
TL/EE/9663

L
in

e
D

ra
w

in
g

w
ith

th
e

N
S
3
2
C

G
1
6
;
N

S
3
2
C

G
1
6

G
ra

p
h
ic

s
N

o
te

5
A

N
-5

2
2

National Semiconductor
Application Note 522
Nancy Cossitt
July 1988

Line Drawing with the
NS32CG16; NS32CG16
Graphics Note 5
1.0 INTRODUCTION

The Bresenham algorithm, as described in the ‘‘Series

32000É Graphics Note 5’’ is a common integer algorithm

used in many graphics systems for line drawing. However,

special instructions of the NS32CG16 processor allow it to

take advantage of another faster integer algorithm. This ap-

plication note describes the algorithm and shows an imple-

mentation on the NS32CG16 processor using the SBITS

(Set BIT String) and SBITPS (Set BIT Perpendicular String)

instructions. Timing for the DRAWÐLINE algorithm is given

in Tables A, B and C of the Timing Appendix. The timing

from the original Bresenham iterative method using the

NS32CG16 is given in Table D.

The bit map memory conventions followed in this note are

the same as those given in the NS32CG16 Reference Man-

ual and Datasheet, and all lines drawn are monochrome.

Series 32000 Graphics Note 5, AN-524, is recommended

reading.

2.0 DESCRIPTION

All rasterized lines are formed by sequences of line ‘‘slices’’

which are separated by a unit shift diagonal to the direction

of these slices. For example, the line shown in Figure 1 is

composed of 7 slices, each slice separated by a unit diago-

nal shift in the positive direction. Notice that the slices of the

line vary in length. The algorithm presented in this note de-

termines the length of each slice, given the slope and the

endpoints of the line.

Depending on the slope of the line, these slices will extend

along the horizontal axis, the vertical axis or the diagonal

axis with respect to the image plane (i.e., a printed page or

CRT screen). If the data memory is aligned with the image

plane so that a positive one unit horizontal (x-axis) move in

the image plane corresponds to a one bit move within a byte

in the data memory, and so that a positive one unit vertical

(y-axis) move in the image plane corresponds to a positive

one ‘‘warp’’ (warp e the number pixels along the major axis

of the bit map) move within the data memory, then the

SBITS and SBITPS instructions can be used to quickly set

bits within data memory to form the line slices on the image

plane, as explained in section 3.1. For long horizontal lines,

the MOVMP (MOVe Multiple Pattern) instruction is more ef-

ficient than SBITS. This instruction is discussed in section

3.1 and in the NS32CG16 Reference Manual.

2.1 Derivation of the Bresenham SLICE Algorithm

For the moment, consider only those lines in the X-Y coordi-

nate system starting at the origin (0,0), finishing at an inte-

ger end point (x,y) and lying in the first partial octant, as in

Figure 2. (The analysis will be extended for all lines in sec-

tion 2.2.) The equation for one such line ending at (A,B) is:

y e mx,

where

m e B/A

is the slope of the line. Note that because the line lies in the

first partial octant, A l 2B t 1.

TL/EE/9663–2

FIGURE 2

Each pixel plotted can be thought of as a unit square area

on a Real plane (Figure 3). Assume each pixel square is

situated so that the center of the square is the integer ad-

dress of the pixel, and each pixel address is one unit away

from its neighbor. Then let Ai represent the X-coordinate of

the pixel, as shown in Figure 3. The value of Y at Ai is:

y e (B/A)Ai

where y is Real.

Since the address of each pixel plotted must have corre-

sponding integer coordinates, the closest integer to y is ei-

ther the upper bound of y or the lower bound. (Recall that

upper and lower bounds refer to the smallest integer greater

than or equal to y and the largest integer less than or equal

to y respectively.) The original Bresenham algorithm was

based on this concept, and had a decision variable within

the main loop of the algorithm to decide whether the next

yia1 was the previous yi (lower bound) or yi a 1 (upper

bound). For the SLICE algorithm, we are only concerned

with when the value changes to yi a 1, and the length of

the previous slice up to that point.

TL/EE/9663–1

The line from (0,0) to (45,6) is a first octant line with run lengths 3-7-6-7-6-7-3. Notice that a pixel is plotted before the run begins so that the actual number of

pixels plotted is equivalent to the run length a1.
FIGURE 1

Series 32000É is a registered trademark of National Semiconductor Corporation.

C1995 National Semiconductor Corporation RRD-B30M105/Printed in U. S. A.

TL/EE/9663–3

Y is incremented when the location of the half point is beyond Ai, or when

the true value of Y at Aia1 is greater than Yi a (/2.

