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CHAPTER 1 DISK DRIVE TECHNOLOGYÐOVERVIEW

1.0 INTRODUCTIONÐWINCHESTER
DRIVES
From the start, digital computers have required some form

of data storage as an adjunct to their relatively sparse main-

storage facilities. Some of the early forms of storage were

punched cards, paper tape and the magnetic tape storage.

This was the principal storage medium, until faster-transfer,

higher-capacity media became available and a direct link

was established between the computer’s main memory and

the mass storage device. This link was the rotating memo-

ries, commonly referred to as disks.

Disk technology started a quarter-century ago, with the in-

troduction of a large cumbersome fixed disk unit with 50

rotating surfaces 24× in diameter, a single read/write head

assembly, 600 ms seek time and a modest capacity of 5

megabytes. Half a decade later, capacities had increased

by tenfold. Multiple head assemblies, one for each surface,

introduced the concept of a ‘‘cylinder’’, providing simulta-

neous access to multiple tracks, one above the other, with a

single head movement. Packing densities increased, result-

ing in increased storage capacity up to 100 megabytes.

Head designs became more sophisticated; bits per inch in-

creased by an order of 10; tracks per inch doubled.

Contamination-free Winchester technology was introduced

by IBM in 1973. In addition to a controlled environment that

eliminated dust collection on the disk surface, Winchester

innovations included lightly loaded heads, an oriented iron-

oxide coating to support higher flux reversal densities, and a

silicone or wax coating that permitted heads to slide directly

on the surface during ‘‘takeoff’’ and ‘‘landing’’Ðeliminating

the need for complex head loading mechanisms. The Win-

chester technology offers a number of advantages; device

reliability, data integrity, faster transfer rates and a broader

range of capacities. By the early 80’s, fixed disk 14× Win-

chester capacities were approaching 600 megabytes.

Drives with capacities of 3 to 6 gigabytes are now on the

immediate horizon. Winchester innovations also served as

the springboard for miniaturized rigid disk systems. First

came compact single or double-platter, non-removeable

14× units with capacities down to 10 megabytes. Then

around 1975 the 8× Winchesters appeared, closely followed

by the 5(/4× units, suitable for smaller desktop computers.

Today the market boasts of a continuous spectrum of small

to medium Winchester sizes: 3(/2, 5(/4, 8, 10(/2 and 14

inches. Capacities begin at 5 Mbytes to 900 Mbytes.

The disk drive consists of one or more platters and heads,

and the control mechanism with its associated electronics.

The disk is essentially a platter made of aluminum or other

base material, coated with iron-oxide or other magnetizable

material. Each side of the disk consists of a number of thin

annular regions called tracks . Each track is divided into

blocks referred to as sectors . Data and other identification

information is stored in the sectors. There are two types of

sectoring: hard sectored discs and soft sectored discs. The

hard sectored discs have sectors demarcated by the manu-

facturer and are identified by a sector pulse at the start of

each sector while the soft sectored discs have only an index

pulse signifying the start of a track.

The more recent hard disk drives have a number of platters

on the same spindle, with one head per surface. In such

cases similar track position on each platter constitutes a

cylinder, e.g. cylinder 0 is the cylinder corresponding to

track 0 on both sides of all the platters. The reading or writ-

ing of data is accomplished by the read/write head. This

head is positioned on the required track by the drives posi-

tioning control system. This process is commonly referred

to as seeking and is usually less than 17 ms. The quantity of

data that can be stored on a disk depends on how much of

its surface area is magnetized for the storage of a bit. On a

typical low cost Winchester disk track densities are around

400 tracks per inch, while flux densities range around 9000

flux transitions per inch (implying recording densities of

9000 bits per inch). The rate at which data is written on the

disk or read from it is termed as transfer rate and ranges

from 5 Mbits/sec to 24 Mbits/sec and greater. The speed at

which a particular sector is found for the writing or reading

of data is gauged by the access time. First the head must be

positioned over the proper track referred to as seek time.

Then the proper sector of the track must come under the

head which is referred to as the latency time. These are

some of the common terms associated with the disk drive

system.

The disk selection process is a function of several factors

like storage capacity, upward mobility, transfer rate, etc.

Data capacity is, perhaps, the most difficult decision to

make in the selection process. All questions, present and

future, must be considered in the context of the application.

A fail, safe option, of course, would be to select a drive

design with enough potential capacity to meet any future

storage requirements. Disk technology has been striving to

increase capacity, with future increases taking the form of

increased data densities. There is considerable room for

growth. Better head and disk material techniques are being

used to raise track densities. Higher track densities have

resulted in replacing the head positioning stepper motors by

solenoid type ‘‘voice coil’’ actuators with theoretically infi-

nite track following resolution. Developments in disk tech-

nology can also influence the transfer rate. The transfer rate

directly affects system throughput. It is the average transfer

rate that counts, and again this is a function of the applica-

tion.

If write/read accesses are scattered because of varied rea-

sons, track-seeking and sector-searching delays will reduce

the effective transfer rate to a fraction of the theoretical

value determined from data density and rotational speed. A

series of application-dependent cost-performance tradeoffs
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must be individually evaluated. Higher rotational speeds re-

duce the latency time as the system waits for a desired

sector to pass under the write/read heads. Multiple heads

reduce both the number of head repositions and the dis-

tance that must be travelled. Lower cost stepper motor ac-

tuators are normally open loopÐmoving the heads from

track to track at a constant, relatively slow rate. Voice coil

actuators are more expensive but inherently faster, acceler-

ating and decelerating in response to feedback signals from

a closed loop servo system.

1.1 DISK STORAGE BASICS
Magnetic writingÐthe recording of data in a magnetic medi-

um, is based on the principle that if a current flows in a coil

of wire, it produces a magnetic field. The field is largely

confined in a ring-shaped core of magnetic material, around

which the wire is wound. A narrow slot is cut in the magnetic

material and the field in the vicinity of the slot magnetizes

the magnetic medium on the disk surface. Thus it creates

alternating north-south magnets in the coated surface of the

rotating disk. Thereby data is written, refer to Figure 1.1(a).

The head that writes the data can also be used to read it.

This is done based on the principle of induction wherein a

voltage is induced in an open circuit (like a loop of wire) by

the presence of a changing magnetic field. In the case of a

head positioned above a spinning magnetic disk on which

data has been written, the magnetic fields emanate from the

magnetized regions on the disk. During the time the head is

over a single magnetized region, the field is more or less

uniform. Hence no voltage develops across the coil that is

part of the head. When a region passes under the head in

which the magnetization of the medium reverses from one

state to the other, i.e. a flux reversal, there is a rapid change

in the field, developing a voltage pulse, refer to Figure
1.1(b). In this way the digital data are read as an analog

signal, which can be readily converted back to digital form.

The shape of this pulse and its ability to be recovered de-

pends on various spacings. Figure 1.1(c) shows the spread

of the coupling effect as a function of the width of the read-

head gap and, equally important, the distance from the gap.

The latter is, in turn, a function of both the head-surface

separation and the depth of the flux reversal within the mag-

netic coating.

The quality of writing and reading of data depends of course

on the magnetic properties of both the medium in which the

data are stored and the head that writes and reads them.

The common method of disk manufacture is to coat an alu-

minum disk with a slurry containing the gamma form of iron

oxide. The iron atoms in the needle-like particles have their

own minute magnetic fields and act like bar magnets with a

dipole. The overall magnetization in any given region of the

disk is the sum of the fields of these particles within it.

The core of most read/write heads is a ceramic consisting

of spherical ferrite particles. The design of the head must

conform to the design of the disk. In the case of the floppy

disk(or flexible disket), which is a thin sheet of mylar plastic

on which the gamma form of iron oxide is coated, the head

makes contact with the surface, resulting in higher error

rates and greater wear of the medium. In high performance

disk drives, the magnetic medium is the coating on a rigid

aluminum disk, and the head is kept from touching the medi-

um by the so-called air-cushion effect. Consider a head that

is nearly in contact with the surface of a hard disk spinning

at 3600 revolutions per minute. If the length of the head

along the direction of relative motion is two orders of magni-

tude longer than the separation between the head and the

TL/F/8663–1

(a) Flux Reversals Produced by Write Current

TL/F/8663–2

(b) Read Pulses Generated by Flux Reversals

TL/F/8663–3

(c) Output as a Function of Saturation

FIGURE 1.1 Flux Reversals as They Relate to ‘‘Writing

To’’ and ‘‘Reading From’’ the Platter

medium, the flow of air between the head and the medium

provides support for a head weighing up to several grams.

