or as an 8-bit bus (pins A0–A7),

allowing pins A8–A15 to be used as general-purpose bit-

programmable I/O pins. This selection is made by HPC firm-

ware.

2.2 Basic Operations

Three types of operation may be performed over the UPI

Port:

1. Transfer of a byte or word of data from the host to the

HPC’s IBUF register. This is called a ‘‘UPI Write’’ opera-

tion.

2. Transfer of a byte or word of data from the HPC’s OBUF

register to the host. This is called a ‘‘UPI Read’’ opera-

tion.

3. Polling by the host to determine whether the HPC is ready

for the next UPI Write or UPI Read operation. This in-

volves the host reading the UPIC (UPI Control) register,

which contains the states of the WRRDY and RDRDY

pins as two of its bits.

As shown in Figure 2, whenever the host writes to the HPC

(by pulsing the UWR signal low) data is latched into the

HPC’s IBUF register. At this time also, the value on the UA0

pin is latched into the UPIC (UPI Control) register, allowing

HPC firmware to route the data just written. (For example,

this bit can be used by the HPC firmware to distinguish be-

tween commands and data written to it.) The rising edge of

UWR is detected by an edge-trigger circuit on-chip, which

may be used to trigger an interrupt or for polling, to alert the

HPC firmware to the presence of new data. The WRRDY

handshake signal, normally low, goes high until the HPC

firmware has sampled the data written to it (by reading inter-

nally from the IBUF register).

Figure 3 shows the sequence of events in reading data from

the HPC. The transfer starts when the HPC writes a value to

the internal OBUF register. The RDRDY handshake signal,

normally high, goes low to indicate that data is present for

the host. (This pin can be used to interrupt the host as well.)

By pulsing the URD pin low while holding the UA0 pin to a

‘‘1’’, the host reads the contents of the OBUF register, and

the RDRDY pin goes back high.

The polling operation (Figure 4) allows the host to monitor

the RDRDY and WRRDY conditions as data bits, by pulsing

the URD pin low with a ‘‘0’’ held on the UA0 pin. This effec-

tively reads from the UPIC register; the WRRDY condition

appears on bit 0 (the least-significant bit), and the RDRDY

condition appears on bit 1 (the next most significant bit).

Polling in this manner does not affect the state of the

RDRDY bit.

TL/DD/9976–2

FIGURE 2. UPI Write Operation

2

TL/DD/9976–3

FIGURE 3. UPI Read Data Operation

TL/DD/9976–4

FIGURE 4. UPI Poll Operation

3

2.3 Typical Hardware Configurations

Typical connections between the host and the HPC are

shown in Figures 5 through 7.

2.3.1 Polled Synchronization

In the simplest case (Figure 5) , the WRRDY and RDRDY

signals are not used, and the host synchronizes itself with

the HPC strictly by polling the UPIC register for the Read

Ready and Write Ready conditions. The only additional logic

always required is a pair of OR gates to activate URD and

UWR only when the HPC is selected by the host’s address

decoder. Depending on the host, it may also be necessary

to add WAIT states, as is often required in peripheral inter-

faces to match the bus timing characteristics of the two

ends.

Sophisticated synchronization schemes are not available

using this simple an interface, but it does save the HPC

RDRDY and WRRDY pins for any other general-purpose

I/O functions.

2.3.2 Interrupt-Driven Synchronization

Assuming that the host has interrupt control capability, the

circuit above can be enhanced to implement an interrupt-

driven synchronization scheme, as shown inFigure 6. A fall-

ing edge on either RDRDY or WRRDY will trigger an inter-

rupt to the host, informing it when the HPC becomes ready

for either direction of data transfer. No additional logic is

required (except for possible buffering or inversion), but only

dedication of the WRRDY and/or RDRDY pins for the inter-

rupt function. It is not necessary for both RDRDY and

WRRDY conditions to trigger interrupts; one can be polled

and the other interrupt-driven, as dictated by the require-

ments of the system and the structure of the host and HPC

software. Also, depending on the host, it is often possible

for the HPC itself to provide interrupt vectoring, thus elimi-

nating the need for an external interrupt controller entirely.

The approach taken in the driver program, described below,

implements the HPC as the interrupt controller, with inter-

rupts asserted only by the RDRDY pin.

2.3.3 Hardware Synchronization

Figure 7 shows the connections required to implement hard-

ware synchronization between the host and the HPC. In this

scheme, there is no host software involved in synchronizing

with the HPC; if the host attempts a UPI transfer for which

the HPC is not prepared, the host is held in ‘‘Wait states’’

until the HPC is ready. Note that the UPIC register is an

exception; Wait states are not to be inserted when the CPU

polls the UPI port’s status (UA0 e 0).

The main advantage of this scheme is speed: the CPU and

HPC transfer data as fast as they can both run the transfer

loop. (One will generally find that the HPC stays ahead of

the CPU; the CPU tends to be in the critical path due to

more complex buffer management algorithms.) The main

disadvantage is that if the HPC is allowed to be interrupted

in the middle of the transfer, the CPU is not free to do any-

thing else at all, including servicing its own interrupts.

In addition to the logic to detect when to hold the host (at

the bottom of the figure), additional gating is required on the

UWR signal, to prevent it from being asserted until the

WRRDY signal is active. This is required because the IBUF

register of the HPC is a fall-through latch, and its contents

would be lost if UWR were allowed to go active too soon.

TL/DD/9976–5

FIGURE 5. Polling Interface

4

TL/DD/9976–6

FIGURE 6. Interrupt-Driven Interface

TL/DD/9976–7

FIGURE 7. Hardware-Synchronized Interface

5

Figures 8 and 9 illustrate the timing involved in hardware

synchronization. Figure 8 shows the host attempting two

UPI Read accesses in quick succession; the second Read

access is held pending until the HPC has supplied the data.

Figure 9 shows the host attempting two UPI Write accesses

in quick succession; it is held in Wait states (with the UWR

signal suppressed) until the HPC has emptied the first value

from the IBUF register.

This scheme and the interrupt-driven scheme above are not

mutually exclusive; as shown in Figure 6, one might tie

RDRDY or WRRDY, or both, to CPU interrupts. The applica-

tion hardware described implements both schemes, leaving

CPU software the option of using hardware synchronization

or not. The driver program in the HPC operates the same,

independent of the option used.

TL/DD/9976–8

FIGURE 8. Hardware Synchronization: Read Operations

TL/DD/9976–9

FIGURE 9. Hardware Synchronization: Write Operations

6

3.0 A UPI DRIVER AND SAMPLE APPLICATION

The circuit and program described below implement an

interface between the HPC and a National microprocessor,

the NS32CG16, as the host CPU. The UPI port is configured

to be 8 bits wide. The hardware supports both interrupt-driv-

en (RDRDY only) and hardware synchronization, as well as

polling.

In order to demonstrate some real commands to support, a

set of simple interfaces is attached to the HPC, typical of a

front panel.

Ð Up to 8 pushbuttons

Ð Up to 8 LED indicators

Ð A 16-character alphanumeric LCD display

Ð A speaker for ‘‘beeps’’ on alert conditions or input errors

Ð A real-time clock interrupt function, giving the CPU the

means to measure time intervals accurately.

This application by itself is admittedly not enough to justify

the presence of an HPC in a system, but it is a simple appli-

cation, and we expect that this will often be part of the

HPC’s job. For a much more comprehensive application,

which includes this one as a subset, see the next applica-

tion note in this series: ‘‘The HPC as a Front-End Proces-

sor’’.