FIGURE 3

In order for yi to be incremented along the Y-axis, the true

value of real y at Ai a 1 must be greater than or equal to the

halfway point between yi and yi a 1 (Figure 3) . If we let i

increment along the Y-axis, then this half point occurs

when:

y e 1/2 a yi

Or, because yi e i when incrementing along the Y-axis,

y e (1 a 2i)/2.

The real value of x at this point is:

x e A(1 a 2i)/2B

using x e (1/m)y. The lower bound of this value of x repre-

sents the x-coordinate of the pixel square containing the

half point.

Letting Ai and Aia1 be two integer values of x where the

real value of y is greater than or equal to the half point value

yi a 1/2 (Figure 4) , then the run length extends from (Ai a

1, i a 1) to (Aia1, i a 1). The run length can then be

calculated as:

Hia1 e Aia1 b Ai b 1

for i e 0,1, . . . ,(B-2). Using the equation for x above, we

can now better define Ai as:

Ai e (A/2B) a (iA/B).

This equation has two real-valued divisions which are not

suitable for an integer algorithm. However, the equation can

be broken down so that it only involves an integer-valued

division and its integer remainder, which is more efficient for

processing. To do this we must define some intermediary

integer values:

Q e lower[A/B] ÀLower bound of inverted slopeÓ

R e BlA ÀInteger residue of A modulo BÓ

M e lower[A/2B] ÀCan also be defined as Q/2Ó

N e 2BlA ÀInteger residue of A modulo 2BÓ

Ti e 2Bl(Na2iR) ÀInteger residue of (Na2iR)

modulo 2BÓ

Note: AlB e B a A *lower[A/B].

TL/EE/9663–4

Run length is calculated as Aia1 b Aib1. In this example, the run length

is 1.
FIGURE 4

Using the above values we can now define Ai as,

Ai e (M a N/2B) a (iQ a iR/B)

Ai e MaiQ a (Na2iR)/2B

Therefore, substituting Ai and Aia1 into the equation for

Hia1, the intermediate horizontal lengths are,

Hia1 e Aia1 b Ai b 1

Hia1 e ÀM a (ia1)Q a lower[(N a 2(ia1)R)/2B]Ó b

ÀM a iQ a lower[(N a 2iR)/2B]Ó b 1

Hia1 e Q a lower[(N a 2iR)/2B a 2R/2B] b

lower[(N a 2iR)/2B] b 1

Hia1 e Q b 1 a lower[(Ti a 2R)/2B]

Analyzing the term lower[(Ti a 2R)/2B] it is shown that if Ti
a 2R t 2B then the term becomes 1, otherwise it becomes

0. This is due to the definition of residue and modulo. The

term Ti is defined as:

(N a 2iR) b 2B(lower[(N a 2iR)/2B]),
which means that 0 s Ti k 2B. The same is true for R:

R e A b B(lower[A/B]),
so that 0 s 2R k 2B. Therefore,

0 s Ti a 2R k 4B

and,

0 s (Ti a 2R)/2B k 2.

The only possible integer values for this term are 0 and 1.

The term will equal 0 if Ti a 2R k 2B, and it will equal 1

when Ti a 2R t 2B, and Hia1 will equal Q. The decision

variable can now be defined as

testvar e Ti a 2Rb2B.

If testvar t 0 then the horizontal run length is Q; if testvar k

0 then the run length is Qb1.

Looking again at the definition of Ti, a recursive relationship

for the testvar can be formed.

Tia1 e (N a 2R(ia1)) b 2B(lower[(N a 2R(ia1))/2B]

Tia1 e (N a 2iR a 2R) b 2B(lower[(N a 2iR a

2R)/2B]

Since, as shown above, 0 k (Ti a 2R)/2B k 2 then low-

er[(Ti a 2R)/2B] s 1. In fact, if Ti a 2R k 2B then low-

er[(Ti a 2R)/2B] e 0, and if Ti a 2R t 2B then lower[(Ti
a 2R)/2B] e 1. Therefore, letting T0 e N,

Tia1 e Ti a 2R if (Ti a 2R) k 2B

Tia1 e Ti a 2Rb2B if (Ti a 2R) t 2B.

This gives the recursive relationship for testvar:

testvar ia1 e testvar i a 2R

Hi e Q b 1

if testvar i k 0. And, if testvar i t 0:

testvar ia1 e testvar i a 2Rb2B

Hi e Q.

These recursive equations allow the intermediate run

lengths to be easily calculated using only a few additions

and compare-and-branches.

The initial run length is calculated as follows:

H0 e A0 e lower[A/2B] e M a lower[N/2B] e M.

The final run length is similarly calculated as:

Hf e M b 1 if N e 0 else Hf e M.

2

Thus, the SLICE algorithm calculates the horizontal run

lengths of a line using various parameters based on the first

partial octant abscissa and ordinate of the line. The algo-

rithm is efficient because it need only execute its main loop

B times, which is a maximum of A/2, if A is normalized for

the first partial octant. Compare this with the original Bre-

senham algorithm which always executes its main loop A

times.