Therefore because of the high cost of producing a hard disc

along with its large storage capacity, it is used even if it has

a bad track or sector while a floppy could be discarded. The

bad sector is detected by using error checking and correc-

tion codes.
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Optical Disk Technology
Disk drive improvements have resulted in faster data rates

caused by increasing the density of the magnetic particles

for greater storage. In the case of rotating magnetic memo-

ries, the strength of the signal depends on the strength of

the medium’s remnant magnetization. Recent advances in

laser technology have resulted in digital optical disks be-

coming the last word in data storage and retrieval. Here, the

laser beam itself provides the energy, hence the head is not

in contact with the medium and it is protected, resulting in

reduced errors and minimum medium wear. The advantages

offered by optical disk technology are increased storage ca-

pacity, long data life, low cost per bit, noncontact read/write

and easy physical mass replication. The optical disks initially

developed could be written to only once. Read/write optical

technology is being developed. Applications for optical

disks are many and varied. On the interface level it is no

different from Winchester drives and SCSI seems to be one

of the most suitable of several possible choices. Another

magnetic disk technology, ‘‘vertical’’ recording, is done with

north-south magnetic poles perpendicular to the disk sur-

face instead of end-to-end along the track.

FM & MFM Codes

TL/F/8663–4

4

5
(0,2) GCR Code

TL/F/8663–5

FIGURE 1.2 (a). FM, MFM and GCR Encoding
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2

3
(1,7) RLL Code

TL/F/8663–6

1

2
(2,7) RLL Code

TL/F/8663–7

FIGURE 1.2 (b). RLL Encoding Schemes
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1.2 DATA ENCODING/DECODING
Disk Data Encoding is the specific technique by which data

is written to the disk, whereas decoding of data is necessary

while reading from the disk. Data encoding removes the

need of having clock information added to the track. Encod-

ing also assists the controller in resynchronizing the data to

the correct byte alignment, by allowing code violations for

special data and address marks on the track. Considering

the demand for ever-increasing data densities, it is under-

standable that the selection of a particular code is based

largely on the efficiency with which flux reversals are con-

verted into binary information, ZEROs and ONEs. In the

ideal case, there should be the fewest flux reversals relative

to the number of data bits they represent. Ideally, too, the

code itself should provide its own ‘‘clock’’ for identifying the

bit-cell intervals. Lacking this feature, a separate clock track

may be requiredÐor an extremely accurate oscillator must

be provided to maintain the bit-cell divisions during intervals

without flux reversals. The two requirements tend to be con-

tradictory. An efficient code in terms of flux reversals will not

be self-clocking. A self-clocking code will be wasteful of flux

reversals. Nearly all of the widely used codes represent a

compromise between these two extremes. Figure 1.2(a)
shows details of FM, MFM and GCR encoding schemes,

while Figure 1.2(b) shows details of some RLL encoding

schemes. The commonly used encoding methods are dis-

cussed below in brief.

NRZ (NON-RETURN TO ZERO)

This is a telecommunication code and by far the most effi-

cient. ‘‘Zero’’ refers to the transmission signal level. Instead

of discrete pulses for each data bit, the signal rises or falls

only when a ZERO bit is followed by a ONE bit or a ONE by

a ZERO. NRZ coding reduces signal bandwidth by at least

half. It also requires precise synchronization between

source and destination in order to maintain bit cell divisions

during the transmission of long strings of ZEROs or ONEs.

NRZ could be used to transmit serial data to or from a mag-

netic recording device, disk or tape. But the extended inter-

vals which can occur between flux reversals limit its useful-

ness as a recording technique.

NRZI (NRZ CHANGE ON ONEs)

This is the next most efficient code. It is widely used for tape

recording and, to an increasing degree, disk recording. All

ONEs are clocked, but special steps must be taken to com-

pensate for the absence of flux reversals during strings of

ZEROs. In the case of parallel-bit recording (tape), parity-bit

ONEs serve as clock when all other bits in the byte are

ZERO. In the case of serial-bit recording, data can be con-

verted to RLL code (discussed below) which restricts the

number of successive, unclocked ZEROs.

PE (PHASE ENCODED)

This is the least efficient of the coding methods but is com-

pletely self-clocking. The direction of a flux reversal at the

middle of each cell indicates whether the bit is a ZERO or a

ONE. Either one or two flux reversals occur, therefore, dur-

ing each bit cell interval. The effect is to shift the ‘‘phase’’ of

the signal by 180 degrees each time there is an NRZ type

transition between ZEROs and ONEs.

FM (FREQUENCY MODULATION)

The FM method of encoding is equivalent to the PE tech-

nique and was the first choice for early disk-recording sys-

tems. It is generally only used for older floppy drives. Every

bit cell interval is clocked by a flux reversal at the start of the

cell. ONEs are marked by an additional flux reversal at the

middle of the cell, doubling (modulating) the frequency

of flux reversals for a series of ONEs compared to a series

of ZEROs. A constant bit cell reference, provided by the

clock bit, simplifies encoding and decoding with this

scheme.

MFM (MODIFIED FREQUENCY MODULATION

ENCODING)

With available head and media technology, MFM encoding

is the most easily implemented encoding scheme and by far

the most popular for floppy drives. It is used in the IBM

System/34 and in available double-density LSI controller

chips. MFM encoding doubles the data capacity over FM by

eliminating the clock transitions (used in FM encoding) with

data bits, refer to Figure 1.2(b) . Clock bits are still used, but

are written only when data bits are not present in both the

preceding and the current bit cell. As a result there is a

maximum of one flux change per bit cell. Clock bits are writ-

ten at the beginning of the bit cell, while data bits are written

in the middle of the bit cell.

To decode data bits in MFM encoding, a data separator

must generate a data window and a data window comple-

ment for a clock window. Because not every bit cell has a

clock pulse, the data/clock windows cannot be timed from

the clock pulse. Instead, the data separator must continu-

ously analyze the bit position inside the windows so that the

data/clock windows remain synchronous with the data/

clock bits. Ideally, the clock transitions should appear at the

center of the window. However, clock edges data bits can

shift due to bit-shift effects. Present LSI controller chips can

handle the drive interface, double density encoding func-

tion, and bit-shift pattern detection and compensation. Na-

tional’s DP8466 takes care of all these functions and needs

only the data separator DP8465. Despite these constraints,

disc controller design for MFM is simpler than that for either

of the following encoding schemes.

M2FM RECORDING SCHEME (MODIFIED-MODIFIED

FREQUENCY MODULATION ENCODING SCHEME)

Until recently, M2FM has been used as a double density

encoding scheme, because the resolution of the medium

and the read/write head was not adequate for the sizes of

data window used in MFM. In M2FM, a clock is written only

if no data or clock bit is present in the preceding bit cell, and

no data bit occurs in the current cell. Because clock pulses

are relatively isolated on the medium, the effect of bit shift

on clock pulses is minimal. Therefore, a narrower clock win-

dow can be used to decode the clock pulse. The width of

the data window can thus be increased by 20%, which al-

lows more margin for shifted data bits. Today’s ceramic-

based read/write heads have much better resolution than

those used in the past. This head design reduces the ef-

fects of bit shift, and makes the window margin provided by

M2FM unnecessary. Additionally, M2FM is subject to a

droop problem, which occurs in the read amplifier circuit

when a low frequency pattern is read.

GCR (GROUP CODED RECORDING)

ENCODING SCHEME

GCR encoding evolved from methods used in magnetic

tape recorders. This method translates four data bits into a

5-bit code during a write. During a read, the 5-bit code is

retranslated to four data bits; no clock bits are generated.

