
TL/DD/9447

A
s
s
e
m

b
ly

L
a
n
g
u
a
g
e

P
ro

g
ra

m
m

in
g

fo
r
th

e
H

P
C

A
N

-5
1
0

National Semiconductor
Application Note 510
Steve McRobert
August 1988

Assembly Language
Programming for the
HPCTM

HOW TO WRITE SHORT, EFFICIENT, BUT

UNDERSTANDABLE ASSEMBLER PROGRAMS

INTRODUCTION

One of the design objectives of the HPC family was that it

should be very easy to use. With this in mind the instruction

set has been designed so that it obeys a very simple set of

rules. Once these rules have been learned, the programmer

can write code with very little reference to instruction manu-

als.

The HPC is fully memory mapped. Every piece of hardware

attached to an HPC core appears as a byte or a word in a

linear 64K byte address space. Any data movement or arith-

metic instruction can operate on any memory location and

everything in the HPC has a memory location, including the

accumulator. All of the I/O ports, the peripheral control reg-

isters, RAM and ROM are treated in exactly the same fash-

ion as far as the assembly language programmer is con-

cerned.

The HPC assembly language syntax can be explained by

describing the instruction codes and the addressing modes.

The instruction code tells the processor what operation it is

performing, such as an add, a subtract, a multiply, a divide

or a data movement instruction. The addressing mode is the

way that the programmer specifies the value or values to be

operated on to the microprocessor itself.

ADDRESSING MODES

Operations can be performed on any memory location. One

can, for example, increment or decrement any byte or word

of any memory location in the HPC. Increment and decre-

ment are examples of single address instructions. These

are instructions which have only one operand. Other exam-

ples are the bit set, bit test and bit clear instructions. These

five instructions are good examples of the basic thinking

behind the HPC instruction set. All of these instructions use

the same four addressing modes.

Direct

The simplest addressing mode to understand is that known

as direct. In this mode the address of the variable to be

operated on is included as part of the sequence of bytes

that comprises the entire instruction. For example, in order

to perform a decrement on memory location 0F0 this value

is included in the string of bytes that forms the instruction.

Examples:

DECSZ 0F0.B

INC 0F0.W

The increment instruction, like most other instructions with

HPC, can operate on either a byte or a word. A byte access

is specified by putting a B after the address of the variable,

a word access by writing W.

Register Indirect

This addressing mode usually generates less bytes of code

than any other. HPC has two 16-bit registers, B and X, which

can be used as general purpose memory locations but also

have a specific function as pointers to memory. These in-

structions take up very little ROM space because the ad-

dress of the variable to be operated on is contained in the

pointer register and the pointer register to be used is speci-

fied as part of the instruction. An instruction such as incre-

ment, using register indirect, can thus be only 1 byte long as

it does not need to be followed by a byte specifying the

address of the variable.

Examples:

INC [B].B ;byte increment, B pointer

INC [X].W ;word increment, X pointer

Indirect

B and X provide two 16-bit pointers to memory. Program-

mers will often wish to have more than two pointers in use

at any one time. HPC therefore provides indirect addressing

mode. In this mode a 16-bit pointer to the location to be

accessed is stored in the basepage of the HPC. The instruc-

tion, therefore, is followed by a single byte which specifies

the address of this 16-bit pointer. The bottom 192 bytes of

RAM are on chip with the HPC and are in the so-called base

page. The base page is normally used for storing frequently

accessed variables as only a single byte of address is re-

quired to access a base page variable. When using indirect

addressing mode, the 16-bit pointer value must always be in

the base page.

Examples:

DECSZ [0].W ;decrement a word

INC [0FE].B ;increment a byte

The base page is in the region of 0 to 0FF bytes. This area

also contains the most frequently used registers such as the

accumulator. The programmer can thus use indirect ad-

dressing mode with registers such as the accumulator act-

ing as the pointer. This is an example of the simplicity of the

HPC instruction set. Any operation can be performed on any

HPC register simply by invoking its address in the HPC

64 kbyte addressing space.

Indexed

The last of the four basic addressing modes is indexed

mode. Indexed is very similar to indirect except that an 8- or

16-bit immediate value precedes the address of the 16-bit

pointer and is added to it to generate the address of the

variable to be accessed. This allows a table of values to be

located anywhere in memory and the pointer register need

only be incremented or decremented to move through the

table of values.