2.2 Extended Analysis for All Other Lines

In section 2.1 the SLICE algorithm was derived for lines

starting at the origin and contained within the first octant (B
k 2A). The algorithm is easily extended to encompass lines

in all octants starting and ending at any integer coordinates

within the pre-defined bit map. The only modifications nec-

essary for this extension are those relating to the direction

of movement and in defining the coordinates A and B.

In order to extend the algorithm to cover all classes of lines,

the key parameters used by the algorithm must be normal-

ized to the first partial octant. Those parameters are the

abscissa and ordinate displacements and the movement of

the bit pointer along the line. The abscissa and ordinate

displacements of the line are normalized to the first octant

by calculating:

delta x e xf b xs and delta y e yf b ys

which represent the abscissa (delta x) and ordinate (delta y)

displacements of the original line. Then, the first octant

equivalents of A and B will be:

A e maximum Àldelta xl,ldelta ylÓ
BÊ e minimum Àldelta xl,ldelta ylÓ
B e minimum ÀBÊ, A b BÊÓ

The next step in normalizing the line for the first octant is to

assign the correct value to the movement parameters. A

line in the first octant and starting at the origin always has

horizontal run lengths in the positive direction along the X

(major) axis, and has diagonal movement one unit in the

positive X direction and one unit in the positive Y (minor)

direction. Since the SLICE algorithm calculates the run

lengths independent of direction, variables can easily be de-

fined which contain the direction of movement for each slice

and each diagonal step within the different octants.

Lines of different angles starting at the origin have slices of

different angles. For example, a line of angle between 22.5

degrees and 45 degrees has run lengths that are diagonal,

not horizontal, and the direction of the diagonal step is hori-

zontal, not diagonal. Because of this characteristic, it is con-

venient to break the 8 octants of the X-Y coordinate system

into 16 sections, representing all of the partial octants.

Then, re-number these partial octants so that they form new

octants as in Figure 5. These redefined octants represent

TL/EE/9663–5

Redefined octants for SLICE algorithm. Notice that some of the octants are

split. The origin is at the center of the drawing. Setting DELX positive on all

lines makes opposite octants equivalent in the table below.

FIGURE 5

each of the eight angle classes of lines. For example, the

lines in octants 3 and 7 are composed of diagonal (45 de-

gree) slices in either the positive or negative direction, and

have diagonal step in the vertical position. Lines in octants 4

and 8 have run length slices in the vertical direction with

diagonal steps in the horizontal direction with respect to the

X-Y plane.

In conclusion, the SLICE algorithm calculates successive

run lengths in the same manner for lines in each octant. The

only difference between the octants is the direction of

movement of the bit pointer after each successive run

length is calculated. The run lengths and diagonal steps for

each octant are given in Table I. Figure 5 shows the octants

used by the SLICE algorithm.

3.0 IMPLEMENTATION OF SLICE USING

SBITS, SBITPS AND MOVMP

The NS32CG16 features several powerful graphics instruc-

tions. The SLICE algorithm described by this application

note is implemented with three of these instructions: SBITS,

SBITPS and MOVMP. The SBITS instruction allows a hori-

zontal string of bits to be set, while the SBITPS instruction

can set vertical or diagonal strings of bits. The MOVMP in-

struction, not detailed in this application note, can be used

to set long strings of bits faster than SBITS when the length

is more than 200 bits in the horizontal direction. The

BIGSET.S routine given in the appendix uses this instruction

in conjunction with SBITS for long lines. These are very use-

ful instructions for the SLICE run length algorithm, as will be

shown in section 3.2.

TABLE I

OCTANT DELA DELB DIAGONAL MOVE RUN LENGTH

1 & 5 DELX lDELYl 1 a (gWARP) aHORZ

2 & 6 DELX DELA-lDELYl a 1 gDIAG

3 & 7 lDELYl DELA-DELX gWARP gDIAG

4 & 8 lDELYl DELX a 1 gWARP

If DELX k 0 then the starting and ending coordinates are swapped. This simplifies initialization.

3

3.1 SBITS and SBITPS Tutorial

SBITS:

SBITS (Set BIT String) sets a string of bits along the hori-

zontal axis of a pre-defined bit map. The instruction sets a

string of up to 25 bits in a single execution using four argu-

ments pre-stored in registers R0 through R3.

R0 e (32 bits) Base address of bit-string destination.

R1 e (32 bits, signed) Starting bit-offset from R0.

R2 e (32 bits, unsigned) Run length of the line segment.

R3 e (32 bits) Address of the string look-up table.