We will describe in this section a specific set of hardware

and software, and a UPI command and response protocol

to make these interfaces play.

3.1 UPI Port Connections to NS32CG16

The attached schematic shows the HPC UPI port as it has

been used a real application. On Sheet 1, a block diagram is

given, showing the components involved. The CPU is an

NS32CG16 microprocessor, running at a 15 MHz clock rate

(crystal frequency 30 MHz). The HPC component is the

HPC46083, running at a crystal frequency of 19.6608 MHz.

It would be unrealistic to present only the UPI interface sec-

tion, since tradeoffs and implementation considerations

abound when dealing with fast processors and large ad-

dressing spaces. For this reason, we include on sheets 5, 6

and 7 the circuitry involved in NS32CG16 address decoding

and dynamic RAM control.

The UREAD and UWRITE UPI strobes are generated for the

HPC in area B1 of Sheet 6. In addition, the latched CPU

address bit BA09 is used as the UA0 addressing bit.

Hardware and Interrupt synchronization are accomplished

as follows. On Sheet 6, area D8, the HPC signals URDRDY

and UWRRDY enter a synchronizer, and emerge as

URDRDYS and UWRRDYS. The URDRDYS signal goes to

the CPU as its Maskable Interrupt signal (Sheet 5, area C8).

After gating, which yields URDRDYSQ and UWRRDYSQ,

they enter the PAL16L8 in area C7 of Sheet 6. This PAL’s

relevant outputs are WAIT1 and WAIT2, which go to the

CPU for Wait State generation, and ACWAIT, which also

goes to the CPU (as CWAIT) after passing through the

PAL20R8 device in area D4 of Sheet 6.

In addition, the HPC provides from Timer T4 a square wave

at approximately 68 kHz, which triggers refreshes of dynam-

ic RAM. The signal involved is called ‘‘68 kHz’’, and goes

from the HPC on Sheet 4, area D1, to Sheet 6, area D8.

Note that the detector in area D7 is held on at Reset, to

preserve RAM contents by continuous refreshing while the

HPC is being reset.

3.1.1 Schematic

UPI Demo Functional Block Diagram

TL/DD/9976–10

7

H
P
C

M
ic

ro
c
o
n
tr

o
ll
e
r

T
L
/
D

D
/
9
9
7
6
–
1
1

8

H
P
C

I/
O

T
L
/
D

D
/
9
9
7
6
–
1
2

9

P
a
n
e
l
I/

O
In

te
rf

a
c
e

T
L
/
D

D
/
9
9
7
6
–
1
3

10

C
P
U

C
lu

s
te

r
a
n
d

B
u
ff

e
ri
n
g

T
L
/
D

D
/
9
9
7
6
–
1
4

11

A
d
d
re

s
s

D
e
c
o
d
e
rs

a
n
d

T
im

in
g

C
o
n
tr

o
l
L
o
g
ic

T
L
/
D

D
/
9
9
7
6
–
1
5

12

D
R

A
M

A
d
d
re

s
s

G
e
n
e
ra

ti
o
n

T
L
/
D

D
/
9
9
7
6
–
1
6

13

3.1.2 PAL Equations
Schematic Sheet 7, Area 3D

Name REFRESH.PLD;

Partno XXXXX;

Date 05/19/87;

Revision 1A;

Designer FOX;

Company NSC;

Assembly X7A;

Location 8B;

Device p20x10;

/**/

/* */

/* REFRESH: 9 BIT REFRESH COUNTER */

/* */

/**/

/* Allowable Target Device Types: PAL20X10 */

/**/

/** Inputs **/

Pin 1 4 !refresh ;/* refresh pulse */

/** Outputs **/

Pin [15..23]4 [ra0..8] ;/* ram refresh address */

Pin 14 4 !refron ;/* refresh enabled output */

/** Declarations and Intermediate Variable definitions **/

$define l #

/** Logic Equations **/

!ra0.d 4 ra0;

!ra1.d 4 !ra1 $ ra0;

!ra2.d 4 !ra2 $ ra0 & ra1;

!ra3.d 4 !ra3 $ ra0 & ra1 & ra2;

!ra4.d 4 !ra4 $ ra0 & ra1 & ra2 & ra3;

!ra5.d 4 !ra5 $ ra0 & ra1 & ra2 & ra3 & ra4;

!ra6.d 4 !ra6 $ ra0 & ra1 & ra2 & ra3 & ra4 & ra5;

!ra7.d 4 !ra7 $ ra0 & ra1 & ra2 & ra3 & ra4 & ra5 & ra6;

!ra8.d 4 !ra8 $ ra0 & ra1 & ra2 & ra3 & ra4 & ra5 & ra6 & ra7;

refron.d4 ÊbÊ1;

14

Schematc Sheet 6, Area 5D

Name RAM.PLD;

Partno XXXXX;

Date 07/25/87;

Revision 1A;

Designer FOX;

Company NSC;

Assembly X7A;

Location 9F;

Device p20r8;

/**/

/* */

/* RAM CONTROL: HARDWARE RMW BPU CYCLE, SEPARATE BUSES */

/* 6/17: Two States of refadr */

/* 6/19: Invert rs1 */

/**/

/* Allowable Target Device Types: PAL20R8B */

/**/

/** Inputs **/

Pin 1 4 ctt1 ; /* clock input */

Pin 2 4 !ddin ; /* data direction in signal */

Pin 3 4 drams1 ; /* DRAM state counter, bit 1 */

Pin 4 4 drams2 ; /* DRAM state counter, bit 2 */

Pin 5 4 !bpurmw ; /* BPU read modify write cycle */

Pin 6 4 !bpuread ; /* BPU source read (comb.) */

Pin 7 4 !ramsel ; /* Any RAM address decode */

Pin 8 4 busy ; /* DRAM busy indication (rs1 l refresh) */

Pin 9 4 !acwait ; /* Advanced CWAIT from ROM, or I/O */

Pin 10 4!rs1 ; /* ram cycle delayed by one Tstate */

Pin 11 4 !srefreq ; /* Refresh Request */

Pin 14 4 t1 ; /*Processor T1 state */

Pin 23 !a23 ; /* Address 23 */

/** Outputs **/

Pin 15 4 !refresh ; /* refresh cycle */

Pin 16 4 !cwait ; /* 32C201 cwait */

Pin 17 4 !cas ; /* CAS, local & cartridge */

Pin 18 4 !rascart ; /* RAS for DRAM cartridge */

Pin 19 4 !raslcl ; /* RAS for local DRAM */

Pin 20 4 !ramwe ; /* DRAM Write enable */

Pin 21 4 !aramrd ; /* DRAM read */

Pin 22 4 !pending ; /* DRAM cycle requested, but ctl busy */

min [refresh, cwait, cas, rascart, raslcl, ramwe, aramrd, pending] 4 2;

/** Declarations and Intermediate Variable Definitions **/

field waitseq 4 [pending, cwait];

$define widle 0 /* wait sequencer idle */

$define busywt 3 /* wait sequencer waiting for busy DRAM */

$define cextwt 1 /* wait sequencer waiting for cycle extension */

15

Schematc Sheet 6, Area 5D (Continued)

field ctl 4 [refresh,cas,raslcl,rascart];

$define idle 00

$define cras 01

$define crascas 05

$define casend 04

$define lras 02

$define lrascas 06

$define refadr 08

$define refras 0b

$define l #

field drscount 4 [drams2..drams1];