Examples:

INC 0FF00 [4].W ;increment a word

DECSZ 02 [2].B ;decrement a byte

HPCTM and MOLETM are trademarks of National Semiconductor Corporation.

PALÉ is a registered trademark of and used under license from Monolithic Memories, Inc.

C1995 National Semiconductor Corporation RRD-B30M105/Printed in U. S. A.



Bit Operations

The bit operations of the HPC allow any bit in the memory of

the HPC to be accessed. The addressing modes for these

three operations, SBIT, RBIT and IFBIT, always refer to the

memory location as a byte. The individual bit of the byte to

be tested, using the four addressing modes already de-

scribed, is actually coded into the opcode itself. This could

be described as an implied addressing mode but this defini-

tion is not normally used in HPC. The way this works can be

seen from the opcode map in the programmers guide of the

HPC, where it can be seen that there are in fact eight op-

codes shown for each of the three different bit instructions.

Example:

SBIT 5, 2.B ;set bit 5 of byte

;at address 2.

Double Register Indirect

A rule of thumb when trying to decide which addressing

mode one can use with which opcode in HPC is that you

can use any combination of addressing mode and opcode

that is sensible. An example of this is a special addressing

mode which works only for the bit instructions. This ad-

dressing mode is known as double register indirect and

uses a combination of the B and X registers to index into

any bit of a 64k bit string, the lower boundary of which can

be located anywhere in memory.

When using this addressing mode the B register points to

the lowest byte of this 8k byte string, while the most signifi-

cant 13 bits of the X register point at the individual byte in

the string that is being accessed. The three least significant

bits of the X register point at the bit of the byte that the

instruction is pointing at. By using this addressing mode,

words of any length can be scanned for whether individual

bits are set or cleared. This addressing mode, while unusu-

al, fits into the scheme of things as it clearly is only of any

relevance to the individual bit instructions.

Examples:

SBIT X, [B].B; Set bit

IFBIT X, [B] B; test bit

Note that the bit instructions only operate on bytes, to allow

operations on words would require twice as many opcodes

for no gain.

Two Address Instructions

The five instructions described so far have only one oper-

and. There are many more instructions in the HPC instruc-

tion set which have two operands, such as arithmetic

instructions, the comparison instructions and data move-

ment instructions. The HPC instruction set allows any of

these instructions to use any of the four addressing modes

already described. An instruction such as multiply, for exam-

ple, when written in the HPC assembler syntax as shown

below shows the opcode followed by the destination oper-

and, which is then followed by the source operand. The

result of the operation in all cases except the comparison

instructions winds up in the destination operand. The com-

parison instructions, IFEQ and IFGT do not affect the values

of any memory location but, like all other two operand in-

structions, can operate on any two words or bytes in the

HPC addressing space.

Examples:

MUL A, [B].B

MUL 0.W,2.W

The destination operand in HPC may be either the accumu-

lator or a byte or word of memory accessed using the direct

addressing mode. If the destination operand is the accumu-

lator, the source operand may be addressed using direct,

register indirect, indirect or indexed addressing modes as

well as the familiar immediate addressing mode. The pro-

grammer can thus load the accumulator with an 8- or 16-bit

immediate value which follows the opcode, multiply the ac-

cumulator with that value, divide the accumulator by that

value or compare the accumulator by that value. Using the

accumulator as the destination operand gives maximum

flexibility in the choice of addressing mode for the source

operand and also tends to produce a shorter instruction in

terms of its length in bytes as the opcode does not have to

include the address of the destination operand.

Examples:

LD A, #37 ;load A With

;immediate value.

add 0FE.W,# 0F000 ;Add immediate to

;memory.

Instruction Lengths

Tables are provided in the HPC users manual to allow the

user to estimate the number of bytes an instruction will use

and the time this instruction will take to execute. To use

these tables the programmer must be aware of the name of

the addressing mode he is using. This is perfectly clear for

the single address instructions described at the beginning of

this note but perhaps needs some explanation for two oper-

and instructions.

For two operand instructions with the accumulator as the

destination, the addressing mode is named after that used

for the source operand. For example, load accumulator us-

ing a value pointed at by indirect addressing mode is re-

ferred to simply as indirect addressing mode.

Operations on Direct Memory

There are two addressing modes which allow operations to

be performed directly on memory locations. If the destina-

tion operand is directly addressed memory, then the source

operand may be directly addressed memory or an immedi-

ate value. These two are the only combinations of address-

ing modes that can be used where the destination operand

is a memory location.