The value of the bit offset is used to calculate the bit num-

ber within the byte, assuming that the first bit is bit 0 and the

last bit is bit 7. A maximum of 7 for the starting bit number

added to a maximum of 25 for the run length requires a total

of 32 bits. SBITS calculates the destination address of the

first byte of the 32-bit double word to contain the string of

set bits by the following:

Destination Byte e Base Address a Offset DIV 8.

Then, the starting bit number within the destination byte is:

Starting Bit e Offset MOD 8.

SBITS instruction then calculates the address for the 32-bit

double word within the string look-up table (found in the

NS32CG16 manual) which will be OR’ed with the 32-bit dou-

ble word whose starting byte address is Destination Byte, as

calculated above. The table is stored as eight contiguous

sections, each containing 32 32-bit double words. Each of

the eight sections corresponds to a different value of Start-

ing Bit (Offset MOD 8), which has a possible range of 0

through 7. The 32 double words in each section correspond

to each value of the run length (up to 25) added to the

starting bit offset.

example:

Register Contents

before after

R0 e 1000 R0 e 1000

R1 e 235 R1 e 235

R2 e 16 R2 e 16

R3 e $stab R3 e $stab

Destination Address e 1000 a (235 DIV 8) e 1029

Starting Bit e 235 MOD 8 e 3

Table Address e $stab a 4*(16 a (32*3)) e $stab a 448

bytes

32-bit Mask e 0x0007FFF8

This mask value is OR’ed with the 32-bit double word start-

ing at byte address 1029 decimal. Notice that the mask

0x0007FFF8 leaves the first 3 bits and the last 13 bits

alone. Thus, a string of 16 bits is set starting at bit number 3

at address 1029 decimal. The contents of the registers are

unaffected by the execution of the SBITS instruction.

Since the SBITS instruction can set up to 25 bits in one

execution, the run length in R2 can be compared to 25, and

a special subroutine executed if it exceeds 25 bits. The sub-

routine will set the first 25 bits, then subtract 25 from the run

length, and compare this to 25 again. This process is re-

peated until the run length is less than 25, in which case

the remaining bits are set and the subroutine returns. The

DRAWÐLINE algorithm implemented in this application

note uses this method for strings of bits to be set less than

200. For horizontal lines greater than 200 pixels in length,

the BIGSET routine is more efficient, as described below.

BIGSET:

The utility program BIGSET.S is used to draw longer lines,

more than 200 pixels in length, more efficiently than SBITS.

BIGSET.S, which is given in the appendix, uses the MOVMP

instruction (MOVe Multiple Pattern) to set long strings of

bits. Since MOVMP operates on double-word aligned ad-

dresses most efficiently, the string is broken up into a start-

ing string within the first byte, a series of bytes to be set, and

an ending string which is the leftover bits to be set within the

final byte. The starting and ending strings of bits, if any, are

set using the SBITS table with an OR instruction.

SBITPS:

SBITPS (Set BIT Perpendicular String) handles both vertical

lines and diagonal lines. This instruction also requires four

arguments pre-stored in R0 through R3. R0, R1 and R2 are

the Base Address, Starting Bit Offset and Run Length re-

spectively, as for SBITS. R3, however, contains the destina-

tion warp.

Note: The Destination warp is the number of bits along the horizontal length

of the bit map, or the number of bits between scan lines. It is also

referred to as the ‘‘pitch’’ of the bit map. Thus, a vertical one-unit

move in the positive direction would require adding the value of the

warp to the bit pointer. A diagonal or 45 degree line is drawn when the

warp is incremented or decremented by one.

The run length is a 32 bit unsigned magnitude.

example:

(Assume that the bit map is a 904 x 904 pixel grid.)

Register Contents

before after

R0 e 1000 R0 e 1000

R1 e 235 R1 e 235 a (150*904) e 135,835

R2 e 150 R2 e 0

R3 e a904 R3 e a904

Destination Address e 1029

Starting Bit Number e 3

Run Length e 150

Warp e a904

As in the example for SBITS, the Destination Address is

1029, with Starting Bit Number e 3. Since the warp in this

example is a904 and the bit map is 904 x 904 bits, the line

is vertical, has a length of 150 pixels and starts at bit num-

ber 3 within the byte whose address is 1029 decimal. Unlike

the SBITS instruction, the SBITPS alters registers R1 and

R2 during execution. R1 is set to the position of the last bit

set plus the warp. However, this is convenient for drawing

the next slice since R1 has been automatically updated to

its proper horizontal position for setting the next bit. The bit

offset in R1 need only be incremented by a1 or b1 to point

to the exact position of the next bit to be set.

Diagonal lines are drawn when the value contained in R3 is

an increment of the bit map’s warp.

4

example:

(Assume that the bit map is a 904 x 904 pixel grid.)

