
TL/EE/9665

In
tro

d
u
c
tio

n
to

B
re

s
e
n
h
a
m

’s
L
in

e
A

lg
o
rith

m
U

s
in

g
th

e
S
B

IT
In

s
tru

c
tio

n
;
S
e
rie

s
3
2
0
0
0

G
ra

p
h
ic

s
N

o
te

5
A

N
-5

2
4

National Semiconductor
Application Note 524
Nancy Cossitt
April 1988

Introduction to
Bresenham’s Line
Algorithm Using the SBIT
Instruction; Series 32000É
Graphics Note 5

1.0 INTRODUCTION

Even with today’s achievements in graphics technology, the

resolution of computer graphics systems will never reach

that of the real world. A true real line can never be drawn on

a laser printer or CRT screen. There is no method of accu-

rately printing all of the points on the continuous line

described by the equation y e mx a b. Similarly, circles,

ellipses and other geometrical shapes cannot truly be imple-

mented by their theoretical definitions because the graphics

system itself is discrete, not real or continuous. For that

reason, there has been a tremendous amount of research

and development in the area of discrete or raster mathemat-

ics. Many algorithms have been developed which ‘‘map’’

real-world images into the discrete space of a raster device.

Bresenham’s line-drawing algorithm (and its derivatives) is

one of the most commonly used algorithms today for de-

scribing a line on a raster device. The algorithm was first

published in Bresenham’s 1965 article entitled ‘‘Algorithm

for Computer Control of a Digital Plotter’’. It is now widely

used in graphics and electronic printing systems. This appli-

cation note will describe the fundamental algorithm and

show an implementation on National Semiconductor’s Se-

ries 32000 microprocessor using the SBIT instruction, which

is particularly well-suited for such applications. A timing dia-

gram can be found in Figure 8 at the end of the application

note.

2.0 DESCRIPTION

Bresenham’s line-drawing algorithm uses an iterative

scheme. A pixel is plotted at the starting coordinate of the

line, and each iteration of the algorithm increments the pixel

one unit along the major, or x-axis. The pixel is incremented

along the minor, or y-axis, only when a decision variable

(based on the slope of the line) changes sign. A key feature

of the algorithm is that it requires only integer data and sim-

ple arithmetic. This makes the algorithm very efficient and

fast.

The algorithm assumes the line has positive slope less than

one, but a simple change of variables can modify the algo-

rithm for any slope value. This will be detailed in section 2.2.

2.1 Bresenham’s Algorithm for 0 k slope k 1

Figure 1 shows a line segment superimposed on a raster

grid with horizontal axis X and vertical axis Y. Note that xi
and yi are the integer abscissa and ordinate respectively of

each pixel location on the grid.

Given (xi, yi) as the previously plotted pixel location for the

line segment, the next pixel to be plotted is either (xi a 1, yi)

or (xi a 1, yi a 1). Bresenham’s algorithm determines

which of these two pixel locations is nearer to the actual line

by calculating the distance from each pixel to the line, and

plotting that pixel with the smaller distance. Using the famil-

iar equation of a straight line, y e mx a b, the y value

corresponding to xi a 1 is

y e m(xi a 1) a b

The two distances are then calculated as:

d1 e y b yi

d1 e m(xi a 1) a b b yi

d2 e (yi a 1) b y

d2 e (yi a 1) b m(xi a 1) b b

and,

d1 b d2 e m(xi a 1) a b b yi b (yi a 1) a m(xi a 1) a b

d1 b d2 e 2m(xi a 1) b 2yi a 2b b 1

Multiplying this result by the constant dx, defined by the

slope of the line m e dy/dx, the equation becomes:

dx(d1–d2) e 2dy(xi) b 2dx(yi) a c

where c is the constant 2dy a 2dxb b dx. Of course, if d2
l d1, then (d1–d2) k 0, or conversely if d1 l d2, then (d1–

d2) l 0. Therefore, a parameter pi can be defined such that

pi e dx(d1–d2)

pi e 2dy(xi) b 2dx(yi) a c

TL/EE/9665–1

FIGURE 1

TL/EE/9665–2

Distances d1 and d2 are compared.

The smaller distance marks next pixel to be plotted.

FIGURE 2

Series 32000É is a registered trademark of National Semiconductor Corporation.

C1995 National Semiconductor Corporation RRD-B30M115/Printed in U. S. A.