Using data rates specified by drive manufacturers, this

scheme is less dense than MFM. This method requires

more circuits to code and decode, requiring necessary look-

up tables, and costs more than either of the other two en-

coding schemes. For example; 1101 is encoded into a serial

bit stream 01101 according to GCR encoding rules. To de-
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code, a data window is generated around the expected po-

sition of each bit. The result is serial read data of 01101,

which must be decoded to 1101 by lookup tables.

RLL (RUN LENGTH LIMITED) ENCODING SCHEMES

These recently popular encoding schemes are used in big

14× drives from IBM, CDC and DEC, and are starting to

make an appearance in the small 5(/4× drive market. The

RLL encoding schemes have an excellent encoding effi-

ciency, up to 50% higher than MFM. It is, however, consid-

erably more complex to generate, requires a much better

data separation unit to recover recorded data and is more

suceptible to wider error bursts. The encoding rules for RLL

depend on the RLL scheme chosen. The most common one

is the 2,7 RLL code which refers to the maximum number of

consecutive 0s, refer to Figure 1.2(b) . A standard encoding

tree is defined and the data is encoded on the basis of

those rules, as shown in Figure 1.3 . The data bit stream is

taken and the encoding tree is traversed, starting at the

root, where the nodes traversed are the data bit stream in

the sequence they arrive. On reaching the leaf of the tree,

the code there is then the 2,7 RLL code for that data

stream, e.g. if there is a data stream 100011010, then on

traversing the tree, a data bit stream of 10 has a code of

0100, while the next bits 0011 are encoded as 00001000.

TL/F/8663–8

FIGURE 1.3. Encoding TreeÐ2,7 RLL Code

1.3 MEDIA FORMATTING
Media formatting provides the user with a reliable means of

data retrieval using the magnetic recording surface of the

track. There are many different formats but most of them

are variations of the same basic structure. The formatting

process is different for hard sectored and soft sectored

disks. In hard sectored disks the sectors are defined by the

manufacturers because the start of each sector is identified

by the sector pulse generated by the drive. In soft sectored

disks the drive issues only an Index pulse at the beginning

of the track and the user can define all details of how infor-

mation will be stored on the track, allowing more flexibility.

Figure 1.4 shows the basic format used. It consists of two

segmentsÐthe ID segment and the data segment. The ID

segment contains unique header information for the sector

and the data segment contains the actual data. When the

system requests a particular sector on a disk, the head must

be positioned over the selected track, and the desired sec-

tor on that track must be found. This requires electronics to

lock on to the data stream and then decode it. The begin-

ning of a track is indicated by the Index pulse while the

beginning of the sector is indicated by the sector pulse. This

is followed by gap before the start of the sector on the track,

which is referred to as the Post Index/Sector Gap. The

explanation of the various fields are given below:

1.3.1 ID Segment
PREAMBLE OR PLL SYNCH FIELD

This is a field of repetitive clocked data bits usually 10 to 13

bytes long. The preamble normally will be all zeroes of NRZ

data (encoded as 1010. . . in MFM). During the ID preamble,

the signal Read Gate will go active, indicating that the in-

coming data pattern has to be locked on to.

TL/F/8663–9

FIGURE 1.4. Typical Sector Format Showing the Various Fields Within the ID and Data Segments
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ADDRESS MARK FIELD

Address Mark (AM) is required on soft sectored drives to

indicate the beginning of a sector, because this type of drive

does not have a sector pulse at the start of each sector.

This address mark byte contains a missing clock code viola-

tion, typically in MFM. The violation is detected by circuitry

to indicate the start of a sector. The first decoded byte that

does not contain all 0s after the preamble will be the ad-

dress mark. The first 1 to be received is then used to byte

align after the all zeroes preamble. Some formats have one

ID address mark byte, while others have several.

ID SYNCH FIELD

For a hard sectored disk, byte alignment begins with the

synch field that follows the preamble. The Synch bytes con-

stitute a bit pattern that enables control circuitry to deter-

mine the byte boundaries of the incoming data, bit synchro-

nization. Synch field usually follows the address mark on

soft sectored drives and the AM is used for byte alignment

also. Some formats use two synch fields: synch Ý1 and

synch Ý2.

HEADER FIELD

The Header Field format varies between drive types, but

typically has two cyclinder number bytes, a sector number

byte, and a head number byte. It is generally 3 to 6 bytes

long and one of the bytes may contain bits for bad sector or

bad track recognition.

HEADER CRC/ECC FIELD

CRC (Cyclic Redundancy Checking) code or ECC (Error

Checking and Correcting) code is appended to the header

field. If CRC is used it consists of two bytes of the standard

CRC-CCITT polynomial. The code detects errors in the

header field. If ECC code is used, it is normally the same

ECC polynomial that is used for the data field. This append-

age is basically a protection field to make sure that the ID

field contains valid information.

POSTAMBLE

This field may be used to give the disk controller time to

interpret the data found in the ID field and to act upon it. It

provides slack for write splicing that occurs between the ID

and Data segment. A Write splice occurs when the read/

write head starts writing the data field. A splice is created

each time a sector’s data segment is written to. The slight

variations in the rotational speeds cause the first flux

change to occur in different positions for each write opera-

tion. It also allows time in a write disk operation for the read/

write circuitry to be switched from read to write mode. Final-

ly it allows time for the PLL circuit to re-lock on to a fixed

reference clock before it returns to synchronize to the pre-

amble of the data field.

1.3.2 Data Segment
PREAMBLE FIELD

The Data Preamble field is necessary when reading a sec-

tor’s data. It ensures that the PLL circuit locks on to the

Data segment data rate. Initially, the ID segment and the

data segment of every sector will be written when formatting

the disk, but the Data segment will be written over later. Due

to drive motor speed variations within the tolerance speci-

fied, the ID and Data segments will have slightly different

data rates because they are written at different times. This

implies that the PLL must adjust its frequency and phase in

order to lock on to the data rate of the Data segment before

the incoming preamble field has finished. Hence the need

for a second preamble field in the sector.

DATA ADDRESS MARK FIELD AND DATA SYNCH FIELD

Following the Data Preamble will be the Data Address Mark

for soft sectored drives, and Data synch, both similar to the

ID segment equivalents.

DATA FIELD

The Data field is transferred to or from external memory. It is

usually from 128 bytes to 64 kbytes per sector.

DATA CRC/ECC

A CRC/ECC appendage usually follows the Data field.

CRC/ECC generating (when writing to the disk) and check-

ing (when reading from the disk) are performed on the Data

field. Errors may therefore be detected, and, depending on

the type of error and if an ECC polynomial is used, they may

also be corrected.

DATA POSTAMBLE FIELD

This has the same function as the ID Postamble field.

GAP FIELD

This is sometimes referred to as Gap 3, and is the final field

of the sector. It allows slack between neighboring sectors.

Without this gap, whenever a data segment is written to a

sector, any reduction in drive motor speed at the instance of

writing to the disk would cause an overlap of the data seg-

ment and the succeeding ID segment of the next sector.

This field is only written when formatting the disk.

A final gap field is added from the end of the last sector until

the INDEX pulse occurs and this gap is often termed Gap 4.

It takes up the slack from the end of the last sector to the

Index pulse.

1.4 THE DISK SYSTEMÐDRIVE AND
CONTROLLER
The Disk system essentially consists of two main paths:

1)the Disk Data Path, 2) the Disk Control Path, refer to Fig-
ure 1.5 . The disk control path is responsible for controlling

the disk drive with respect to positioning the head at the

desired track and control the associated control signals

(these are a function of the disk interface). The various disk

interfaces are discussed later. The other component of the

Disk System is the Disk Data Path which is responsible for

data transfer from and to the disk.

1.4.1 Reading Data from the Disk
Reading data from the disk to the system memory is a com-

plex process and involves a number of operations enroute,

as shown in Figure 1.6(a) . To initiate a read operationÐa

command is sent to the disk drive indicating the track and

sector from which data is to be read. The seek operation

moves the head to the desired track on the disk. Eventually

the desired sector is identified by the header ID segment

and the various fields are checked depending on the format-

ting rules used. The flux reversals are recorded by the head

and are of the order of 500 microvolts. These pulses are

then amplified by the read/write amplifier to about 10 mV.