Register Contents

before after

R0 e 1000 R0 e 1000

R1 e 235 R1 e 235 a (150*905) e 135,985

R2 e 150 R2 e 0

R3 e a905 R3 e a905

This example draws a diagonal line with positive slope start-

ing at bit position 3 in byte 1029. Notice that the new value

of R1 e 135,985 is exactly 150 pixels offset from the value

of R1 in the vertical line drawn in the previous example.

Adding a1 to the warp in this example caused the bit posi-

tion to move not only in the positive vertical direction, but

also in the positive horizontal direction, forming a diagonal

line.

3.2 Implementation of DRAWÐLINE and SLICE on the

NS32CG16

Both a C version of the DRAWÐLINE algorithm and an

NS32CG16 assembly version are given in the appendix. The

C program was implemented on SYS32/20 which uses the

NS32032 processor. An emulation package developed by

the Electronic Imaging Group at National was used to emu-

late the SBITS and SBITPS instructions in C, and also the

MOVMP instruction used for lines longer than 200 pixels.

The emulation routines, which cover all NS32CG16 instruc-

tions not available on other Series 32000 processors, are

available as both C functions and Series 32000 assembly

subroutines.

The DRAWÐLINE program was first written in C using the

emulation functions. Once this version was tested and func-

tional, it was translated into Series 32000 code and further

optimized for speed. The assembly version uses the Series

32000 assembly subroutines which emulate the SBITS and

SBITPS instructions. NS32CG16 executable code was de-

veloped by replacing the emulation subroutine calls with the

actual NS32CG16 instruction. The functional and optimized

code was finally executed on the NS32CG16 processor with

the aid of the DBG16 debugger for downloading the code to

an NS32CG16 evaluation board. Timing for lines of various

slopes is given in the Timing Appendix.

Most of the optimization efforts are concentrated in the

main loop of the SLICE algorithm. Since the use of SBITS or

SBITPS for the run length depends on the slope of the line,

the code is unrolled for the different octants. This minimizes

branching within the main loop, and cuts down on overall

execution time. Also, the DRAWÐLINE takes advantage of

the NS32CG16’s ability to draw fast horizontal, vertical and

diagonal lines by separating these lines out from the actual

Bresenham SLICE algorithm. Therefore, time is not wasted

for trivial lines on executing the initialization sections and

main loop sections of the SLICE algorithm.

Branching within the initialization section is also minimized

by unrolling the code for each octant. Recall from section

2.2 that in order to extend the algorithm over all octants, the

abscissa and ordinate displacements must be normalized to

the first octant and the run length directions must be modi-

fied to preserve the slope of the line. Partitioning the pro-

gram into ‘‘octant’’ modules makes the initialization for each

octant less cluttered with compare-and-branches. Table I

shows that each octant has a unique value for DELA and

DELB (the normalized abscissa and ordinate displace-

ments). Note that at the beginning of the programs, DELX or

xf b xs is checked for sign, and if negative, the absolute

value function is performed and the starting and ending

points are exchanged. This is done because each octant

module of the SLICE algorithm only cares about the sign of

DELY with respect to coordinate (xs,ys). DELX is only impor-

tant when initializing DELA or DELB, and in this case, only

the absolute value is needed.

4.0 SYSTEM SET-UP

NS32CG16 Evaluation Board:

ÐNS32CG16 with a 30 MHz Clock

Ð256KB Static RAM Memory (No Wait States)

Ð2 Serial ports

ÐMONCG16 Monitor

Host System:

ÐSYS32/20 running Unix System V

ÐDBG16 Debugger

Software for Benchmarking:

ÐSTART.C Starts timer and calls DRIVER.

ÐDRIVER.C Feeds vectors to DRAWÐLINE.

ÐDRAWÐLINE.S Line drawing routine which includes

SLICE.

ÐBIGSET.S Uses MOVMPi to set longer lines.

Called by DRAWÐLINE if length l

200.

4.1 Timing

Timing Assumptions:

1. No wait states are used in the memory.

2. No screen refresh is performed.

3. The overhead referred to as the ‘‘driver’’ overhead is the

time it takes to create the endpoints for each vector. This

is application dependent, and is not included in the

Vector/Sec and Pixel/Sec times.

4. The overhead referred to as the ‘‘line drawing’’ overhead

is the time it takes to set up the registers for the actual

line drawing routine. This overhead comes from the

DRAWÐLINE program only and is included in all times.

5. Raw data given in the Timing Appendix for the SBITS,

SBITPS and MOVMP is the peak performance for these

instructions. These times do not include line drawing

overhead or driver overhead.

The timing for this line-drawing application was done so as

to give meaningful results for a real graphics application and

to allow the reader to calculate additional times if desired.

The routines are not optimized for any particular application.