Examples:

DIV 010.W, 0F000.W

direct-direct mode

DIV 0F0.B,#10

immediate direct mode.

Special Symbols

Some special symbols have been allocated in the HPC

cross assembler. These are A, B, K, X, PC and SP. The

programmer can also define his own symbols using the

equals directive of the assembler. The way that the symbols

described above would be defined using the equals direc-

tive are shown below by way of example.

Example:

A 4 0C8.W

B 4 0CC.W

X 4 0CE.W

K 4 0CA.W

PC 4 0C6.W

SP 4 0C4.W

2



Note that these symbols cannot be redefined so the above

set of definitions should never be included in a user pro-

gram.

IMPLIED ADDRESSING MODES

Some of the HPC’s opcodes have been shortened by using

implied addressing mode. A few examples have already

been shown. This section describes some more special

cases. It could be said that accumulator as destination is an

example of an implied addressing mode, where the address

of the destination is coded into the instruction. There are

some special purpose instructions which use implied ad-

dressing mode for instructions which are used very fre-

quently. In most cases these instructions look exactly the

same to the programmer as instructions using the address-

ing modes described earlier. For example there is a special

opcode for load B with an immediate value. The program-

mer could do this using the immediate direct addressing

mode but a special opcode has been provided to make this

instruction shorter.

Load B and K is a special immediate load which loads both

the B and K registers in one operation.

Carry Flag

The carry flag may be accessed using the standard bit test

instructions because it can be read in the processor status

word, but as carry must so often be set and tested, special

instructions to do this have been included which do not re-

quire the address of the carry flag.

Multiply and Divide

Finally, the divide double and multiply instructions both have

to manipulate 32-bit values. These therefore have to store

an operand in two concatenated registers. The HPC instruc-

tion set cannot specify two registers with one address.

Therefore these instructions default to using the X register

as the high word of their 32-bit value.

The source and destination of a multiply instruction are

specified as normal except that the 32-bit answer is stored

in the destination operand with the 16 high bits of the an-

swer stored in the X register. The divide double instruction

basically performs the inverse of multiply, taking the 32-bit

value formed by X concatenated with the destination value

and dividing it by the source value. Divide double, like divide,

yields a 16-bit result and a 16-bit remainder. For both divide

double and divide the remainder is stored in the X register.

In both cases the K register is used for intermediate value

storage and is cleared as a result of this operation.

As the result of divide double can only be a 16-bit value, a

full 32-bit divide is performed by following a 16-bit divide

with a 32-bit divide as shown below. The example below

shows how the divide instructions work together and also

highlights the combinations of addressing modes that can

and cannot be used with HPC.

LD B,#11

DIV HIGH.W,#10

LOOP: DIVD LOW.W,#10

LD A, X

ST A, [B].B

DECSZ B

JP LOOP

This example shows the conversion of a 32-bit binary value

in words low and high into a 10-digit BCD number in the 10

bytes starting from 1. The conversion is performed one digit

at a time and the B register is used to point at the byte’s

location where the digit is to be stored. The first instruction

of the programme therefore is to initialize the B register. The

divide instruction divides word high by 10 using immediate

direct addressing mode and stores the answer back in word

high. The remainder is stored in the X register. The divide

double instruction then divides X concatenated with word

low by 10. Because X contains a remainder, the result of

this division will always be a 16-bit value and can thus be

stored in word low. The remainder is stored in X and is in

fact the modulus and is thus the BCD digit that we have

derived on this pass through the numbers.

We now wish to store the remainder into one of our BCD

digit locations using register indirect mode. We need to load

the value into the accumulator from X. The X register is

nothing special in this application, so load A with word X is

in fact an example of direct addressing mode.

Now that our BCD value is in the accumulator, we can store

this in the byte location using B register indirect addressing

mode.

The next instruction is decrement skip on zero. This uses

direct addressing mode to decrement the B register. This

instruction is an example of many in HPC which perform

more than one function. As well as decrementing the mem-

ory location specified, this instruction also compares it with

zero after the decrement has been performed. If the result is

zero, the instruction following the decrement skip on zero

instruction is skipped. That is to say it is ignored and control

passes to the instruction following it. In this example the

final instruction of the routine is a single byte jump back to

the divide instruction. The overall loop is executed ten times

in order to perform the conversion. On the final pass

through the loop, B becomes zero and execution of this

algorithm is terminated.