If pi l 0, then d1 l d2 and yi a 1 is chosen such that the

next plotted pixel is (xi a 1, yi). Otherwise, if pi k 0, then d2
l d1 and (xi a 1, yi a 1) is plotted. (See Figure 2.)

Similarly, for the next iteration, pi a 1 can be calculated and

compared with zero to determine the next pixel to plot. If

pi a1 k 0, then the next plotted pixel is at (xi a 1 a 1,

yi a 1); if pi a 1 l 0, then the next point is (xi a 1 a 1,

yi a 1 a 1). Note that in the equation for pi a 1, xi a 1 e xi
a 1.

pi a 1 e 2dy(xi a 1) b 2dx(yi a 1) a c

Subtracting pi from pi a 1, we get the recursive equation:

pi a 1 e pi a 2dy b 2dx(yi a 1 b yi)

Note that the constant c has conveniently dropped out of

the formula. And, if pi k 0 then yi a 1 e yi in the above

equation, so that:

pi a 1 e pi a 2dy

or, if pi l 0 then yi a 1 e yi a 1, and

pi a 1 e pi a 2(dy–dx)

To further simplify the iterative algorithm, constants c1 and

c2 can be initialized at the beginning of the program such

that c1 e 2dy and c2 e 2(dy–dx). Thus, the actual meat of

the algorithm is a loop of length dx, containing only a few

integer additions and two compares (Figure 3) .

2.2 For Slope k 0 and lSlopel l 1

The algorithm fails when the slope is negative or has abso-

lute value greater than one (ldyl l ldxl). The reason for this

is that the line will always be plotted with a positive slope if

xi and yi are always incremented in the positive direction,

and the line will always be ‘‘shorted’’ if ldxlkldyl since the

algorithm executes once for every x coordinate (i.e., dx

times). However, a closer look at the algorithm must be tak-

en to reveal that a few simple changes of variables will take

care of these special cases.

For negative slopes, the change is simple. Instead of incre-

menting the pixel along the positive direction (a1) for each

iteration, the pixel is incremented in the negative direction.

The relationship between the starting point and the finishing

point of the line determines which axis is followed in the

negative direction, and which is in the positive. Figure 4
shows all the possible combinations for slopes and starting

points, and their respective incremental directions along the

X and Y axis.

Another change of variables can be performed on the incre-

mental values to accommodate those lines with slopes

greater than 1 or less than b1. The coordinate system con-

taining the line is rotated 90 degrees so that the X-axis now

becomes the Y-axis and vice versa. The algorithm is then

performed on the rotated line according to the sign of its

slope, as explained above. Whenever the current position is

incremented along the X-axis in the rotated space, it is actu-

ally incremented along the Y-axis in the original coordinate

space. Similarly, an increment along the Y-axis in the rotat-

ed space translates to an increment along the X-axis in the

original space. Figure 4a., g. and h. illustrates this transla-

tion process for both positive and negative lines with various

starting points.

3.0 IMPLEMENTATION IN C

Bresenham’s algorithm is easily implemented in most pro-

gramming languages. However, C is commonly used for

many application programs today, especially in the graphics

area. The Appendix gives an implementation of Bresen-

ham’s algorithm in C. The C program was written and exe-

cuted on a SYS32/20 system running UNIX on the

NS32032 processor from National. A driver program, also

written in C, passed to the function starting and ending

points for each line to be drawn. Figure 6 shows the output

on an HP laser jet of 160 unique lines of various slopes on a

bit map of 2,000 x 2,000 pixels. Each line starts and ends

exactly 25 pixels from the previous line.

The program uses the variable bit to keep track of the cur-

rent pixel position within the 2,000 x 2,000 bit map (Figure
5) . When the Bresenham algorithm requires the current po-

sition to be incremented along the X-axis, the variable bit is

incremented by either a1 or b1, depending on the sign of

the slope. When the current position is incremented along

the Y-axis (i.e., when p l 0) the variable bit is incremented

by awarp or bwarp, wherewarp is the vertical bit displace-

ment of the bit map. The constant last bit is compared with

bit during each iteration to determine if the line is complete.