All line drawing overhead, such as set-up and branching, is

included in the given times for Timing Table A, B and C. The

23 ms driver overhead of the calling routines is not included

in the given times for vectors per second and pixels per

second. Calculation of these values was done by subtract-

ing the 23 ms out of the average time per vector so that the

given times are only for the processing of the vectors. They

do not include the overhead of DRIVER.C and START.C

(refer to these programs in the appendix).

In addition, the DRAWÐLINE algorithm is timed for several

test vectors at various strategic points in the code so that

5

the reader may verify set-up times or calculate other rele-

vant times. The program DRAWÐLINE.S in the appendix

contains markers (e.g., T1, T2 . . .) for each point at which a

particular time was taken. The program was run using a

driver program (DRIVER.C in the appendix) which consists

of several loops which pass test vectors to the

DRAWÐLINE routine. A ‘‘return’’ instruction was placed at

the time marker so that the execution time was only mea-

sured up to that marker. These times are given in the Timing

Appendix Table E and include total execution time up to

each of the markers.

A millisecond interrupt timer on the NS32CG16 evaluation

board was used to time the execution. For each execution,

the DRIVER program executed its inner loop over 100

times, and sometimes over 1000 times, so that an accurate

reading was obtained from the millisecond timer. The final

times were divided by this loop count to obtain a ‘‘bench-

mark’’ time. This benchmark time was divided by the total

number of lines drawn to obtain an average time per vector.

The overhead of START.C and DRIVER.C in calling the

DRAWÐLINE.S routine was not counted in the average

time per vector or the average time per pixel calculation.

Table E of the Timing Appendix gives the timing for each of

the markers and the conditions under which these times

were taken.

5.0 CONCLUSION

The timing for the DRAWÐLINE algorithm is a good indica-

tion of the performance of the NS32CG16 in a real applica-

tion, something which the datasheet specifications can’t al-

ways show. The timing clearly shows that the NS32CG16 is

well-suited for line-drawing applications. Using the SBITS,

SBITPS and the MOVMPi instructions, fast line-drawing is

achieved for lines of all slopes and lengths. The NS32CG16

is an ideal processor for taking advantage of the much fast-

er SLICE algorithm.

The SLICE algorithm, which calculates run lengths of line

segments to form a complete rasterized line, is much faster

than its Bresenham predecessor which calculates the line

pixel by pixel. The SLICE algorithm always executes the

main loop at least twice as fast as the original Bresenham

algorithm, which executes its main loop exactly

maxÀldelxl,ldelylÓ times for each line.

REFERENCES

J.E. Bresenham, IBM, Research Triangle Park, USA. ‘‘Run

Length Slice Algorithm for Incremental Lines’’, Fundamen-

tal Algorithms for Computer Graphics, Springer-Verlag

Berlin Heidelberg 1985.

N.M. Cossitt , National Semiconductor, ‘‘Bresenham’s Line

Algorithm Using the SBIT Instruction’’, Series 32000

Graphics Note 5, AN-524, 1988.

National Semiconductor , NS32CG16 Supplement to the

Series 32000 Programmer’s Reference Manual, 1988.

Bresenham’s SLICE Algorithm:

1. INITIALIZE PARAMETERS, MAKE NECESSARY ROTATIONS

2. OUTPUT INITIAL RUN LENGTH (HO) IN PROPER OCTANT DIRECTION

MOVE DIAGONALLY IN APPROPRIATE DIRECTION TO START OF NEXT RUN LENGTH

3. OUTPUT INTERMEDIATE RUN LENGTHS

COUNTeCOUNTb1

IF COUNT s 0 GOTO 4.

IF TESTVAR k 0 HeQb1 AND TESTVAReTESTVARa2*R

ELSE HeQ AND TESTVAReTESTVARa2*Rb2*DELB

OUTPUT RUN LENGTH OF LENGTH H IN PROPER DIRECTION

MOVE DIAGONALLY IN PROPER DIRECTION

GOTO 3.

4. OUTPUT FINAL RUN LENGTH OF LENGTH HF

5. END

INITIALIZED PARAMETERS

DELA e MAXIMUM OF ÀlDELXl,lDELYlÓ
DELB e MINIMUM OF ÀlDELAl,DELA-MINIMUMÀlDELXl,lDELYlÓÓ

Q e LOWER[DELA/DELB]

R e DELAbDELB*Q

M e LOWER[Q/2]

N e R (IF Q EVEN)

N e RaDELB (IF Q ODD)

HO e M (IF DELYt0 OR Nkl0)

HOe Mb1 (IF DELYk0 AND Ne0)

HF e M (IF DELYk0 OR Nkl0)

HF e Mb1 (IF DELY t0 AND Ne0)

COUNT e DELB

TESTVAR0 e Na2*Rb2*DELB (IF DELYt0)

TESTVAR0 e Na2*Rb2*DELBb1 (IF DELYk0)

6

Graphics Image (2000 x 2000 Pixels), 300 DPI

TL/EE/9663–6

FIGURE 6. Star-Burst Benchmark

This Star-Burst image was done on a 2k x 2k pixel bit map. Each line is

2k pixels in length and passes through the center of the image, bisecting the square. The lines are

25 pixel units apart, and are drawn using the DRAWÐLINE.S routine. There are a total of 160 lines.