/** Logic Equations **/

lcl sel 4 ramsel & !a23;

cart sel 4 ramsel & a23;

lclread 4 !a23 & ddin;

lclwrite 4 !a23 & !ddin;

holdoff rs1;

/* busy 4 refresh l holdoff; (generated externally) */

cart start 4 cart sel & (t1 l pending) & !holdoff;

local start 4 lcl sel & (t1 l pending) & !holdoff;

ram start 4 cart start l local start;

drrco 4 drscount: [6..7] & ramwe;

sequence waitseq À

/* acwait & ramsel are mutually exclusive conditions */

present widle if (ramsel l bpurmw & bpuread) & busy & t1 next busywt;

if acwait l (ramsel & !busy & t1 & !bpurmw)

next cextwt;

default next widle;

present busywt if busy next busywt;

if !busy & (bpurmw) next widle;

if !busy & !(bpurmw) next cextwt;

present cextwt if ramsel & drscount: [0..1] l acwait next cextwt;

default next widle;

Ó

sequence ctl À

present idle if cart start next cras;

if local start next lras;

if !ram start & srefreq next refadr;

default next idle;

present cras if !rsl next cras;

if rsl next crascas;

present crascas if (!bpurmw & drscount: [4..7]) l (bpurmw & drrco)

next casend;

default next crascas;

present lras next lrascas;

16

Schematc Sheet 6, Area 5D (Continued)

present lrascas if (!bpurmw & drscount: [4..7]) l (bpurmw & drrco)

next casend;

default next lrascas;

present casend if srefreq next refadr;

if !srefreq next idle;

present refadr if srefreq next refadr;

if !srefreq & !rsl next refras;

if !srefreq & rsl next idle;

present refras if ramwe next refadr;

default next refras;

Ó

/* remember ramwe & aramrd are delayed by one t-state */

ramwe.d 4 !refresh & (bpurmw & drscount: [6..7] & !ramwe

l !bpurmw & !ddin & (ram start l ctl: cras

l (cart sel & drscount: [0..3]) l ctl:lras)

)

l ctl:refras & rsl & !ramwe;

aramrd.d 4 (bpurmw & drscount: [0..3] l !bpurmw & ddin)

& (ctl:cras l ctl:crascas l ctl:lras l ctl:lrascas);

17

Schematic Sheet 6, Area 7C

Name DCD1.PLD;

Date 07/03/87;

Revision 1A;

Designer FOX;

Company NSC;

Assembly X7A;

Location 9G;

Device p1618;

/**/

/* */

/* DECODE 1: I/O DECODE, PROM & HPC I/F WAIT CONTROL */

/* 6/3: two waits for hpc write */

/* 6/4: 1 wait min. for ALL i/o, including HPC */

/* 6/4: 3 wait min. for i/o */

/* */

/**/

/* Allowable Target Device Types: PAL16L8B */

/**/

/** Inputs **/

Pin [1..8] 4 [a23..16] ;/* high order address bus */

Pin 9 4 ba8 ;/* address bit 8 */

Pin 11 4 !ddin ;/* cpu ddin/ */

Pin 13 4 !uwrrdys ;/* (HPC) UWRRDY/, synchronized */

Pin 14 4 t1 ;/* T1 state of CPU */

Pin 17 4 !urdrdys ;/* (HPC) URDRDY/, synchronized */

/** Outputs **/

Pin 12 4 !iosel ;/* I/O select decode */

Pin 15 4 !wait1o ;/* WAIT1 output */

Pin 16 4 !wait2o ;/* WAIT2 output */

Pin 18 4 !acwait ;/* Advance CWAIT for RAM ctl */

Pin 19 4 !ramsel ;/* DRAM address decode */

/** Declarations and Intermediate Variable Definitions **/

$define l #

field address 4 [a23..16] ;/* address field */

field waitv 4 [acwait,wait2o,wait1o]; /* wait value field */

$define nowaits ‘b’000

$define wait1v (‘b’100 & t1)

/* note use of # in next 3 defines because $define not nestable */

$define wait2v (‘b’101 & (‘b’011 # ‘b’100 & t1))

$define wait3v (‘b’110 & (‘b’011 # ‘b’100 & t1))

$define wait4v (‘b’111 & (‘b’011 # ‘b’100 & t1))

$define cwaitonly ‘b’100

/** Logic Equations **/

ramsel 4 address: [0780000..07fffff] l address: [0800000..0bfffff];

iosel 4 address: [0fd0000..0ffffff] & !ba8;

waitv 4 wait3v & address: [0000000..00fffff] /* main rom, 3 waits */

l wait4v & address: [0200000..05fffff] /* font rom, 4 waits */

l wait3v & address: [0fd0000..0ffffff] & !ba8 /* i/o, 1 wait */

l cwaitonly & address: 0ff0000 & !ba8 &

(!urdrdys & ddin l !uwrrdys & !ddin);

18

Schematic Sheet 6, Area 7A

Name DCD2.PLD;

Partno XXXXX;

Date 07/27/87;

Revision 1C;

Designer FOX;

Company NSC;

Assembly X7A;

Location 10D;

Device p2018;

/**/

/* */

/* DECODE 2: ROM DECODE, BUFFER CONTROL, BPU DECODE

/* 5/24: included enbpu in bpucyc generation */

/* 5/28: added bpucyc to rdenb */

/* 5/31: added fcxxxx to bdenb */

/* 6/23: added buffer disable term for SPLICE */

/* 7/25: reconfigured for bpurmw & bpuread */

/* 7/27: inverted polarity of enbpu t enablebpu (for master enb) */

/**/

/* Allowable Target Device Types: PAL20B */

/**/

/** Inputs **/

Pin 1 4 !ddin ;/* ddin/ from cpu */

Pin 4 [2..9]4[a23..16] ;/* high order address bus */

Pin 10 4 !enablebpu ;/* BPU enable, static bit */

Pin 11 4 !bufdis ;/* buffer disable */

Pin 13 4 !dbe ;/* dbe/ from tcu */

Pin 14 4 !datacyc ;/* data cycle status decode */

Pin 23 4 ramcyc ;/* ram cycle in progress */

/** Outputs **/

Pin 15 4 !bdenb ;/* BD bus enable */

Pin 16 4 !romsel ;/* Main rom select */

Pin 17 4 !romcart ;/* rom cartridge select */

Pin 18 4 !bpurmw ;/* BPU read modify write */

Pin 19 4 !bpuread ;/* BPU read cycle (comb.) */

Pin 20 4 !vramsel ;/* video ram select */

Pin 21 4 rdbufin ;/* RAM data bus direction (in) */

Pin 22 4 !rdenb ;/* RAM data bus enable */

/** Declarations and Intermediate Variable Definitions **/

field address 4 [a23..16] ;/* address field */

romspace 4 address: [0000000..05fffff];

ramspace 4 address: [0780000..0bfffff];

stack 4 address: [0780000..078ffff];

$define l #

min b ddin 4 0;

/** Logic Equations **/

romsel 4 address: [0000000..00fffff]; /* main rom */

romcart 4 address: [0200000..05fffff]; /* font rom */

19

Schematic Sheet 6, Area 7A (Continued)

vramsel 4 address: [0f00000..0f0ffff]; /* video ram (scan buffer) */

/*

/* bpucyc & b ddin are D latches implemented in the PAL

/*

/* basic d latch equation (w/o set or clear) is:

