
TL/EE/9698

Im
a
g
e

R
o
ta

tio
n

A
lg

o
rith

m
S
e
rie

s
3
2
0
0
0

G
ra

p
h
ic

s
N

o
te

4
A

N
-5

2
8

National Semiconductor
Application Note 528
Dave Rand
May 1988

Image Rotation Algorithm
Series 32000É Graphics
Note 4

1.0 INTRODUCTION

Fast image rotation of 90 and 270 degrees is important in

printer applications, since both Portrait and Landscape ori-

entation printing may be desired. With a fast image rotation

algorithm, only the Portrait orientation fonts need to be

stored. This minimizes ROM storage requirements.

This application note shows a fast image rotation algorithm

that may be used to rotate an 8 pixel by 8 line image. Larger

image sizes may be rotated by successive application of the

rotation primitive.

2.0 DESCRIPTION

This Rotate Image algorithm (developed by the Electronic

Imaging Group at National Semiconductor) does a very fast

8 by 8 (64 bit) rotation of font data. Note also that this algo-

rithm does not exclusively deal with fonts, but any 64 bit

image. Larger images can be rotated by breaking the image

down into 8 x 8 segments, and using a ‘source warp’ con-

stant to index into the source data.

The source data is pointed to by R0 on entry. A ‘source

warp’ is contained in R1, and is added to R0 after each read

of the source font. This allows the rotation of 16 by 16, 32

by 32 and larger fonts.

ROTIMG deals with the 8 by 8 destination character as 8

sequential bytes in two registers (R2 and R3), as follows:

Destination Font Matrix

Low Address

1

2

3

4
e R2 4 3 2 1

5
e R3 8 7 6 5

6

7

8

High Address

ROTIMG uses an external table (a pointer to the start of the

table is located in register R4) to speed the rotation and to

minimize the code. This table consists of 256 64 bit entries,

or a total of 2,048 bytes. The table may be located code

(PC) or data (SB) relative. The complete table is at the end

of this document (see Figure 1 ). A few entries of the table

are reproduced above.

Entry Definition

0 0x00000000 00000000

1 0x00000000 00000001

2 0x00000000 00000100

3 0x00000000 00000101

. . .

253 0x01010101 01010001

254 0x01010101 01010100

255 0x01010101 01010101

The bytes in the table are standard LSB to MSB format.

Since there is no quad-byte assembler pseudo-op (other

than LONG, which is floating point), we must reverse the

‘double’ declaration to get the correct byte ordering, as is

shown below:

Entry Definition

0 double 0,0

1 double 1,0

2 double 256,0

3 double 257,0

. . .

253 double 16842753,16843009

254 double 0x01010100,0x01010101

255 double 0x01010101,0x01010101

Each byte within each eight byte table entry represents one

bit of output data. By indexing into the table, and ORing the

table’s contents with R2 and R3, we set the destination byte

if the corresponding source bit is set. In this manner, the

character is rotated.

3.0 IMPLEMENTATION

What we are doing is setting the LS Bit of the destination

byte if the source bit corresponding to that byte is set. We

then shift the entire 64 bit destination left one bit, and repeat

this process until we have set all eight bits, and processed

all eight bytes of source information.

The source data for an 8 by 8 character ‘‘l’’ appears be-

low:

Character Table for ‘l’

Bit Number Hex Value

0 1 2 3 4 5 6 7

Byte 0 0 1 0 0 0 0 0 0 02

1 0 0 1 0 0 0 0 0 04

2 0 0 0 1 0 0 0 0 08

3 0 0 0 0 1 0 0 0 10

4 0 0 0 0 1 0 0 0 10

5 0 0 0 1 0 0 0 0 08

6 0 0 1 0 0 0 0 0 04

7 0 1 0 0 0 0 0 0 02

Series 32000É is a registered trademark of National Semiconductor Corporation.

C1995 National Semiconductor Corporation RRD-B30M105/Printed in U. S. A.



The ROTIMG algorithm, expressed in 32000 code, appears below:

TL/EE/9698–1

Now, let’s look at what happens to the data, given the example font of ‘l’.