The total time for drawing this Star-Burst is 1.0s on 15 MHz NS32CG16.

7

TIMING APPENDIX

A. PEAK RAW PERFORMANCE AT 15 MHz

Function Rate*
Horizontal Line (SBITS) 9 MBits/s

Horizontal Line (MOVMP) 60 MBits/s

Vertical Line (SBITPS) 440 kBits/s

*Raw performance does not include any register set-up, branching or other software set-up overhead.

B. TRIVIAL LINES (Using 1k x 1k Bit Map Grid)

Pixels/Line Vectors/Sec Pixels/Sec Comments**

Horizontal: 1000 13,361 13,361,838 Uses BIGSET.S with MOVMP.

100 24,136 2,413,593 Uses SBITS only.

10 45,687 456,870 Uses SBITS only.

Vertical and 1000 424 424,000 Uses SBITPS.

Diagonal: 100 3,975 397,460

10 24,491 244,910

**Pixels/Sec and Vectors/Sec are measured from start of DRAWÐLINE.S only. The 23.128 ms driver overhead was not included in these measurements.

C. ALL LINES (Using the ‘‘Star-Burst’’ Benchmark and the SLICE Algorithm)

Pix/Vector Vectors/Sec Pixels/Sec Total Time* Comments**

1000 318 318,165 0.8s 250 Lines in Star-Burst

100 2,811 281,118 0.019s 50 Lines in Star-Burst

10 14,549 145,490 0.001s 10 Lines in Star-Burst

Avg. Set-up Time Per Line (Measured from Start of DRAWÐLINE Only): 37 ms

D. ALL LINES (Using Original BRESENHAM Iterative Method with SBIT and the Star-Burst Benchmark)

Pix/Vector Vectors/Sec Pixels/Sec Total Time* Comments**

1000 163 162,746 1.5s 250 Lines in Star-Burst

100 1,568 158,332 0.033s 50 Lines in Star-Burst

10 11,547 127,021 0.001s 10 Lines in Star-Burst

Avg. Set-up Time Per Line (Measured for Line Drawing Routine Only): 30 ms

The Bresenham program used for the above table can be found in the Series 32000É Graphics Application Note 5.

*Total time is measured from start of execution to finish. It includes all line drawing pre-processing, set-up and branching, and it includes all driver overhead of

DRIVER.C and START.C. This time is a good indication of the pages per minute for the complete Star-Burst benchmark. Vectors/Sec and Pixels/Sec are

measured from start of DRAWÐLINE.S only. The 23.712 ms overhead was not included in these measurements.

**Star-Burst benchmark draws an equal number of lines in each octant. DRIVER.C creates vectors that form the Star-Burst image, passing these vectors to

DRAWÐLINE.S as they are created. The bit map image can then be downloaded to a printer for a hard copy, as in Figure 6.

8

TIMING APPENDIX TABLE E

Measurement Measured Test Vector
Octant of Test Vector

Point Time/Vector* Used
(Refer toFigure 5) Comments

And Length of Vector

T1 23.128 ms Any Non-Calculated Any Octant, Any Length Overhead of entry into DRAWÐLINE when
not calculating endpoints of line. Application
dependent.

23.712 STAR-BURST All Octants, 1000 Pixels Overhead of entry into DRAWÐLINE when
calculating the STAR-BURST vectors.
Application dependent.

T2 40.056 (0,0,0,999) Vertical, 1000 Pixels/Vector Average overhead per vertical line
to start of line draw instruction (SBITPS).

T3 41.780 (0,999,0,0) Vertical, 1000 Pixels/Vector Average overhead per vertical line with
negative slope to start of line draw instruction.

T4 40.884 (0,0,999,0) Horizontal, 1000 Pix/Vect Average overhead per horizontal line to start
of line draw instruction. (SBITS and BIGSET).

43.912 (999,0,0,0) Same Same as above with negative delta c value.

T5 44.532 (0,0,999,999) Diagonal, 1000 Pix/Vect Average overhead per diagonal line to start
of line draw instruction (SBITPS).

T6 45.356 (0,999,999,0) Same Same as above for diagonal line with
negative delta c value.

T7 71.164 (0,0,999,10) Octant 1 1000 Pix/Vect Average overhead per line to first run length
slice of the SLICE algorithm for octant 1.