This ensures that the line starts and finishes according to

the coordinates passed to the function by the driver pro-

gram.

do while count k l dx

if (p k 0) then p0 4 c1

else

p0 4 c2

next y 4 prev y 0 y inc

next x 4 prev x 0 x inc

plot(next x,next y)

count 0 4 1

/* PSEUDO CODE FOR BRESENHAM LOOP */

FIGURE 3

2

start p1: xÐinc e yÊÐinc e 0

yÐinc e xÊÐinc e a1

start p2: xÐinc e yÊÐinc e 0

yÐinc e xÊÐinc e b 1

TL/EE/9665–3

a.

start p1: xÐinc e a1

yÐinc e b1

start p2: xÐinc e b1

yÐinc e a1

TL/EE/9665–5

c.

start p1: xÐinc e a1

yÐinc e b1

start p2: xÐinc e b1

yÐinc e a1

TL/EE/9665–7

e.

start p1: xÐinc e yÊÐinc e a1

yÐinc e xÊÐinc e b1

start p2: xÐinc e yÊÐinc e b1

yÐinc e xÊÐinc e a1

TL/EE/9665–9

g.

start p1: xÐinc e a1

yÐinc e 0

start p2: xÐinc e b1

yÐinc e 0

TL/EE/9665–4

b.

start p1: xÐinc e a1

yÐinc e a1

start p2: xÐinc e b1

yÐinc e b1

TL/EE/9665–6

d.

start p1: xÐinc e a1

yÐinc e a1

start p2: xÐinc e b1

yÐinc e b1

TL/EE/9665–8

f.

start p1: xÐinc e yÊÐincl e b1

yÐinc e xÊÐinc e a1

start p2: xÐinc e yÊÐinc e a1

yÐinc e xÊÐinc e b1

TL/EE/9665–10

h.

Note: a., g., and h. are rotated 90 degrees left and xÊ, yÊ refer to the original axis.

FIGURE 4

3

TL/EE/9665–11

Bit Map is 500 kbytes, 2k x 2k Bits

Base Address of Bit Map is ‘BitÐMap’

FIGURE 5

4

Graphics Image (2000 x 2000 Pixels), 300 DPI

TL/EE/9665–12

FIGURE 6. Star-Burst BenchmarkÐThis Star-Burst image was done on a 2k x 2k pixel bit map.

Each line is 2k pixels in length and passes through the center of the image, bisecting

the square. The lines are 25 pixel units apart, and are drawn using the LINEÐDRAW.S routine. There

are a total of 160 lines. The total time for drawing this Star-Burst is 2.9 sec on 10 MHz NS32C016.

5

4.0 IMPLEMENTATION IN SERIES 32000 ASSEMBLY:

THE SBIT INSTRUCTION

National’s Series 32000 family of processors is well-suited

for the Bresenham’s algorithm because of the SBIT instruc-

tion.Figure 7 shows a portion of the assembly version of the

Bresenham algorithm illustrating the use of the SBIT instruc-

tion. The first part of the loop, handles the algorithm for p k

0 and .CASE2 handles the algorithm for p l 0. The main

loop is unrolled in this manner to minimize unnecessary

branches (compare loop structure of Figure 7 to Figure 3).

The SBIT instruction is used to plot the current pixel in the

line.

The SBIT instruction uses bitÐmap as a base address from

which it calculates the bit position to be set by adding the

offset bit contained in register r1. For example, if bit , or R1,

contains 2,000*, then the instruction:

sbitd r1,@ bitÐmap

will set the bit at position 2,000, given that bitÐmap is the

memory location starting at bit 0 of this grid. In actuality, if

base is a memory address, then the bit position set is:

offset MOD 8

within the memory byte whose address is:

base a (offset DIV 8)

So, for the above example,

2,000 MOD 8 e 0

bitÐmap a 2,000 DIV 8 e bitÐmap a 250

Thus, bit 0 of byte (bitÐmap a 250) is set. This bit corre-

sponds to the first bit of the second row in Figure 5.

*All numbers are in decimal.

The SBIT instruction greatly increases the speed of the al-

gorithm. Notice the method of setting the pixel in the C pro-

gram given in the Appendix:

bitÐmap [bit/8] l e bitÐpos [(bit & 7)]

This line of code contains a costly division and several other

operations that are eliminated with the SBIT instruction. The

SBIT instruction helps optimize the performance of the pro-

gram. Notice also that the algorithm can be implemented

using only 7 registers. This improves the speed perform-

ance by avoiding time-consuming memory accesses.

5.0 CONCLUSION

An optimized Bresenham line-drawing algorithm has been

presented using the SYS32/20 system. Both Series 32000

assembly and C versions have been included. Figure 8
presents the various timing results of the algorithm. Most of

the optimization efforts have been concentrated in the main

loop of the program, so the reader may spot other ways to

optimize, especially in the set-up section of the algorithm.