Loop Ý Source Font R3 R2

0 Ð 00000000 00000000 ;0 destination

1 02 hex 00000000 00000100 ;first bits in

2 04 00000000 00010200 ;next bits in

3 08 00000000 01020400 ;and so on

4 10 00000001 02040800

5 10 00000003 04081000

6 08 00000006 09102000

7 04 0000000C 12214000

8 02 00000018 24428100 ;last iteration

Now, arranging this in the appropriate order gives us:

Destination Character Table for ‘l’, 90 degree

Bit Number Hex Value

0 1 2 3 4 5 6 7

Byte 0 0 0 0 0 0 0 0 0 00

1 1 0 0 0 0 0 0 1 81

2 0 1 0 0 0 0 1 0 42

3 0 0 1 0 0 1 0 0 24

4 0 0 0 1 1 0 0 0 18

5 0 0 0 0 0 0 0 0 00

6 0 0 0 0 0 0 0 0 00

7 0 0 0 0 0 0 0 0 00

Destination Character Table for ‘l’, 270 degree

Bit Number Hex Value

0 1 2 3 4 5 6 7

Byte 0 0 0 0 0 0 0 0 0 00

1 0 0 0 0 0 0 0 0 00

2 0 0 0 0 0 0 0 0 00

3 0 0 0 1 1 0 0 0 18

4 0 0 1 0 0 1 0 0 24

5 0 1 0 0 0 0 1 0 42

6 1 0 0 0 0 0 0 1 81

7 0 0 0 0 0 0 0 0 00

Note that by re-ordering the output data, we may rotate 90 or 270 degrees. This may also be accomplished by using a different

table (see Figure 2 ).

2



4.0 TIMING

With unrolled 32000 code, the time for this algorithm is about 588 clocks on the 32016. Subtracting the font read time from this

(about 113 clocks), the actual time for rotation is 475 clocks. On the 32332, the time is about 388 clocks. On the 32532, the

unrolled loop time is 120–180 clocks, depending on burst mode availability. Repetition of the character data also affects the

32532, due to the data cache. See Figure 3 for an unrolled code listing.

This table is used for the ROTIMG code. It is 256 entries of 64 bits each (8 bytes * 256 e 2048 bytes). There are two entries per

line. This table is used for 90§ rotation.

rottab1:

TL/EE/9698–2

FIGURE 1

3



TL/EE/9698–3

FIGURE 1 (Continued)

4



TL/EE/9698–4

FIGURE 1 (Continued)

This table is used for the ROTIMG code. It is 256 entries of 64 bits each (8 bytes * 256 e 2048 bytes). There are two entries per

line. This gives a 270§ rotation.

rottab2:

TL/EE/9698–5

FIGURE 2

5



TL/EE/9698–6

FIGURE 2 (Continued)

6



TL/EE/9698–7

FIGURE 2 (Continued)

7



The following is an unrolled version of the rotate image algorithm. For the NS32532, the address computation, currently

done with a separate addr instruction, may be done with the ORD instruction. This makes the execution time slightly faster.

TL/EE/9698–8

FIGURE 3

8



TL/EE/9698–9

FIGURE 3 (Continued)

9



A
N

-5
2
8

Im
a
g
e

R
o
ta

ti
o
n

A
lg

o
ri
th

m
S
e
ri
e
s

3
2
0
0
0

G
ra

p
h
ic

s
N

o
te

4
Lit. Ý 100528

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor
Corporation Europe Hong Kong Ltd. Japan Ltd.
1111 West Bardin Road Fax: (a49) 0-180-530 85 86 13th Floor, Straight Block, Tel: 81-043-299-2309
Arlington, TX 76017 Email: cnjwge@ tevm2.nsc.com Ocean Centre, 5 Canton Rd. Fax: 81-043-299-2408
Tel: 1(800) 272-9959 Deutsch Tel: (a49) 0-180-530 85 85 Tsimshatsui, Kowloon
Fax: 1(800) 737-7018 English Tel: (a49) 0-180-532 78 32 Hong Kong

Fran3ais Tel: (a49) 0-180-532 93 58 Tel: (852) 2737-1600
Italiano Tel: (a49) 0-180-534 16 80 Fax: (852) 2736-9960

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.