/* Q 4 (G & D) l (!G & Q) l (D & Q)

/*

/* The b ddin latch is fall through while ramcyc not asserted,

/* latched while ramcyc is asserted, therefore, for both latches:

*/

g 4 !ramcyc;

/*

/* The bpurmw latch d input is ‘‘bpurange’’, defined as:

*/

bpurange4 address: [0000000..05fffff] /* rom */

l address: [0790000..0bfffff]; /* dram, less stack */

/* This ‘‘d’’ input would use too many terms. The bpucyc output,

/* however, need only be latched when it is asserted, as this is

/* the situation that can allow the cpu and ram control to

/* not be synchronized. This simplification allows the simplification

/* of the latch to:

/* Q 4 D l (!G & Q)

*/

bpurmw 4 enablebpu & (!ddin & bpurange & datacyc l (!g & bpurmw));

bpuread 4 enablebpu & ddin & bpurange & datacyc;

/* rdenb enables cpu access to the ram data bus

*/

rdenb 4 dbe & bufdis &

(!bpurmw & bpuread & romspace /* buffer must be off for bpu

/* but on for source in rom */

/* no DRAM or bpu control writes are permitted */

/* while in inner loop of bitblt */

/* (within interrupt ok due to vector read!)

l ramspace

l address: [0fe0000..0feffff]); /* i/o access to bpu */

!rdbufin 4 (ramspace l address: [0fe0000..0feffff]) & !ddin

l romspace & bpuread;

bdenb 4 dbe & !bufdis & (romspace /* any rom */

l address: [0f00000..0f0ffff] /* scan buffer */

l address: [0fd0000..0fdffff] /* cmnd/status */

l address: [0ff0000..0ffffff] /* non-bpu i/o */

20

3.2 Application Connections

The connections made to the HPC are shown in schematic

sheets 2 through 4.

3.2.1 LCD Data

An 8-bit parallel interface connects the upper half of Port A,

through buffers and latches on Sheet 4, to a Hitachi

HD44780 alphanumeric LCD display controller. The signals

in our application are inverted with respect to the HD44780

documentation, due to the nature of the front panel module

we used.

Sending data from the HPC to the LCD display involves the

following procedure:

1. Setup the RS signal: 1 for a command, 0 for data.

This is done by setting up LCD Contrast status on the

high-order byte of Port A (pins A8–A15), with the desired

RS state on pin A11, then pulsing the signal LCVCLK (pin

B9) high, the low.

2. Setup the panel data on HPC pins A8–A15.

3. Set the PNLCLK signal (pin B7) low for 1.2 ms, then high.

This clocks the data into the LCD display controller. Note

that the latch in area B6 of Sheet 4 is effectively serving

only as a buffer; the PNLCLK Enable signal, being nor-

mally high, allows data to fall through whenever it chang-

es when used as described here.

4. Since the handshaking capability of the HD44780 is not

being used here, it is necessary for the HPC to use an

internal timer to determine when the controller is ready

after sending a command or data. The delay time is either

120 ms or 4.9 ms, depending on the type of command

sent.

3.2.2. LCD Contrast (LCD Voltage)

A three-bit value is presented for LCD contrast on signals

CTRST0 through CTRST2. A value of 000 is highest con-

trast, and 111 is lowest contrast. To change the contrast,

the value is placed on HPC pins A8 (LSB), A9 and A10

(MSB), the LCVCLK (pin B9) is pulsed high, then low.

Note that some other bits within this latch have other func-

tions: bit 3 (from HPC pin A11) is the RS signal to the LCD

controller, and bit 7 (from pin A15) is used by the HPC firm-

ware as a Fatal Error flag. These bits must be setup correct-

ly whenever the LCD Contrast latch is written to.

3.2.3 LEDs

Up to 8 LED indicators may be connected, through the latch

in area A6 of Sheet 4, to the upper byte of Port A. The

LED’s are assumed to be connected already to their own

current-limiting resistors.

The desired data is setup on Port A pins A8–A15, then a

pulse is presented on the LEDCLK signal (pin B14); high

and then low. Data is presented in complemented form by

the HPC (0 e on, 1 e 0ff). Any or all (or none) of the latch

bits may be connected to drive LEDs.

3.2.4 Speaker (Beeper)

A tone is produced on a speaker by enabling Port P pin P3

as the Timer T7 output, and running Timer T7 so as to pro-

duce a 3 kHz square wave. Since timer outputs toggle on

underflows, this corresponds to a timer underflow rate of

6 kHz. The tone signal is shown is area D1 of Sheet 2.

3.2.5 Pushbutton Switches

Up to eight pushbuttons may be connected to the HPC’s

Port D pins, through the buffer in area D6 of Sheet 3. Each

pushbutton is assumed to be an SPST switch, shorting to

ground when depressed. The pull-up resistors present a ‘‘1’’

level otherwise. The HPC must de-bounce the inputs in its

firmware before issuing them to the CPU.

The pushbuttons are examined every 10 ms, by setting the

ENASTTS signal (pin B13) low while ensuring that

ENCDATA (pin B12) is high. This presents the switch out-

puts onto Port D. Unused bits should be pulled high to avoid

triggering spurious pushbutton events.

3.3 Protocol Between CPU and HPC

The scheme supported by the UPI Driver program is asyn-

chronous full-duplex communication with CPU. That is, ei-

ther side is allowed to speak at any time. To avoid confu-

sion, however, any message is restricted to send data in

only one direction: in sequences initiated by the CPU

(‘‘Command’’ sequences), only the CPU talks, and in se-

quences initiated by the HPC (‘‘Interrupt’’ sequences), only

the HPC talks. Thus, a Command sequence and an Interrupt

sequence can be in progress simultaneously without confu-

sion.

Acknowledgement of a Command or an Interrupt sequency

is possible; a Command can trigger an acknowledgement

Interrupt sequence, and an Interrupt sequence can result in

a subsequent Command sequence. The critical distinction,

though, is that the acknowledgement need not come imme-

diately. If, for example, the HPC is already in the process of

sending an Interrupt message, and receives a Command, it

will complete the current Interrupt sequence before ac-

knowledging the Command with a new Interrupt.

Command sequences (from the CPU to the HPC) consist of

a one-byte command code, followed by any argument val-

ues necessary to complete the command. Each byte written

to the HPC triggers an internal interrupt (I3); the HPC buffers

up these bytes until a full command has been received, then

acts on it in the last byte’s interrupt service routine. Com-

mands taking a significant amount of processing time can

be scheduled within the HPC using interrupts, either from

external events or from one of the HPC’s eight timers; each

interrupt triggering the next step of the command.

Interrupt sequences (from the HPC to the CPU) operate

similarly, but with a small difference. Only the first byte pre-

sented by the HPC causes an interrupt to the CPU; this byte

is the interrupt vector value, which triggers the interrupt

(through the RDRDY pin) and selects the CPU’s service rou-

tine. The CPU remains in its interrupt service routine until

the transfer of data associated with that interrupt event is

finished, then returns to its previous task. This is not to say

that the CPU must keep all other interrupts disabled during

an Interrupt sequence, but only that no other interrupt oc-

curring during this time may cause the CPU to read from the

HPC, or to terminate reading, until the current Interrupt se-

quence is complete. With the NS32C016 processor as host,

the main challenge is to keep the Interrupt Acknowledge

bus cycles from other interrupts, which appear as Read cy-

cles, from causing URD pulses to the HPC. It is possible to

distinguish a Non-Maskable Interrupt from a Maskable Inter-

rupt by the address asserted by the CPU in acknowledging

the interrupt, and in a larger kind of system containing an

NS32202 Interrupt Control Unit, the NS32000 Cascaded In-

terrupt feature can be used to prevent unwanted reads from

the HPC from occurring as a result of other Maskable inter-

rupts as well. In our application hardware, the only type of

extraneous interrupt occurring is the Non-Maskable Inter-

rupt; address decoding logic isolates the HPC’s UPI port

from these.