The signal from the read/write amplifier when reading a disk

is therefore a series of pulses with alternating polarity.

These pulses are passed through a Pulse Detector, like the

DP8464. Electrically, these peaks correspond to flux rever-

sals on the magnetic medium. The Disk Pulse Detector ac-

curately replicates the time position of these peaks. The

Disk Pulse Detector utilizes analog and digital circuitry to

detect amplitude peaks of the signal received from the

read/write amplifier associated with the heads of disk

drives. A TTL compatible output is produced which on the

positive leading edge indicates a signal peak.
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The raw data coming from the pulse detector consists of

composite clock and data bits depending on the encoding

scheme used. This encoded data has to be synchronized

and decoded. These functions are performed by the Data

Separator, like the DP8465. Due to bit shifting and distortion

of the read pulses, the Pulse Detector issues non-synchro-

nous pulses. For reliable decoding this jittery bit stream

must be synchronized. The data separator has a Phase

Locked Loop which attempts to lock on to the bit stream

and synchronize it.

In hard sectored drives, the sector pulse indicates the be-

ginning of the sector. Normally the preamble pattern does

not begin immediately, because gap bytes from the preced-

ing sector usually extend just beyond the sector pulse. Al-

lowing two bytes to pass after the sector pulse helps ensure

that the PLL will begin locking on to the preamble and will

not be chasing non-symmetrical gap bits. For soft sectored

drives, the controller normally will not wait for the Index

pulse before it attempts lock-on. Chances are the head will

not be over a preamble field and therefore there is no need

to wait two bytes before attempting lock-on.

Disk Data Controller in a Disk System

TL/F/8663–10

TL/F/8663–11

FIGURE 1.5. Disk SystemÐData and Control Paths
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TL/F/8663–12

(a) Reading From Disk

TL/F/8663–13

(b) Writing to Disk (MFM Encoding)

FIGURE 1.6
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Having locked-on to the bit stream the data synchronizer

circuit must first determine the nominal position of clock and

data bits and then generate an appropriate clock and data

window that is centered around the bit positions. However

there are many causes for bits to shift from the position

where they are written. Erroneous data could be issued if bit

jitter is beyond the tolerance computed. Therefore, special

design considerations must be given to the type and resolu-

tion of the Data Separator used in reading data bits from the

disk. The more accurately the bit position can be deter-

mined and the tighter the resolution of the data window, the

lower is the soft error rate of the disk. Essentially the Data

Separator’s Phase Locked Loop locks on to the basic fre-

quency of data bits read from the disk, and determines nom-

inal bit positions for data and clock bits by sampling every

bit (clock and data). It uses the phase relationship between

a bit and its window to vary the position of the window. By

sampling each bit, the phase-lock loop determines the

phase error between a bit and the frequency being generat-

ed. To determine the nominal bit position around which to

center the window, the data separator must track data bit

frequency changes, yet ignore jitter. In this manner, even if

an unpredictable bit shift occurs, the data separator can

adjust the window’s position to compensate for the change.

Otherwise the shifted bit could be positioned outside the

window. To remain within the typical error rate specified by

the system, not more than 1 in 1010 bits can appear outside

the window. With the present media technology, only a data

separator based on an analog phase-lock loop technique

can provide the necessary reliability.

Once the bit stream read from the disk has been synchro-

nized and decoded to NRZ data, it is directly sent to the

Disk Data Controller block, DDC, like the DP8466. In the

DDC, the serial data is converted to parallel data (in terms

of bytes), by the deserializer block. The main task is to rec-

ognize the byte boundaries accurately. In soft sectored

drives this can be done by detecting a ‘‘missing clock’’ sig-

nal, which provides a fixed reference in the bit stream to set

the byte boundary. Upon receipt of this signal the divide-by-

eight circuit is set, to allow subsequent stages of the con-

troller to acquire the bytes correctly. Hard sectored drives

use a preset bit pattern in the synch field to determine byte

alignment. Once the data is in parallel form it is stored in a

temporary register in the controller. Transfer of data from

this register to the system memory is achieved by DMA (Di-

rect Memory Access) transfer. In this fashion data are read

from the disk and transferred to the system.

1.4.2 Writing Data to the Disk
The process of writing data to the disk is similar to the read

operation in the reverse direction, with some changes. The

write operation is initiated after the appropriate Seek com-

mand has been issued to the drive and the head is posi-

tioned over the desired track/sector. Figure 1.6(b) shows

the basic write path blocks. Data is transferred from the

system to the Controller using the DMA. The parallel data is

converted to serial data by the serializer in the controller.

This operation is conceptually easier to do, as the controller

already has the right byte boundaries in the data and knows

exactly where to insert the address mark. Most disk Control-

lers, like National’s DP8466, provide either NRZ encoded

data or MFM encoded data.

As mentioned in the previous section, predictable bit shift

effects result from normal read/write head operation. Data

are written when the read/write head generates a flux

change in the media. In reading, a current is induced into

the read/write head when a flux transition on the medium is

encountered. The current change is not instantaneous,

since it takes a finite time to build up to the peak and then to

return to zero, refer to Figure 1.7(a) . If flux transitions are

close together, the signal buildup after one flux transition

declines, but it does not reach zero before a second tran-

sition begins. So when the flux changes are detected by the

read/write head the peaks are shifted. A negative flux

change, for example, may appear late because it has been

added to the remnant of a positive transition. Narrower

spacing between bits results in greater bit shift on the inner

tracks. Hence compensation is needed on the inner tracks

to minimize bit shift while no compensation is required on

the outer tracks as bit shift is negligible, Figure 1.7(b) . Two

methods currently being used are precompensation and

postcompensation .

With precompensation, bits are deliberately shifted in the

direction opposite to that of the expected shift. As data are

being written, the controller detects bit patterns. From these

bit patterns, the controller calculates which bit will shift in

which direction. For example, a 4-bit pattern of 0110 on an

inner track would cause the third bit to appear a few nano-

seconds later than its nominal position. The controller chip,

after detecting this late bit shift pattern, would generate an

early signal, indicating that the third bit should be written

earlier to make it appear closer to its nominal position when

read. Conversely, if the third bit were going to appear early,

a late signal would be generated so that the bit could be

written later. How early or late the bit should be written is a

function of its position in the data pattern, track position,

and media, among other factors. Most Controllers provide

signals to indicate what type of compensation is necessary.

External circuitry is used to provide the actual delay as

shown in Figure 1.7(b) .

The encoded precompensated data is then sent to the

read/write amplifier where the stream of pulses is recorded

on the disk as magnetic flux reversals. Postcompensation

can be used when reading, usually as filter components

around the pulse detector.
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TL/F/8663–14

(a)

TL/F/8663–15

(b)

FIGURE 1.7. Bit Shifting

1.4.3 DMA (Direct Memory Access)
Transfer/Data Buffering
The DMA block is responsible for the transfer of data be-

tween the host system and the disk controller. This is done

because it is inefficient to dedicate a special communication

channel to the task of transferring data between the disk

controller and the system. The DMA system takes control of

the control lines associated with a system’s address and

data buses, and exercises them in such a way as to transfer

data in an appropriate direction from one device to another.

It is also generally optimally efficient in using the available

bus bandwidth whenever it is on the bus. The DMA capabili-

ty is built-in for some disk controllers while in some an exter-

nal one is required. National’s DP8466 supports a single or

dual channel DMA with capability of using an external DMA

instead, if desired.

Data buffering is the temporary storage of some or all of the

data to be transferred between the disk and the system

memory. Any centrally intelligent system benefits from mini-

mizing the bus occupancy. This is because the system has a

lot of other tasks to perform, and if the bus is too heavily

used, the system will miss performing some timely tasks.

Therefore to prevent this, the data from the disk is trans-

ferred to a FIFO (First In First Out buffer). In a dual-DMA

system, the local channel transfers the data from the FIFO

to a local buffer memory while the remote DMA channel

optimally transfers data from the local to the remote main

memory over the system bus. This minimizes bus bandwidth

use by the Disk I/O channel. The size of the FIFO is a

function of different factors like: 1) the rate at which the

system picks up the blocks of data, 2) the data rate from the

disk and, 3) the burst transfer rate of the DMA. The way this

is incorporated may differ in disk controllers. The buffer

memory optimizes bus bandwidth. A system utilizing a single

channel DMA would transfer data from the FIFO directly to

the Host.