Several variations of the Bresenham algorithm have been

developed. One particular variation from Bresenham himself

relies on ‘‘run-length’’ segments of the line for speed opti-

mization. The algorithm is based on the original Bresenham

algorithm, but uses the fact that typically the decision vari-

able p has one sign for several iterations, changing only

once in-between these ‘‘run-length’’ segments to make one

vertical step. Thus, most lines are composed of a series of

horizontal ‘‘run-lengths’’ separated by a single vertical jump.

(Consider the special cases where the slope of the line is

exactly 1, the slope is 0 or the slope is infinity.) This algo-

rithm will be explored in the NS32CG16 Graphics Note 5,

AN-522, ‘‘Line Drawing with the NS32CG16’’, where it will

be optimized using special instructions of the NS32CG16.

Main loop of Bresenham algorithm

.LOOP: #p k 0: move in x direction only

cmpqd $0,r4

ble .CASE2

addd r0,r4

addd r5,r1

sbitd r1,@ bit map

cmpd r3,r1

bne .LOOP

exit [r3,r4,r5,r6,r7]

ret $0

.align 4

.CASE2: #P l 0: move in x and y direction

addd r2,r4

addd r7,r1

addd r5,r1

sbitd r1,@ bit map

cmpd r1,r3

bne .LOOP

exit [r3,r4,r5,r6,r7]

ret $0

Register and Memory

Contents

r0 4 c1 constant

r1 4 bit current

position

r2 4 c2 constant

r3 4 last bit

r4 4 p decision var

r5 4 x inc increment

r6 4 unused register

r7 4 y inc increment

bit map 4 address of

first byte in bit map

FIGURE 7

Note: Instructions followed by the letter ‘d’ indicate ‘‘double word’’ operations.

6

Timing Performance

2k x 2k Bit Map

2k Pix/Vector 160 Lines per Star-Burst

Version NS32000 Assembly with SBIT

Parameter
NS32C016-10 NS32C016-15

Set-up Time Per Vector 45 ms 30 ms

Vectors/Sec 54 82

Pixels/Sec 109,776 164,771

Total Time
2.9s

1.9s

Star-Burst Benchmark

FIGURE 8

Set-up time per line is measured from the start of

LINEÐDRAW.S only. The overhead of calling the LINEÐ
DRAW routine, starting the timer and creating the endpoints

of the vector are not included in this time. Set-up time does

include all register set-up and branching for the Bresenham

algorithm up to the entry point of the main loop.

Vectors/Second is determined by measuring the number

of vectors per second the LINEÐDRAW routine can draw,

not including the overhead of the DRIVER.C and START.C

routines, which start the timer and calculate the vector end-

points. All set-up of registers and branching for the Bresen-

ham algorithm are included.

Pixels/Second is measured by dividing the Vectors/Sec-

ond value by the number of pixels per line.

Total Time for the Star-Burst benchmark is measured from

start of benchmark to end. It does include all overhead of

START.C and DRIVER.C and all set-up for

LINEÐDRAW.S. This number can be used to approximate

the number of pages per second for printing the whole Star-

Burst image.

7

TL/EE/9665–13

TL/EE/9665–14

8

TL/EE/9665–15

TL/EE/9665–16

9

In
tr

o
d
u
c
ti
o
n

to
B

re
s
e
n
h
a
m

’s
L
in

e
A

lg
o
ri
th

m
U

s
in

g
A

N
-5

2
4

th
e

S
B

IT
In

s
tr

u
c
ti
o
n
;
S
e
ri
e
s

3
2
0
0
0

G
ra

p
h
ic

s
N

o
te

5

TL/EE/9665–17

TL/EE/9665–18

Lit. Ý 100524

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor
Corporation Europe Hong Kong Ltd. Japan Ltd.
1111 West Bardin Road Fax: (a49) 0-180-530 85 86 13th Floor, Straight Block, Tel: 81-043-299-2309
Arlington, TX 76017 Email: cnjwge@ tevm2.nsc.com Ocean Centre, 5 Canton Rd. Fax: 81-043-299-2408
Tel: 1(800) 272-9959 Deutsch Tel: (a49) 0-180-530 85 85 Tsimshatsui, Kowloon
Fax: 1(800) 737-7018 English Tel: (a49) 0-180-532 78 32 Hong Kong

Fran3ais Tel: (a49) 0-180-532 93 58 Tel: (852) 2737-1600
Italiano Tel: (a49) 0-180-534 16 80 Fax: (852) 2736-9960

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