21

3.4 Commands

The first byte (command code) is sent to address FFFC00,

and any argument bytes are then written to address

FFFE00. The CPU may poll the UPIC register at address

FD0000 to determine when the HPC can receive the next

byte, or it can simply attempt to write, in which case it will be

held in Wait states until the HPC can receive it. Unless not-

ed, the CPU may send commands continuously, without

waiting for acknowledgement interrupts from previous com-

mands.

00 INITIALIZE This command has two functions. The

first INITIALIZE command after a hard-

ware reset (or RESET command) en-

ables the !RTC and !BUTTON-DATA

interrupts. The INITIALIZE command

may be re-issued by the CPU to either

start or stop the !RTC interrupts. There

is one argument:

RTC-Interval: One-byte value. If zero,

!RTC interrupts are disabled. Other-

wise, the !RTC interrupts occur at the

interval specified (in units of 10 ms per

count).

01 SET-

CONTRAST The single argument is a 3-bit number

specifying a contrast level for the LCD

panel (0 is least contrast, 7 is highest

contrast). There is no response inter-

rupt. Does not require INITIALIZE

command first.

02 SEND-LCD This writes a string of up to 8 bytes to

the LCD panel. Arguments are:

flags: a single byte, containing the RS

bit associated with each byte of data.

The first byte’s RS value is in the least-

significant bit of the FLAGS byte.

Ýbytes: The number of bytes to be

written to the LCD display.

byte[1]Ðbyte[Ýbytes]: The data

bytes themselves.

The HPC determines the proper delay

timing required for command bytes

(RS e 0) from their encodings. This is

either 4.9 ms or 120 ms.

The response from the HPC is the

!ACK-SEND-LCD interrupt, and this

command must not be repeated until

the interrupt is received. This com-

mand does not require an INITIALIZE

command first.

03 SEND-LED The single argument is a byte contain-

ing a ‘‘1’’ in each position for which an

LED should be lit.

There is no response interrupt, and

this command does not require the

INITIALIZE command first.

04 BEEP No arguments. This beeps the panel

for approximately one second. No re-

sponse interrupt. If a new BEEP com-

mand is issued during the beep, no er-

ror occurs (the buzzer tone is extend-

ed to one second beyond the most re-

cent command). Does not require INI-

TIALIZE command first.

A5 RESET-HPC Resets the HPC if it is written to ad-

dress FFFC00. It may be written at any

time that the UPI port is ready for in-

put; it will automatically cancel any

partially-entered command. The CPU’s

Maskable Interrupt must be disabled

before issuing this command.

After issuing this command, the CPU

should first poll the UPIC register at

address FD0000 to see that the HPC

has input the command (the least-sig-

nificant bit [Write Ready] is zero). It

must then wait for at least 25 ms, then

read a byte from address FFFE00. The

HPC now begins its internal re-initiali-

zation. The CPU must wait for at least

80 ms to allow the HPC to re-initialize

the UPI port. Since part of the RESET

procedure causes Ports A and B to

float briefly (this includes the CPU’s

Maskable Interrupt input pin), the CPU

should keep its maskable interrupt dis-

able during this time. It also must not

enter a command byte during this time

because the byte may be lost.

3.5 Interrupts

The HPC interrupts the CPU, and provides the following val-

ues as the interrupt vectors for the CPU hardware. The CPU

then reads data from the HPC at address FFFE00. All data

provided by the HPC must be read by the CPU before re-

turning from the interrupt service routine, otherwise the HPC

would either hang or generate a false interrupt. The CPU

may poll the UPIC register at address FD0000 to determine

when each data byte is ready, or it may simply attempt to

read from address FFFE00, and it will be held in Wait states

until the data is provided by the HPC.

Note: All CPU interrupt service routines, including the NMI interrupt routines,

must return using the ‘‘RETT 0’’ instruction. Do NOT use ‘‘RETI’’.

00–0F (Reserved for CPU internal traps and the NMI inter-

rupt.)

11 !RTC Real-Time Clock Interrupt. No data

returned. Enabled by INITIALIZE

command if interval value supplied is

non-zero. Note: this version of HPC

firmware issues a non-fatal !DIAG in-

terrupt if the CPU fails to service

each !RTC interrupt before the next

one becomes pending.

17 !ACK-SEND-LCD This is the response to the SEND-

LCD command, to acknowledge that

data has all been written to Panel

LCD display. No other data is provid-

ed with this interrupt. Always en-

abled, but occurs only in response to

a SEND-LCD command.

18 !BUTTON-DATA Pushbutton status has changed: one

or more buttons have been either

pressed or released. The new status

of the switches is reported in a data

byte, encoded as follows:

Any pushbutton that is depressed is

presented as a ‘‘1’’. All other bit posi-

tions, including unused positions, are

zeroes. The pushbuttons are de-

bounced before being reported to

22

the CPU. This interrupt is enabled by

the first INITIALIZE command after a

reset.

1D !DIAG Diagnostic Interrupt. This interrupt is

used to report failure conditions and

CPU command errors. There are five

data bytes passed by this interrupt:

Severity

Error Code

Data in Error (passed, but contents

not defined)

Current Command (passed, but con-

tents not defined)

Command Status (passed, but con-

tents not defined)

The Severity byte contains one bit for

each severity level, as follows:

x x x F x x C N

N (Note): least severe. The CPU

missed an event; currently only the

!RTC interrupt will cause this.

C (Command): medium severity. Not

currently implemented. Any com-

mand error is now treated as a FA-

TAL error (below).

F (Fatal): highest severity: the HPC

has recognized a non-recoverable

error. It must be reset before the

CPU may re-enable its Maskable In-

terrupt. In this case, the remaining

data bytes may be read by the CPU,

but they will all contain the value 1D

(hexadecimal). The CPU must issue

a RESET command, or wait for a

hardware reset. See below for the

procedure for FATAL error recovery.

The Error Code byte contains, for

non-FATAL errors, a more specific

indication of the error condition:

RTC (Reserved for COMMAND)

RTC e Real-Time Clock overrun:

CPU did not acknowledge the RTC

interrupt before two had occurred.

The other bits are reserved for de-

tails of Command errors, and are not

implemented at this time.

The remaining 3 bytes are not yet de-

fined, but are intended to provide de-

tails of the HPC’s status when an ille-

gal command is received.

Note: Except in the FATAL case, all 5 bytes provided by the HPC must be

read by the CPU, regardless of the specific cause of the error.

Fatal Error Recovery:

When the HPC signals a !DIAG error

with FATAL severity, the CPU may

use the following procedure to recov-

er:

1. Write the RESET command (A5

hex) to the HPC at address

FFFC00.

2. By inspecting the UPIC register at

address FD0000, wait for the HPC

to read the command (the

*WRRDY bit will go low).