1.4.4 Error Detection/Error Correction
There are a number of factors which contribute to disk er-

rors, viz. electrical noise, crosstalk, inadequately erased sig-

nals from previous recording, offtrack error in positioner, pin

holes, inclusions, media thinning, and pattern induced er-

rors. Of these, media defects are permanent errors. In gen-

eral, ECC (error checking and correcting code), ensures reli-

able data storage and recovery. Generation of the ECC

polynomial involves a detailed understanding of the mathe-

matics of coding theory, and a cookbook approach to de-

signing ECC logic. The basic idea behind ECC is the con-

cept of irreducible polynomials. Take an irreducible polyno-

mial (prime) and multiply it by the data pattern. Store the

resulting remainder on the disk after all the data has been

sent through the polynomial, Figure 1.8(a) . When reading

the data back, divide the data coming off the disk into the

polynomial. The reciprocal of the result should be equal to

the check bytes on the disk, Figure 1.8(b) . If not, there is an

error. The way error correction works is shown in Figure
1.8(c) . If there were no errors, then the sequence follows

the straight path and the shift register contains all zeroes. If

an error occurred, then at the point of occurrence the se-

quence vectors off, and at the end the shift register contains

the pattern which caused the error. This helps in tracing

back to the point of occurrence. The correction span is the

number of contiguous bits in error which could be corrected.

The probability of miscorrection is given by:

Pmc e (2(Cb1)) c S/2A

where C e correction span in bits

S e no. of bits in the sector

A e no. of bits in ECC appendage

Some codes have a higher miscorrection probability due to

pattern sensitivities. A 48-bit ECC with an 11-bit correction

span is recommended for 1,7 or 2,7 Run Length Limited

encoded disks, while for MFM a 32-bit ECC with a 5-bit

correction span results in low miscorrection probabilities.

There are different types of codes:
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FIRE CODES

Used in older systems and some current chips on the mar-

ket. Fire codes have a high miscorrection probability related

to double-burst errors (errors at two locations separated by

more than the detection span) and are not recommended

by National. Some examples of fire codes are:

32-bit FIRE CODE (x21a1)*(x11ax2a1)

48-bit FIRE CODE (x13a1)*(x35ax23ax8ax2a1)

56-bit FIRE CODE (x22a1)*(x11ax7ax6axa1)*
(x12ax11a . . . ax2axa1)*
(x11ax9ax7ax6ax5axa1)

COMPUTER GENERATED CODES

These have a very good reliability and are specifically cho-

sen to guarantee not miscorrecting a specified worst case

double burst error. The reliability can be calculated by the

equation for miscorrection probability. National recom-

mends the use of these codes for disk systems.

DOUBLE BURST REED SOLOMON CODES

Reed Solomon codes can handle longer bursts, multiple

burst error (two burst error within a sector) correction capa-

bility and would be necessary for use with some optical me-

dia because of the high error rates. Typically RS codes for

optical media are as long as a quarter of the sector. An

example of the Reed Solomon code is given below.

(x a a5)*(x a a6)*(x a a7)*(x a a8)*(x a a9)

How Error Detection Works

TL/F/8663–16

(a) Writing to Disk

Data

Polynomial
e

Quotient
(Discard)

a
Remainder

(append as ECC)

TL/F/8663–17

(b) Reading From Disk

Data a Remainder

Polynomial
e

Data

Polynomial
a

Remainder

Polynomial

e

Remainder

Polynomial
e w

If CRC Read e CRC Written

TL/F/8663–18

(c) How Correction Works

FIGURE 1.8. ECC/CRC
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CYCLIC REDUNDANCY CODE

These can only detect errors and will not correct. They are

generally used for header appendage and in floppy drives.

The most widely used code is the CRC-CCITT code given

below.

CRC-CCITT 16 bit x16 a x12 a x5 a 1

Selecting the correct CRC/ECC is a function of the parame-

ters being evaluated.

Detection Ability: The ability of the CRC/ECC to detect

errors in the data transferred, measured as the number of

bits affected and number of distinct bursts, the important

measure being the guaranteed value.

Correction Ability: The ability of the ECC to restore errone-

ous data to its original state. Again, like the detection ability,

this is measured as number of bits and number of bursts,

the important measure being the guaranteed value.

Operating Environment: This involves factors like encod-

ing scheme, data rate, data block size, technology on disk,

product environment, and compatibility.

TL/F/8663–19

(a) CONCEPTUAL REPRESENTATION OF THE DISK SYSTEM WITH POTENTIAL INTERFACE POINTS.

1eST506/ST412; 2eESDI, SMD; 3eSCSI, IPI

Interface Year Data Rate Connectors Drives Status

SMD* 1975 s15 Mb/s 60-Pin, 26-Pin Hi Perf 8×, 14× Upgrading Now

SA1000 1978 4.3 Mb/s 34-Pin, 20-Pin Low Cost 8× Limited Future

ST506 1980 5 Mb/s 34-Pin, 20-Pin Most 5(/4×, 3(/2× Still Popular

ST412HP 1983 10 Mb/s 34-Pin, 20-Pin Low Cost 8×

ESDI* 1983 10–15 Mb/s 34-Pin, 20-Pin Mid-Hi Perf 5(/4× New Standard

Future 1985–6 24 Mb/s 34-Pin, 20-Pin Hi-Perf 5(/4×, 8×
*Data separator on the drive.

(b) POPULAR HARD DISK DRIVE INTERFACES

Interface Year Data Rate Data Bus CTL Bus System Status

SASI 1981 s1–2 Mb/s 8-Bit a P 9-Bit Low-End Superseded by SCSI

SCSI 1982 s1–2 Mb/s 8-Bit a P 9-Bit Low/Mid-End ANSI Standard

Asynchronous

SCSI 1984 s4 Mb/s 8-Bit a P 9-Bit Mid-End Recent ANSI Standard

Synchronous

IPI-3 1984 s10 Mb/s 8-Bit a P 6-Bit High-End Almost ANSI Standard

16-Bit a 2P

(c) POPULAR INTELLIGENT DISK SYSTEM INTERFACES

FIGURE 1.9. Drive Interface Standards
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1.5 THE DISK DRIVE CONTROL PATH
The disk drive control path essentially consists of the vari-

ous control signals defined by the drive interface for drive

control and data path control. The control path in a disk

system has a number of potential interface points, Figure
1.9(a) . The popular hard disk drive interfaces which define

the physical connections of the controller with the drive are

given in Figure 1.9(b) . These are at the interface points 1

and 2. At these points data is still in the serial format. With

the advent of sophisticated controllers many Intelligent disk

system interfaces have come into being, Figure 1.9(c) .
These essentially incorporate the complete controller on

the drive and interface to the outside world, through an 8- or

16-bit standard bus, interface specific. The physical inter-

face with the disk is usually one of the standard hard disk

drive interfaces mentioned in Figure 1.9(b) .

INTERFACE STANDARDS

Interface standards are the definition of the connection be-

tween parts of the disk unit, controller, and system. Interfac-

es can be defined on several levels, viz.

# Electrical specification of signal levels.

# Timing relationships between signal lines.

# Physical specification of cabling, connectors etc.

# Functional specifications of tasks the standard performs.

# Command descriptor specification of the standard.

Some interface standards require only a subset of the

above definition categories. For example, there is no neces-

sity for a command descriptor segment to the ST506 de-

facto standard, as no provisions are made for command

communication other than the simple control lines de-

scribed in the functional specifications.

Standards are important as they allow numerous manufac-

turers to cater to the same market segment, thus creating

healthy competition. For example, the ST506 interface is an

industry standard simply because it is being used by a lot of

drive manufacturers. The factors which affect the choice of

the standard are: data rate, flexibility, popularity, perform-

ance, and cost.