Auto Increment/Decrement Instructions

This multi-function instruction capability is best illustrated by

the four special addressing modes register increment or

decrement with or without conditional skip, which work only

with the data movement instructions load and exchange.

The load instruction in general uses any of the five two-ad-

dress modes or the two combination modes to transfer data

from one location to another.

The exchange instruction is similar except that the destina-

tion must always be the accumulator. Exchange not only

takes the source and puts the value into the destination but

also takes the value from destination and puts it into source.

Clearly there is no immediate addressing mode for ex-

change as a destination cannot be stored into an immediate

value.

When load and exchange are used with the X register as a

pointer and register indirect mode, a suffix a or b can be

added after the X. In this case, once the data movement

operation has been performed, the X register is increment-

ed or decremented by one or two according to whether

3



there has been a byte or a word access respectively. A

further refinement on this is provided by the load and ex-

change with conditional skip instructions, LDS and XS re-

spectively. These only work with the B register as the point-

er and perform two more operations rather similar to the

decrement skip on zero instruction. Once the increment or

decrement has been performed, the B register is compared

with the K register, otherwise known as the limit register. If

an increment has been performed and B is greater than K,

the instruction following the movement instruction will be

skipped. If a decrement is performed, the instruction is

skipped if B is less than K.

An example of how these specialized instructions are used

is given by the block move routine shown below;

LD X,#START

LD BK,#BEGIN,#END

LOOP: LD A, [X0].W

XS A, [B0].W

JP LOOP

This routine moves a block of data from one location to

another. The X register is initialized first and is used as a

pointer to the first value to be moved in the source block.

The B and K registers point to the first and last values re-

spectively in the destination block. The loop itself consists

of only three bytes. The first instruction loads the accumula-

tor with the word pointed to by the X register and increments

X by two. A second instruction exchanges the accumulator

with the word pointed to by the B register, increments the B

register by two and compares it with K. If B is greater than K,

the jump instruction is skipped and this loop is terminated.

The example shows how HPC code can perform a great

deal with very few instructions and use up very few bytes of

code while doing so.

These auto increment/decrement instructions are the only

examples where an addressing mode cannot be used for

any instruction where it might make sense. It is however

fairly easy to remember which addressing modes these can

be used with. Auto increment/decrement can be used with

the load and exchange instructions for the X register. Auto

increment or decrement with conditional skip can be used

with load and exchange instructions using the B register as

a pointer. No other combinations are allowed.

We have not provided specific string move or search in-

structions but the auto increment/decrement operations

provide building blocks allowing the programmer to assem-

ble his own stock. In the block move instruction shown

above, the value being moved is in the accumulator in be-

tween the load and exchange instructions. The programmer

can then compare this value with anything he wishes, fill

BCD to ASCII, pack BCD, unpack BCD or perform any oper-

ation he likes on a string of data.

HPC ASSEMBLY CODE

The addressing modes usable for each opcode are de-

scribed in a shorthand form.

Example:

ADD MA k MA 0 MemI

In the above syntax MA means directly addressed memory

or the accumulator and MemI means memory addressed

using any of the four basic single-address addressing

modes or an immediate value. This would be better written

as shown below:

A k A 0 MemI

or M k M 0 M

or M k M 0 I

Expanding the syntax highlights that the flexible addressing

modes such as register indirect may only be used if the

destination is the accumulator. It also shows that if the des-

tination is direct memory the source may only be an immedi-

ate value or another direct memory location.

When writing assembly code the programmer writes the

same mnemonic whether a memory location is a piece of

RAM or ROM or an I/O port or the accumulator. In general

any source or destination variable may be a byte or a word

and combinations are allowed. Care must be taken when

storing word into a byte location that the programmer really

wishes to truncate that value to byte and throw away the

upper 8 bits of the value. When loading a byte into a word

location the upper 8 bits of the word location will be filled

with zeros. If memory external to the HPC is used, this may

be 8 or 16 bits wide. The programmer must be aware of this

when writing his assembly language as HPC cannot cope

with the programmer requesting a 16-bit access to 8-bit

wide external memory. The HPC will not convert this to two

sequential 8-bit accesses.

The only exception to this rule is that a pointer word in indi-

rect or indexed addressing modes must always be in the

base page. This is because only one byte has been allowed

in the overall length of the instruction for the address of the

pointer.

For all other addressing modes there is no difference in the

assembly language the programmer writes between access-

ing a variable that is in the base page and a variable that is

above address 0FF.