3. Wait an additional 25 ms.

4. Read from address FFFE00. This

will clear the OBUF register and

reset the Read Ready status of

the UPI port. The HPC will guaran-

tee that a byte of data is present; it

is not necessary to poll the UPIC

register. This step is necessary be-

cause only a hardware reset will

clear the Read Ready indication

otherwise (HPC firmware cannot

clear it).

5. Wait at least 80 ms. This gives the

HPC enough time to re-initialize

the UPI port.

6. After Step 5 has been completed,

the CPU may re-enable the Mask-

able Interrupt and start issuing

commands. Since the HPC is still

performing initialization, however,

the first command may sit in the

HPI IBUF register for a few milli-

seconds before the HPC starts to

process it.

4.0 SOURCE LISTINGS AND COMMENTARY

4.1 HPC Firmware Guide

Refer to this section for help in following the flow of the HPC

firmware in the listing below. Positions in the code are refer-

enced by assembly language labels rather than by page or

line numbers.

The firmware for the HPC is almost completely interrupt-

driven. The main program’s role is to poll mailboxes that are

maintained by the interrupt service routines, and to send an

interrupt to the CPU whenever an HPC interrupt routine re-

quests one in its mailbox.

On reset, the HPC firmware begins at the label ‘‘start’’.

However, the first routine appearing in ROM is the Fatal

Error routine. This was done for ease of breakpointing, to

keep this routine at a constant address as changes were

made elsewhere in the firmware.

4.1.1 Fatal Error Routine

At the beginning of the ROM is a routine (label ‘‘hangup’’)

that is called when a fatal error is detected by the HPC. This

routine is usually called as a subroutine (although it never

returns). It disables HPC internal interrupts, and then sets bit

7 of the LCD Contrast Latch as a trigger for a logic analyzer,

MOLE or ISE system.

Its next action is to display its subroutine return address in

hexadecimal on the LCD panel. This address shows where

the error was detected. The HPC then enters an infinite

loop, which continuously presents the !DIAG interrupt. It

may be terminated either by a hardware reset or by sending

the RESET command from the CPU. On receiving the RE-

SET command, the HPC jumps to label ‘‘xreset’’, which is

within the command processing routine. The ‘‘xreset’’ rou-

23

tine waits for the CPU to read from the UPI port, then clears

a set of registers to simulate a hardware reset and jumps to

the start of the program.

4.1.2 Initialization

On receiving a Reset signal, the HPC begins execution at

the label ‘‘start’’. A required part of any application is to load

the PSW register, to select the desired number of Wait

states (without this step, the Reset default is 4 Wait states,

which is safe but usually unnecessary).

Other initializations here are application-dependent, and so

they relate to our application system and front-panel opera-

tions.

At label ‘‘srfsh’’, the program starts the Refresh clock puls-

es running for the dynamic RAM on our application hard-

ware, from HPC pin P0 (controlled by Timer T4). For debug-

ging purposes, a circuit within the RAM controller section

performs continuous refreshes during Reset pulses, so data

in dynamic RAM is never lost unless power is removed.

At ‘‘supi’’, the UPI port is initialized for transfers between the

HPC and the CPU.

At label ‘‘sram’’, all RAM within the HPC is initialized to zero.

This is done for debugging purposes, to help ensure that

programming errors involving uninitialized data will have

more consistent symptoms.

At ‘‘sskint’’, the stack pointer is initialized to point to the

upper bank of on-chip RAM (at address 01C0). The address

of the fatal error routine ‘‘hangup’’ is then pushed, so that it

will be called if the stack underflows. This is not necessary

in all applications, since the Stack Pointer starts at address

0002, but for our purposes it was more convenient to relo-

cate it.

At ‘‘tminit’’, the timers T1–T3 are stopped and any inter-

rupts pending from timers T0–T3 are cleared.

In addition, some miscellaneous port initializations are per-

formed here. The upper byte of Port A is set as an output

port (for data going to the LCD and LED displays), and the

Port B pins which select pushbutton data are initialized.

At ‘‘sled’’, the LED control signals are initialized, and all LED

indicators on the panel are turned off.

At ‘‘stmrs’’, all timers are loaded with their initial values, and

timers T5–T7 are stopped and any interrupts pending from

them are cleared. (Timer T4 keeps running for dynamic

RAM refresh.)

At ‘‘sled’’, the panel LCD display is initialized to a default

contrast level of 5, then commands are sent to initialize it to

8-bit, 2-line mode, with the cursor visible and moving to the

right by default. This section calls a subroutine ‘‘wrpnl’’, lo-

cated at the end of the program, which simply writes the

character in the accumulator out to the LCD display and

waits for approximately 10 ms. Note that if the CPU fails to

initialize the LCD display further, a single cursor (under-

score) character is all that appears: a recognizable symp-

tom of a CPU problem.

The program now continues to label ‘‘minit’’, which per-

forms some variable initializations which are necessary for

operation of the UPI Driver itself (as opposed to the applica-

tion). This much must always be present, but any other ini-

tializations required by the application should appear here

as well. For our front-panel application, there are no such

initializations required.

At label ‘‘runsys’’, the necessary interrupts are enabled

(from the timers, and from pin I3, which is the UPI port inter-

rupt from the CPU), and the program exits to the Main Pro-

gram loop at label ‘‘mainlp’’.

4.1.3 Main Program (UPI Output to CPU)

The Main Program is the portion of the UPI Driver that runs

with interrupts enabled. It consists of a scanning loop at

label ‘‘mainlp’’, calling a set of subroutines (explained be-

low). It is responsible for interrupting the CPU and passing

data to it. The HPC is allowed to write data to the CPU only

after interrupting it. The main loop scans a bit-mapped vari-

able in on-chip RAM that is set up by interrupt service rou-

tines (a word called ‘‘alert’’) to determine whether any con-

ditions exist that should cause an interrupt to the CPU.

The ‘‘alert’’ word contains one bit for each interrupt that the

HPC can generate. If a bit is set (by an interrupt service

routine), the Main Program jumps to an appropriate subrou-

tine to notify the CPU. Each subroutine first checks whether

the UPI interface’s OBUF register is empty, and if not, it

waits (by calling the subroutine ‘‘rdwait’’). It then writes the

32000 interrupt vector number to the OBUF register. This

has the effect of interrupting the CPU (Because the pin

URDRDY goes low), and the CPU hardware reads the vec-

tor from the OBUF register. If there is more information to

give to the CPU, the HPC places it, one byte at a time, into

the OBUF register, waiting each time for OBUF to be emp-

tied by the CPU. This technique assumes that the CPU re-

mains in the interrupt service routine until all data has been

transferred. If the CPU were to return from interrupt service

too early, the next byte of data given to it would cause an-

other interrupt, with the data value taken as the vector num-

ber. (Note, however, that a Non-Maskable interrupt is al-

lowed. It simply delays the process of reading data from the

HPC. Since the HPC is running its main program at this

point, with its internal interrupts still enabled, it is not stalled

by this situation.)

Subroutines called from the Main Program loop are:

sndrtc: sends a Real-Time Clock interrupt to the CPU. No

data is transferred; only the interrupt vector.

sndlak: interrupts the CPU to acknowledge that a string of

data (from a SEND-LCD command) has been

written to the LCD display. No data is transferred

for this interrupt.

sndbtn: interrupts the CPU to inform it that a pushbutton

has been pressed or released. A data byte is

transferred from variable ‘‘swlsnt’’, which shows

the new states of all the pushbuttons.

sndiag: interrupts the CPU to inform it of a !DIAG interrupt

condition, when it is of NOTE severity. (Other

!DIAG conditions are handled at label ‘‘hangup’’.)