T8 87.476 (0,0,999,10) Octant 1 1000 Pix/Vect Average overhead per 1000, 100 and 10 pixel
75.572 (0,0,99,10) 100 Pix/Vect line through first run length of the SLICE
75.568 (0,0,9,2) 10 Pix/Vect algorithm. Dependent on the vector length.

T9 100.348ms (0,0,999,10) Octant 1 1000 Pix/Vect Average overhead per 1000, 100 and 10 pixel
88.444 (0,0,99,10) 100 Pix/Vect line to start of main loop of SLICE algorithm.
88.436 (0,0,9,2) 10 Pix/Vect Dependent on the vector length.

T10 71.856 (0,0,9,8) Octant 2 10 Pix/Vect Average overhead per line to first run length.
Not dependent on vector length.

T11 79.632 (0,0,999,800) Octant 2 1000 Pix/Vect Average overhead per 1000, 100 and 10 pixel line
80.040 (0,0,99,80) 100 Pix/Vect through first run length of the SLICE algorithm.
84.180 (0,0,9,8) 10 Pix/Vect Dependent on the vector length.

T12 89.060 (0,0,999,800) Octant 2 1000 Pix/Vect Average overhead per 1000, 100 and 10 pixel
89.476 (0,0,99,80) 100 Pix/Vect line to start of main loop of SLICE algorithm.
105.376 (0,0,9,8) 10 Pix/Vect Dependent on the vector length.

T13 73.024 (500,0,700,999) Octant 3 1000 Pix/Vect Average overhead per line to first run length. Not
dependent on the vector length.

T14 80.736 (500,0,700,999) Octant 3 1000 Pix/Vect Average overhead per 1000, 100 and 10 pixel line
80.872 (50,0,70,99) 100 Pix/Vect through first run length of the SLICE algorithm.
80.116 (5,0,7,9) 10 Pix/Vect Dependent on the vector length.

T15 89.888 (500,0,700,999) Octant 3 1000 Pix/Vect Average overhead per 1000, 100 and 10 pixel line
90.020 (50,0,70,99) 100 Pix/Vect to start of main loop of SLICE algorithm.
89.268 (5,0,7,9) 10 Pix/Vect Dependent on the vector length.

T16 73.712 (10,0,990,999) Octant 4 1000 Pix/Vect Average overhead per line to first run length. Not
dependent on the vector length.

T17 137.532 (10,0,999,999) Octant 4 1000 Pix/Vect Average overhead per 1000, 100 and 10 pixel line
81.148 (10,0,90,99) 100 Pix/Vect through first run length of the SLICE algorithm.
78.256 (2,0,8,9) 10 Pix/Vect Dependent on the vector length.

T18 147.236 (10,0,999,999) Octant 4 1000 Pix/Vect Average overhead per 1000, 100 and 10 pixel line
90.856 (10,0,90,99) 100 Pix/Vect to start of main loop of SLICE algorithm.
87.956 (2,0,8,9) 10 Pix/Vect Dependent on the vector length.

*Each time was measured from start of benchmark execution to the Tx marker in the DRAWÐLINE.S program. Thus, the overhead of the calling routine to the

DRAWÐLINE routine is T1e23.712 ms for the STAR-BURST benchmark. All programs used for timing are included in the Appendix. All times given above are for a

1k x 1k bit map.

9

TL/EE/9663–7

10

TL/EE/9663–8

11

TL/EE/9663–9

12

TL/EE/9663–10

13

TL/EE/9663–11

14

TL/EE/9663–12

15

TL/EE/9663–13

16

TL/EE/9663–14

17

TL/EE/9663–15

18

TL/EE/9663–16

19

TL/EE/9663–17

20

TL/EE/9663–18

21

TL/EE/9663–19

22

TL/EE/9663–20

23

A
N

-5
2
2

L
in

e
D

ra
w

in
g

w
it
h

th
e

N
S
3
2
C

G
1
6
;
N

S
3
2
C

G
1
6

G
ra

p
h
ic

s
N

o
te

5

TL/EE/9663–21

TL/EE/9663–22

Lit. Ý 100522

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor
Corporation Europe Hong Kong Ltd. Japan Ltd.
1111 West Bardin Road Fax: (a49) 0-180-530 85 86 13th Floor, Straight Block, Tel: 81-043-299-2309
Arlington, TX 76017 Email: cnjwge@ tevm2.nsc.com Ocean Centre, 5 Canton Rd. Fax: 81-043-299-2408
Tel: 1(800) 272-9959 Deutsch Tel: (a49) 0-180-530 85 85 Tsimshatsui, Kowloon
Fax: 1(800) 737-7018 English Tel: (a49) 0-180-532 78 32 Hong Kong

Fran3ais Tel: (a49) 0-180-532 93 58 Tel: (852) 2737-1600
Italiano Tel: (a49) 0-180-534 16 80 Fax: (852) 2736-9960

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