The programmer should be aware however that variables in

the base page consume less bytes per access and the in-

struction will execute more quickly than non-base page vari-

ables. When studying the data sheet to see how long an

instruction is, the programmer will see that the table result is

different according to whether variables are base page or

not. The programmer should therefore allocate base page

to variables which are used most often.

EXECUTION SPEED

There are 64 bytes of RAM above the base page. These,

like the base page RAM, require zero wait states to access

even when the processor is running at full speed. They do

however require 2 bytes of code for their addresses. These

4



64 bytes may best be made use of by using them as the

stack area as the 16-bit stack pointer contains the full ad-

dress and therefore there is no penalty in instruction length

in putting the stack in this non-base page on-chip RAM.

Note that there is no difference in execution time between

byte and word accesses, that is to say accesses to byte or

word variables. When studying the data sheet, differences

in program length and therefore in execution time will be

observed according to whether the address of a directly ad-

dressed variable is a byte or a word. It is important to under-

stand the difference between the width of the variable and

the width of the address that is used to access that variable.

The cycles per instruction table is not always clear about

the number of wait states applied to different variables. The

HPC includes a wait state register which sets the number of

wait states to be used when accessing external memory,

the internal ROM, or internal registers associated with ports

A and B. Wait states may be applied to these on-chip regis-

ters to allow compatibility with development tools such as

the MOLETM and HPC Designer Kit board, as when these

tools are run on high clock speeds wait states must be ap-

plied for accesses to the port recreation logic. The HPC

needs wait states for accessing slow external memory and

when running at high clock rates.

These wait states may be applied in order that the MOLE

can provide a perfect emulation of a single-chip HPC. In the

MOLE the HPC is running with external memory and thus

the A port and some of the B port are used for address/data

and control lines respectively. The A port and part of the B

port must therefore be recreated external to the HPC. In the

case of the MOLE this is done using a large array of PALÉs.

Because they are external to the HPC, one wait state must

be applied when accessing these externally recreated ports

at high clock speeds. If wait states could not be applied to

these ports in a masked ROM HPC, the MOLE would not be

able to provide full speed emulation. This is just one exam-

ple of how the design of the HPC has been influenced by

the need to emulate it 100% exactly at full speed. Apart

from this no wait states are applied to any access to ad-

dress locations below 200 HEX, regardless of the address-

ing mode used.

The HPC data sheet does not make it clear how many wait

states are applied when register indirect addressing mode is

used. It implies that wait states are always applied when

register indirect or similar addressing modes are used, but

this is not the case.

The best way to time a piece of code is to write the code

and then run it through the cross assembler to generate a

source plus object listing. The number of bytes generated

by each instruction can then be easily read and only the

cycles and accesses table need be looked up in order to

calculate how long each instruction takes to execute.

Note that accesses to internal ROM are subject to at least

one wait state for exactly the same reason as accesses to

the A or B ports.

SUMMARY

The HPC is fully memory mapped. The I/O Ports, Peripheral

Control Registers, RAM and ROM are treated exactly the

same. This makes the HPC easy to program. The HPC in-

struction set has relatively few opcodes but allows any of

these opcodes to be used with any addressing mode so as

to provide an Instruction Set with great power and flexibility.

Once the contents of this note have been understood, HPC

code can be written without referring to any document more

lengthy than the HPC Instruction Set description in the data

sheet.

5



A
N

-5
1
0

A
s
s
e
m

b
ly

L
a
n
g
u
a
g
e

P
ro

g
ra

m
m

in
g

fo
r
th

e
H

P
C

Lit. Ý100510

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor
Corporation Europe Hong Kong Ltd. Japan Ltd.
1111 West Bardin Road Fax: (a49) 0-180-530 85 86 13th Floor, Straight Block, Tel: 81-043-299-2309
Arlington, TX 76017 Email: cnjwge@ tevm2.nsc.com Ocean Centre, 5 Canton Rd. Fax: 81-043-299-2408
Tel: 1(800) 272-9959 Deutsch Tel: (a49) 0-180-530 85 85 Tsimshatsui, Kowloon
Fax: 1(800) 737-7018 English Tel: (a49) 0-180-532 78 32 Hong Kong

Fran3ais Tel: (a49) 0-180-532 93 58 Tel: (852) 2737-1600
Italiano Tel: (a49) 0-180-534 16 80 Fax: (852) 2736-9960

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.