4.1.4 Interrupt Service Routines

All of the remaining routines are entered by the occurrence

of an interrupt.

4.1.4.1 UPI Port Input from CPU (Interrupt I3)

This interrupt service routine, at label ‘‘upiwr’’, accepts com-

mands from the CPU. Each byte of a command triggers an

interrupt on the I3 pin. When the last byte is received, the

command is processed before the I3 interrupt routine re-

turns. The HPC is therefore immediately ready to start col-

lecting another command.

24

Any command that involves waiting is only initiated before

the I3 routine returns, and interrupts are set up to activate

more processing when the time is right. Therefore, this inter-

rupt service routine returns promptly, even for time-consum-

ing commands.

At any time, the ‘‘upiwr’’ routine may be in one of the follow-

ing states:

1. Waiting for the first byte of a command. In this state, the

variable ‘‘curcmd’’ (Current Command) has its top bit

(‘‘cmdemp’’) set, meaning that it is empty. When a byte is

received from the CPU in this state, this routine jumps to

the label ‘‘firstc’’. The byte is placed in the ‘‘curcmd’’ byte

(clearing the top bit), and then a multi-way branch (jidw) is

performed, whose destination depends on the contents

of the byte. The possible destinations have labels starting

with the letters ‘‘fc’’. If the command has only one byte

(for example, the command BEEP), it is processed imme-

diately in the ‘‘fc’’ sequence, and the ‘‘curcmd’’ variable is

set empty again. If, however, the command is longer than

one byte, its ‘‘fc’’ routine will place a value into the vari-

able ‘‘numexp’’, which gives the number of additional

bytes that are expected for this command, and then will

return from the interrupt. Note that the ‘‘curcmd’’ byte

now appears to be full, because its top bit is no longer

set.

2. Collecting bytes of a command. The code that is relevant

in this state is between the labels ‘‘upiwr’’ and ‘‘lastc’’.

This state is in effect while the ‘‘cmdemp’’ bit of

‘‘curcmd’’ is zero and the ‘‘numexp’’ variable is non-zero.

Each I3 interrupt causes the routine to place the com-

mand byte into a buffer (‘‘cpubuf’’, with pointer variable

‘‘cpuad’’), decrement the ‘‘numexp’’ variable, and return if

the result is non-zero. If the result is zero, then the routine

has collected an entire command, and it goes to the label

‘‘lastc’’, and enters state (3) below.

3. In this state, the requested number of bytes has been

collected, and this usually means that the entire com-

mand, except for the first byte, is in the ‘‘cpubuf’’ area of

RAM. The code for this state is at label ‘‘lastc’’. First, the

‘‘curcmd’’ byte is checked to see whether ‘‘extended col-

lection’’ is being performed (bit 6 set: see below). If not,

the ‘‘curcmd’’ byte is set empty. A multiway branch is

then performed (jidw), which transfers control depending

on the command byte in ‘‘curcmd’’. All routines that are

destinations of this branch start with the letters ‘‘lc’’. The

‘‘lc’’ routine for each command uses the data in ‘‘cpubuf’’

to process the current command. In some cases, this pro-

cessing is completed very quickly. For example, at label

‘‘lcsled’’, a value is simply transferred from ‘‘cpubuf’’ to a

latch that drives the LEDs on the front panel, and this

interrupt service routine returns. But a more complex

command can move data out of ‘‘cpubuf’’ to other vari-

ables in RAM, and start a timer to sequence the process

of executing the command.

In some commands (for example, SEND-LCD), state (3)

above is entered twice. This is called ‘‘extended collection’’,

and occurs when a command has variable length. State (3)

is entered once to collect enough information to determine

the exact length of the command. It then sets up the

‘‘numexp’’ variable again, re-entering state (2) to collect the

remainder of the command. When state (3) is entered the

second time, it processes the command. A bit in the

‘‘curcmd’’ variable (bit 6, called ‘‘getcnt’’) is set in state (1),

which indicates that another collection will be performed,

and prevents state (3) from setting the ‘‘curcmd’’ byte emp-

ty the first time it is entered.

Command Processing Routines

INITIALIZE I3 interrupt labels: State 1 e fcinit State 3 e lcinit

SET-CONTRAST I3 interrupt labels: State 1 e fcslcv State 3 e lcslcv

At label ‘‘lcslcv’’ (Set LCD Voltage), the LCD Contrast

latch is loaded from the value supplied by the CPU.

SEND-LCD I3 interrupt labels: State 1 e fcslcd State 3 e lcslcd

This command uses the ‘‘extended collection’’ feature. At label ‘‘fcslcd’’, two

bytes are requested for collection, but the ‘‘getcnt’’ bit of ‘‘curcmd’’ is set,

meaning that these are not the last bytes of the command. At label ‘‘lcslcd’’

(jumping to label ‘‘lcslc1’’), the length of the instruction is determined from the
Ýbytes value supplied by the CPU, and a second collection of bytes is

requested, this time with the ‘‘getcnt’’ bit off. When the last byte has been

collected, control is transferred to the label ‘‘lcslcd’’, then to ‘‘lcslc2’’. Here, the

data bytes for the panel are unloaded from the CPU buffer area ‘‘cpubuf’’ into the

LCD string buffer ‘‘lcdbuf’’. The flag (RS) bits are loaded into variable ‘‘lcdsfg’’,

and the number of bytes to be sent to the LCD display is placed into variable

‘‘lcdsct’’. Timer T6 is now started, to provide scheduling interrupts for writing the

bytes from the LCD string buffer to the LCD display.

On occurrence of each T6 interrupt (labels ‘‘t6int’’ and ‘‘t6nxtc’’), one byte is

written to the LCD display. Depending on the state of the RS flag for that byte,

and the value sent to the panel, T6 may run for either 120 ms or 4900 ms before it

triggers the next transfer. When the last character has been transferred, and

Timer T6 has provided the proper delay after it, the bit ‘‘alcdak’’ is set in the

‘‘alert’’ word, requesting the main program to send an !ACK-SEND-LCD interrupt

to the CPU.

25

SEND-LED I3 interrupt labels: State 1 e fcsled State 3 e lcsled

At label ‘‘lcsled’’, the byte provided by the CPU is written to the LED latch.

BEEP I3 interrupt labels: State 1 e fcbeep State 3 e (none)

At label ‘‘fcbeep’’, Port P pin P3 is enabled to toggle on each underflow of Timer T7,

which has been initialized at the beginning of the program (label ‘‘stmrs’’) to

underflow at a rate of 6 kHz. Pin P3, then, presents a 3 kHz square wave to the panel

buzzer. To time out the duration of the beep tone, interrupts from Timer T0 are

enabled, which then occur once every 53 ms. The variable ‘‘beepct’’ is set up with

the number of T0 interrupts to accept, and is decremented on each T0 interrupt.

When it has been decremented to zero (meaning that one second has elapsed), pin

P3 is reset to a constant zero to turn off the tone.

4.1.4.2 Background Timer (T1) Task

The Timer T1 interrupt service routine represents a task that

is not triggered directly by CPU commands. Its functions are

to interrupt the CPU periodically for the Real-Time Clock

function, and to present the !BUTTON-DATA interrupt

whenever the pushbutton inputs change state.