1.5.1 Popular Hard Disk Drive Interfaces
There are a number of disk interface standards. It is impor-

tant to realize the implications of the various contenders for

the interface point. For example, if the data separator is

placed on the drive, the cost of the drive increases, the cost

of the controller board decreases, the speed of the interface

can increase if desired, but the system has to cope with this

increase. Some of the most commonly used standards (disk

interfaces) are discussed briefly in the following sections.

FLOPPY DISK INTERFACE

This is a relatively ‘‘dumb’’, single connector, serial data and

control interface. There are two lines which carry the read/

write data, and several control signals. This interface is posi-

tioned at point 1 in Figure 1.9(a) . The data rate for such

interfaces is comparatively slow, around 100 to 500 kBits

per second and the data capacity of floppy disks is not very

large. The head is positioned by issuing step pulses to the

drive. Read and write operations are initiated by asserting

signals called Read Gate or Write Gate.

INTERFACE SIGNALS

Head load, Index, Sector (hard sectored drives only),

Ready, Drive Select (usually 4), Step, Direction, Write Gate,

Track 0, Write protect.

ST506/ST412 DISK INTERFACE STANDARD

This is also sometimes referred to as the floppy extension

interface and is one of the most commonly used interface

standards. The data rate is defined to be 5 Mbits per sec-

ond, and the code is MFM. The interface is divided into two

cablesÐa 34-pin control cable and a 20-pin data cable. The

control cable allows for a daisy chain connection of up to

four drives with only the last drive being terminated, Figure
1.10. The data cable must be attached in a radial configura-

tion. This interface is at point 1 and, hence, the data separa-

tor is a part of the controller.

TL/F/8663–20

(a) Typical Connection, 4 Drive System

FIGURE 1.10. ST506/412 Configurations
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TL/F/8663–21

(b) Control Signals Cable

TL/F/8663–22

(c) Data Signals Cable

FIGURE 1.10. ST506/412 Configurations (Continued)
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Functional Operations

DRIVE SELECTION

Drive selection occurs when one of the DRIVE SELECT

lines is activated. Only the selected drive will respond to the

input signals, and only that drive’s output signals are then

gated to the controller interface.

TRACK ACCESSING

Read/Write head positioning is accomplished by:

a) Deactivating WRITE GATE line.

b) Activating the appropriate DRIVE SELECT line.

c) Being in the READY condition with SEEK COMPLETE

true.

d) Selecting the appropriate direction.

e) Pulsing the STEP line.

Each step pulse will cause the head to move either one

track in or one track out depending on the level of the direc-

tion line. A low level on the DIRECTION line will cause a

seek inward toward the spindle, a high, outward toward

track 0. Some drives have buffered seeks where the drive

stores the pulses until the last one is received, then exe-

cutes the seek as one continuous movement.

HEAD SELECTION

Any of the heads can be selected by placing the head’s

binary address on the Head Select lines.

READ OPERATION

Reading data from the disk is accomplished by:

a) Deactivating the WRITE GATE line.

b) Activating the appropriate DRIVE SELECT line.

c) Assuring the drive is READY.

d) Selecting the appropriate head.

WRITE OPERATION

Writing data onto the disk is accomplished by:

a) Activating the appropriate DRIVE SELECT line.

b) Assuring the drive is READY.

c) Selecting the proper head.

d) Insuring no WRITE FAULT conditions exist.

e) Activating WRITE GATE and placing data on WRITE

DATA line.

Electrical Interface

The interface to the ST506/ST412 family can be separated

into three categories, each of which is physically separated.

1. Control Signals.

2. Data Signals.

3. DC Power.

All control lines are single ended and digital in nature (open

collector TTL) and either provide signals to the drive (input)

or signals to the controller (output) via interface connection

J1/P1. The data transfer signals are differential in nature

and provide data either to (write) or from (read) the drive via

J2/P2. Figure 1.10 shows the connector pin assignments

for this interface.

Since the data separator is on the controller, the ST506/

ST412 drive must have a transfer rate of 5 M bit/sec. The

bit density cannot be increased as the data rate and disc

rotational speed are fixed. The only way to increase drive

capacity is to increase the number of tracks, which does not

allow large increases of capacity. Despite this limitation, it

has a strong future as it moves into lower cost systems and

smaller 3(/2× drives.

ST412 HP INTERFACE

This standard was designed to provide an upgrade path

from the ST506 and is very similar. This interface is also at

point 1. The main differences from the ST506 family are:

# One additional control line in the daisy chain . . . Recov-

ery mode.

# Reduced write current is not part of the interface.

# The data rate is 10 Mbits/sec.

# The encoding scheme is not tightly specified, but sug-

gested to be MFM.

# The maximum repetition rate of step pulses has been

increased.

The major benefit of this interface is the higher data rate

compared to ST506 drives, however, a much more careful

design is needed to keep the bit error rate the same and for

this reason may not be popular. Since the data separator is

located on the controller, the data transfer rate must be

exactly the 10 Mbits/sec rate and still be MFM encoded.

Recovery Mode

Recovery mode has been added in response to higher track

density. It is asserted by the controller in response to bad

data. In this mode the controller issues up to eight step

pulses, and the drive steps through its own micropositioning

algorithm. After each pulse, the controller tries to reread

data and, if it fails again, after the eighth try it abandons the

procedure. This drive interface emerged as higher data rate

embellishment to the ST412.

ESDI (ENHANCED SMALL DEVICE INTERFACE)

This interface is at point 2 on Figure 1.9 . This standard was

a proposal by Maxtor Corporation, subsequently modified by

an experienced working committee, and is finding growing

acceptance largely because it is a sensible proposal. It has

control and data cables like the ST506/412 interface but

adds a driver and receiver on the data cable for the clock

information, as shown in Figure 1.11. The implication is that

the data separator resides on the drive, which means fewer

design problems for drive users, and that certain status and

command information is transmitted in serial, which means

more control circuitry on both sides of the interface. The

data rate is allowed to be several frequencies, dependent

upon options, with the maximum rate probably reaching 24

Mbits/sec.

Features

# Low cost, high performance interface suitable for small-

er, high performance drives.

# Two protocols supported: serial and step mode.

# Supports up to 7 drives in the serial mode and 3 drives in

the step mode.

# Maximum data rate of 24 Mbits/sec.

# Supports cable lengths of up to 3 meters.

# Serial mode of operation utilizes NRZ data transfer along

with serial commands and serial configuration and status

reporting across the command cable.
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# Step mode implementation utilizes the same NRZ data

transfer; however, the step and direction lines are used

to cause actuator motion. Hence, with this mode configu-

ration and status reporting are unavailable over the inter-

face.

The ESDI interface puts the data separator on the drive and

its output is NRZ data with a synchronous clock. This results

in the data rate, and therefore the bit density, not being

rigidly defined. The controller speed is governed by the syn-

chronous clock coming from the drive, not from a data sepa-

rator as in the ST412/ST506 interfaces. The drive is code

independent as the data across the interface is always NRZ

(or decoded) format. This enables the use of codes like RLL

which put more data on the disk for the same bit density

(flux reversals per inch). Moreover the use of NRZ encoding

results in decreased errors due to electrical transients on

the interface cable. This lowers practical bit error rates and

allows the use of higher speeds.

Step Mode

The ESDI step mode is essentially similar to the step mode

in the ST506/412 family of drives, except for the NRZ data

transfer. Only two of the seventeen signals change function

in the control cable between ESDI step and ST412HP.

READ GATE being added is the important change which

enables the data separator on the drive to the controller.

The data cable is considerably different. Differential drivers

and receivers are used for signals like Write Clock and Read

Clock and a few single ended lines are added like Cartridge

Changed (for tapes) and other lines like Seek Complete,

Index etc. The step mode pulse timings are comparable to

that of the ST412HP. This enables switching between the

two interfaces under software control, in the controller de-

sign.

TL/F/8663–24

(a) Typical Connection, Multiple Drive System

FIGURE 1.11. ESDI (Enhanced Small Device Interface)
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TL/F/8663–23

(b) Data Cable (J2/P2) Signals (Disk ImplementationÐSerial Mode)

TL/F/8663–25

(c) Control Cable (J1/P1) Signals (Disk ImplementationÐSerial Mode)

FIGURE 1.11. ESDI (Enhanced Small Device Interface) (Continued)
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Serial Mode

Serial mode ESDI is a definite improvement over the inter-

faces discussed. As the name implies, communication from

the controller to the drive takes place on the COMMAND

DATA line of J1/P1 in conjunction with the handshake sig-

nals TRANSFER REQUEST and TRANSFER ACKNOWL-

EDGE. Communication from the drive to the controller takes

place on the CONFIG-STATUS line of J1/P1 in conjunction

with the handshake signals. Each bit of the 16-bit command

or status word is handshaked across the interface. The

hardware changes between EDSI serial and step modes,

have several control lines redefined. The disk drive’s micro-

processor interprets commands like SEEK (seek to a cylin-

der), RECALIBRATE (seek to track 0), REQUEST STATUS

and REQUEST CONFIGURATION, which provide the con-

troller with standard status and configuration information of

the drive like the number of heads, number of tracks, sec-

tors per track, bytes per track, command data parity fault,

write fault etc. Hence the controller can configure itself to

the drive connected to it and can send the data to the host if

desired. Thus ESDI serial mode offers big benefits and is

rapidly gaining popularity in higher performance hard disk

drives.

STORAGE MODULE (SMD) INTERFACE

(ANS X3.91M 1982)

The Storage Module Interface was originated by Control

Data Corporation around 1972. It has been extremely popu-

lar with 8× –14× drives. However, as it is expensive and

hardware intensive and because of competition due to ESDI

and SCSI, it is not very popular with 5(/4× drives.Figure 1.12
gives the data and control cable assignment.

TL/F/8663–26

(a) Typical Connection

TL/F/8663–28

B e Cable

(b) Data Cable

FIGURE 1.12. Storage Module (SMD) Interface (ANS X3.91M 1982)
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TL/F/8663–27

A e Cable

(c) Control Cable

Storage Module (SMD) Interface (ANS X3.91M 1982) (Continued)
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Features

# Bit serial digital data transfer (Data Separator in drive)

# Relatively high transfer rate (9.67 Mbits/s is common in

older 14× drives and newer 8× drives, new 10.5× and

14× drives are typically about 15 Mbits/s)

# Dominant de-facto standard for 14× OEM disk drives;

virtual basis of OEM disk controller industry. Widely used

by minicomputer system manufacturers.

# Differential signals

# 23 required plus 8 optional control bus signals, 7 required

plus 2 optional read/write cables

# Parallel control bus, but radial read/write cables, one per

drive

# Incorporates error recovery facilities

# Includes power sequencing for multiple units

# Approved ANS X3.91 1982

1.5.2 Intelligent Disk System Interfaces
These are high level interfaces which result in the complete

disk controller being situated on the drive and the interface

to the host is through a special bus. Their chief advantage is

nearly complete device transparency to system hardware

and software, also lower system overhead for disk control

and higher speeds. A well defined protocol is used for com-

munication with the host system. Some of the popular Intel-

ligent disk system interfaces are discussed below in brief.

SHUGART ASSOCIATES SYSTEM INTERFACE (SASI)

SASI was introduced by Shugart around 1980. The overall

objective was to make it easier for computer systems

to talk to disk drives. SASI defines the logical level and all

lower interface levels, down to the 50-pin connectors and

ribbon cable. Eighteen lines are used for signals, nine for

data and nine for control. The data lines consist of a single

octet with an odd parity bit. The control lines include a two-

wire handshake and various lines to put the bus in different

transfer modes or phases. The interface is always in one of

the five phases:

Bus Free, Arbitration, Selection, Reselection, Data

Eight devices are allowed but only one host or ‘‘initiator’’ is

allowed. So a maximum SASI system will consist of an Ini-

tiator and seven target devices. All signals in the interface

are open collector driven. The ANSI standard version of this

interface is the SCSI (Small Computer System Interface).

SMALL COMPUTER SYSTEM INTERFACE (SCSI)

The Small Computer System Interface (SCSI) was formed

from the SASI framework and ANSI has standardized it un-

der X3T9.2. The interface consists of a single cable that is

daisy-chained to other SCSI units. It will accommodate not

only disk drives but also tapes, printers and other devices

and is potentially a universal peripheral port for small sys-

tems. The SCSI system could potentially be a single initiator

- single target system or a single initiator - multiple target

system or a multiple initiator - multiple target system as

shown in Figure 1.13(a) . The SCSI bus signals are shown in

Figure 1.13(b) . The cable consists of transfer handshaking

and status signals in addition to an 8-bit data bus. Informa-

tion is exchanged on the bus via a set of higher level com-

mands sent by the host.

COMPLEX SYSTEM

TL/F/8663–29

Up to 8 SCSI DEVICES can be supported by the SCSI bus. They can be any combination of host CPUs and intelligent controllers.

(a) Multiple Target-Multiple Initiator

TL/F/8663–30

(b) SCSI Cable

FIGURE 1.13. Small-Computer System Interface
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Features

# Connects up to 8 computers and peripheral controllers

# Maximum rate up to 1.2 Mbyte/sec asynchronous,

4 Mbytes/sec synchronous: suitable for floppy disks, all

5.25× and 8× Winchester disks, medium performance 8×
and 14× disks, and tape drives

# Relatively high level peripheral command set

# Single ended version: 50-conductor flat ribbon cable, up

to 6 meters, 48 mA drivers

# Differential version: 50-conductor flat or twisted pair ca-

ble, up to 25 meters, EIA RS-485

# Distributed bus arbitration

# Includes command sets for common peripherals

# Products now widely available include: disk drives with

integral controllers, SCSI to ST506, SMD, Floppy, SCSI

to S-100, MultibusÉ, IBM PCTM, VMETM, UnibusTM,

TRS-80TM, and Q-BUSTM Adapters, and VLSI bus proto-

col and disk controller chips

SCSI makes no hardware changes compared to the SASI

but adds several features which are discussed below.

Arbitration

This allows multiple Initiators to talk to multiple targets in

any order, to a maximum of eight nodes only.

Reselection

This allows a target to disconnect from the Bus while it is

getting data and reconnect to the proper Initiator when it

has found it. This results in efficient utilization of the bus

because other nodes can use it during the relatively long

seek time of the disk drive or search time of a tape drive.

Synchronous Mode Transfer

This speeds data transfer to a maximum of 4 Mbytes/sec

(from an asynchronous maximum of approximately 1.2

Mbytes/sec).

Differential Transceivers

These boost the maximum length of the interface from 6m

to 25m.

Extended Command Set

This set includes expanded large block addressing (from

221 to 232 blocks) and ‘‘Inquiry’’ type commands for self

configuring controllers. It also handles tape drives, printers,

processors, optical disks and read-only optical disks. There

is also room for a ‘‘vendor unique’’ command set, i.e. com-

mands unique to the device.

TL/F/8663–31

(a) IPI Configuration

TL/F/8663–32

(b) IPI Cable Signals

FIGURE 1.14. Intelligent Peripheral Interface
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INTELLIGENT PERIPHERAL INTERFACE(IPI)

This is the ANSI standard X3T9.3 and is an additional pe-

ripheral bus, having higher performance than SCSI. Figure
1.14(a) shows the orientation of the IPI system and the IPI

port signals are shown in Figure 1.14(b) .

Features

# Connects master to a maximum of 8 slaves

# Can be used at various levels in the system as shown

# Two 8-bit buses (in and out) for commands and status

speed protocol and status presentation for fast path

switching

# 8- or 16-bit parallel transfers

# 24 signals

# Several electrical options; fastest allows 10 Mbytes/sec

through a 75 meter cable

# Offers both ‘‘intelligent’’ and ‘‘device level’’ command

definitions, command and data handshaking

# 50-pin cable ground increases noise immunity

The IPI interface comprises four levels. Level 0 consists of

cables, connectors and drivers/receivers. Level 1 consists

of state machine and bus protocol. Features of Level 2 are

device specific commands, timing critical, physical address-

ing, physical volumes, command parameters and bus con-

trol commands. Features of Level 3 are device generic com-

mands, timing independent, buffered, command stacking,

queing, limited specific commands, logical addressing and

physical volumes. Messages are transmitted in packets.