Timer T1 is loaded with a constant interval value which is

used to interrupt the HPC at 10 ms intervals. When the Tim-

er T1 interrupt occurs (labels ‘tmrint’’, to ‘‘t1poll’’, to ‘‘t1int’’),

then if the real-time interrupt is enabled, the variable

‘‘rtccnt’’ is decremented to determine whether an !RTC in-

terrupt should be issued to the CPU. If so, the bit ‘‘artc’’ in

the ‘‘alert’’ word is set, requesting the main program to is-

sue the interrupt. The main program, at label ‘‘sndrtc’’, actu-

ally interrupts the CPU. No other data is passed to the CPU

with the interrupt.

At label ‘‘kbdchk’’ the panel pushbutton switches are also

sampled. If the pattern matches the last sample taken

(saved in variable ‘‘swlast’’) then it is considered to be sta-

ble, and it is then compared to the last switch pattern sent

to the CPU (in variable ‘‘swlsnt’’). If the new pattern differs,

then it is placed in ‘‘swlsnt’’, and the bit ‘‘abutton’’ in vari-

able ‘‘alert’’ is set, requesting the main program to send a

!BUTTON-DATA interrupt. The main program, at label

‘‘sndbtn’’, triggers the interrupt and passes the new pattern

to the CPU from variable ‘‘swlsnt’’.

4.1.4.3 Timer T6 Interrupt

Because the LCD controller’s command acknowledgement

capability was not used in our application, Timer T6 is used

to time out the LCD controller’s processing times. See the

description of the SEND-LCD command above.

4.1.4.4 Timer T0 Interrupt

The interrupt service routine for Timer T0 (labels ‘‘tmrint’’, to

‘‘t0poll’’, to ‘‘t0int’’) is used simply to provide timing for the

duration of the speaker tone. The interrupt is enabled in

response to the BEEP command from the CPU, and is dis-

abled on occurrence of the interrupt. It provides an interval

of approximately one second.

4.2 HPC Firmware Listing

TL/DD/9976–17

26

TL/DD/9976–18

TL/DD/9976–19

27

TL/DD/9976–20

28

TL/DD/9976–21

29

TL/DD/9976–22

TL/DD/9976–23

30

TL/DD/9976–24

31

TL/DD/9976–25

TL/DD/9976–26

32

TL/DD/9976–27

33

TL/DD/9976–28

TL/DD/9976–29

34

TL/DD/9976–30

TL/DD/9976–31

TL/DD/9976–32

35

TL/DD/9976–33

TL/DD/9976–34

36

TL/DD/9976–35

TL/DD/9976–36

37

TL/DD/9976–37

TL/DD/9976–38

38

TL/DD/9976–39

TL/DD/9976–40

39

TL/DD/9976–41

TL/DD/9976–42

40

TL/DD/9976–43

TL/DD/9976–44

TL/DD/9976–45

41

TL/DD/9976–46

TL/DD/9976–47

42

TL/DD/9976–48

43

TL/DD/9976–49

44

TL/DD/9976–50

45

TL/DD/9976–51

TL/DD/9976–52

46

4.3 Two Demo Programs (NS32CG16 Source Code)

The following two programs run on the NS32CG16 CPU,

and exercise the functions implemented in the HPC firm-

ware.

One thing to note in this software is that the interrupt service

routines are not written as such; they are simple subroutines

called by the actual service routines, which are contained

within a modified version of the MON16 monitor program.

The reasons for modifying MON16 were two-fold:

1. There is no RAM in the application system within the first

64k of the addressing space. The presence of RAM there

is necessary for MON16 to support custom interrupt han-

dlers without internal modification.

2. The HPC requires use of the ‘‘RETT 0’’ instruction, rather

than ‘‘RETI’’, to return from maskable as well as non-

maskable interrupts.

Given these two constraints, it was considered most useful

to modify MON16 to contain a set of interrupt service rou-

tines, which would then use a set of addresses in RAM (a

table at address ‘‘vex’’) to call custom interrupt servers as

standard subroutines. An interrupt service routine calls its

custom subroutine after saving the dedicated registers and

the general registers, R0, R1 and R2 on the stack.

The symbol ‘‘vex’’ is defined externally, and must be de-

clared to match the address used by the modified MON16.

Details of the modified MON16 are available from National

Semiconductor Corporation, Microprocessor Applications

Group or the Microcontroller Applications Group, phone

(408) 721-5000. These modifications are also a standard

part of the MONCG monitor program for the NS32CG016

microprocessor.

4.3.1 Panel Exerciser Program

This program for the NS32CG16 CPU exercises several

functions of a panel consisting of the following:

A two-line (8 chars. per line) LCD panel, arranged hori-

zontally into a single 16-line display.

A speaker, activated by the BEEP command.

Six pushbuttons, which are presented by the !BUTTON-

DATA interrupt to the CPU as follows:

Keyboard Status Byte

0 PB6 PB5 PB4 0 PB2 PB1 PB0

Five LED’s, activated in the SEND-LED command by the

following bits:

LED Control Byte

Ð Ð LD5 LD4 LD3 LD2 LD1 Ð

The intended layout for the front panel is as shown below.

(Please pardon the apparently haphazard assignment of the

pushbuttons and LED’s; this was dictated by the nature of

the module we used for developing this application.)

Front Panel Layout

Cursor
00 01 02 03 04 05 06 07 40 41 42 43 44 45 46 47

Addr. x
LCD’s: * * * * * *

LED’s: LD2 LD3 LD1 LD5 LD4 (Beep)

PB’s: PB5 PB1 PB0 PB4 PB6 PB2

The locations shown with asterisks on the LCD panel above

will display an asterisk character while the corresponding

pushbutton below it is depressed. (The number above each

LCD location indicates its cursor address in hexadecimal.)

Each time a pushbutton (except PB2) is pressed, the corre-

sponding LED indicator above it is toggled. Rather than tog-

gling an LED, PB2 causes a BEEP command to be issued.

The program starts up the panel with the LCD display blank,

and LED’s LD1 and LD2 on.

47

TL/DD/9976–53

48

TL/DD/9976–54

49

TL/DD/9976–55

50

TL/DD/9976–56

51

TL/DD/9976–57

TL/DD/9976–58

52

4.3.2 Real-Time Clock Display Program

This program (rtc.s) enables the Real-Time Clock interrupts from the HPC, and counts them to generate a display of elapsed

time on the LCD panel.

TL/DD/9976–59

53

TL/DD/9976–60

54

TL/DD/9976–61

55

A
N

-5
5
0

A
S
o
ft

w
a
re

D
ri
v
e
r
fo

r
th

e
H

P
C

U
n
iv

e
rs

a
l
P
e
ri
p
h
e
ra

l
In

te
rf

a
c
e

P
o
rt

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor
Corporation Europe Hong Kong Ltd. Japan Ltd.
1111 West Bardin Road Fax: (a49) 0-180-530 85 86 13th Floor, Straight Block, Tel: 81-043-299-2309
Arlington, TX 76017 Email: cnjwge@ tevm2.nsc.com Ocean Centre, 5 Canton Rd. Fax: 81-043-299-2408
Tel: 1(800) 272-9959 Deutsch Tel: (a49) 0-180-530 85 85 Tsimshatsui, Kowloon
Fax: 1(800) 737-7018 English Tel: (a49) 0-180-532 78 32 Hong Kong

Fran3ais Tel: (a49) 0-180-532 93 58 Tel: (852) 2737-1600
Italiano Tel: (a49) 0-180-534 16 80 Fax: (852) 2736-9960

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