IPI derives its higher performance from a faster handshake

and a wider data bus. Two octets, each with a parity line,

make up the data interface. Six control lines fill out the inter-

face of 24 signals. There is one master allowed and up to

eight slaves on a daisy-chained cable. This master to slave

interface is a parallel one and hence IPI 3 could be used,

(point 1) in Figure 1.14(a) . Each Slave can address up to 16

Facilities, like disk drives. The Slave-to-Facility interface

may be IPI 2, (point 2) in Figure 1.13(a) , or a lower level

interface such as ESDI. Data can be moved at 5 Mbytes/

sec in asynchronous mode, 10 Mbytes/sec in synchronous

mode. The interface supports various driver options with

maximum cable lengths ranging from 5 meters to 125 me-

ters.

1.5.3 Other Disk Interfaces
There are many other ANSI standardized interfaces which

were the outcome of the interface standards discussed

above. Some of these are disk level while some are intelli-

gent interfaces. A brief discussion follows, also refer to Fig-
ure 1.15. Detailed descriptions can be found in the appropri-

ate ANSI document.

FLEXIBLE DISK INTERFACE (ANS X3.80)

Features

# American National Standard Interface between flexible

disk cartridge drives and their host controllers

# 50-wire flat ribbon cable (8× disk) or 34-wire (5(/4× disk)

# Bit serial encoded FM or MFM data transfer from/to

Read/Write electronics (data separator in controller)

# Modest data transfer rate (100 kbyte/s)

# Very widely used by the industry; based on a de facto

standard. Supported by most 8× and 5(/4× drives; also

used by some, but not all micros (less than 4×) floppy

drives.

# Seeks track by track, one step per pulse

# Single ended signals

# Change has been submitted to identify high density 5(/4×
drives

# Approved ANS X3.80 - 1981

RIGID DISK INTERFACE (ANS X3.101Ð1983)

With the emergence of the 8× rigid-disk drive, there was a

strong industry push for a new interface standard with

broader applicability than the SMD, which would allow for

self-applicability than the SMD, which would allow for self-

reconfiguring controllers, as different devices were at-

tached. As a result the ANSI Rigid Disk Interface came into

existence.

Features

# Optimized for relatively high performance small winches-

ter disks

# Bit serial digital data transfer (data separator in drive)

# Relatively high transfer rate possible (up to 10 Mbits/s

with low cost option, up to 16 Mbits/s with high perform-

ance option)

# 50 conductor ribbon cable

# Class A: 24 and 40 mA single-ended control bus signals,

20 mA differential serial data and clock lines

# Class B: 100 mA single-ended control bus signals, 40 mA

differential serial data and clock lines

# 22 single-ended plus 4 differential signals

# Byte parallel command bus

# Relatively high level command set

# Approved ANS X3.101Ð1983

Peripheral Bus Interface

# Connects computer to peripheral different controllers

# Block transfer rather than word transfer orientation

# No provision for memory address on bus

# Longer distances than backplane

# Interface hides many device characteristics from soft-

ware

# Peer to peer multi-master protocol may be called a ‘‘sys-

tem bus’’

Device Interface

# Specific to particular device type

# Between controller and device

# Often serial data transfer

# User device interchangeability not always certain

# Very widely used by industry

This interface has not gained acceptance and has been su-

perseded by ESDI
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Flexible Disk Interface (ANS X3.80Ð1981)

TL/F/8663–33

Rigid Disk Interface (ANS X3.101Ð1983)

TL/F/8663–34

DEVICE INTERFACE PERIPHERAL BUS

TL/F/8663–35

FIGURE 1.15. Other Drive InterfacesÐTypical Connections
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1.5.4 Universal Plug
Although the concept of a standard interface is appealing,

the desire to gain industry recognition and lock in custom-

ers, coupled with valid technical improvements, will continue

to spawn new interfaces at regular intervals. In systems

where a maximum of one or two drives are required or

where configuration flexibility justifies the higher cost of

standard attachments, high-level interfaces will attach to a

‘‘universal’’ system plug. Here controllers will be integrated

into the devices themselves, while in cost effective multiple

drive systems, the connection of device level interfaces to

system specific controllers is expected to continue.

1.6 ELEMENTS OF DISK CONTROLLING
ELECTRONICS
Disk controller chips in the market today are complex VLSI

chips and perform a multitude of functions. In fact they take

care of most of the tasks besides the task of data separa-

tion. National’s Disk Data Controller DP8466 is one such

chip. It takes care of serialization, deserialization, data en-

coding, DMA transfer, error detection and correction, and

pattern recognition to determine type of compensation re-

quired. The Disk Data Controller DP8466 is discussed in

detail in the following sections. National’s Data Separator

chip DP8465, together with the Disk Pulse Detector

DP8464, comprise the chip set for the disk controlling elec-

tronics. If RLL encoding is used, then National’s DP8463 2,7

ENDEC could be integrated into the system. Figure 1.16
shows the place of these chips in the disk data and control

path. It also shows the separation lines of the components

on the drive and controller for the various interface stan-

dards.

TL/F/8663–36

FIGURE 1.16. Typical Disk Controller System Configuration Showing the Interface Points

with Respect to the Various Standards
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CHAPTER 2 DP8464B HARD DISK PULSE DETECTOR

2.0 INTRODUCTION
The standard Winchester disk drive available today uses a

magnetic film platter, a ferrite head and MFM coding. This

combination produces relatively wide pulses off the disk

which can be detected using a simple time-domain filter

technique. However, as disk manufacturers strive for higher

density and data rates, they must turn to new technologies

such as plated media, thin film heads and run length limited

codes (such as the 2,7 code). Unfortunately, these technol-

ogies produce more complex pulses off the disk which re-

quire more sophisticated pulse detection techniques. The

DP8464B utilizes a separate time and gate channel which

can detect the peaks in these complex waveforms.

2.1 BACKGROUND OF PULSE WAVEFORM
DETECTION
Data on the disk is stored as a series of magnetic domains

recorded on concentric circular tracks. To read the data, the

head arm assembly brings the head directly above the track

on the rotating disk. As previously recorded flux reversals

pass under the head, a small signal will be induced. The

signal from the disk is therefore a series of pulses, each of

which are caused by flux reversals on the magnetic medium.

The pulse detector must accurately replicate the time posi-

tion of the peaks of these pulses. This task is complicated

by variable pulse amplitudes depending on the media type,

head position, head type and the gain of the Read/Write

amplifier. Pulse amplitudes may vary on any one track if the

distance between the head and the media varies as the disk

rotates. Additionally, as the bit density on the disk increas-

es, significant bit interaction occurs resulting in decreased

amplitude, pulse distortion and peak shift.

Traditionally MFM code has been used to encode digital

information on the disk surface. MFM code uses the limited

frequency range of F to 2F as illustrated in Figure 2.1. Such

a system can use a special self gating circuit for the pulse

detector as shown in Figure 2.2. Pulses from the inner track

(the bottom waveform in Figure 2.1) are almost sinusoidal

so the peak detector can simply differentiate the waveform

to determine the peak positions. On the outer track howev-

er, the pulses have a small amount of shouldering as shown

in the top waveform in Figure 2.1. The problem is that any

noise occurring during these very narrow shoulders can be

incorrectly interpreted as signal peaks.

TL/F/8663–37

Typical MFM waveforms on oxide media with ferrite heads. Since there is

only slight shouldering on the outer track, the traditional self gating

(de-snaker) pulse detector can be used.

FIGURE 2.1

TL/F/8663–38

Self gating circuit (de-snaker) traditionally used for pulse detection of

MFM code on oxide media with ferrite heads. The amount of delay in the

clock line must exceed the maximum amount of shouldering.

FIGURE 2.2
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The self gating circuit places a fixed delay and bi-directional

one shot between the output of the differentiator and the

clock input. The amount of this delay is selected to be long-

er than the worst case shouldering. When shoulder-induced

noise occurs, the D input to the flip-flop will change states.

However, by the time the clock occurs, the noise will no

longer be present and the D input will have returned to its

previous state. The flip-flop will therefore ‘‘clock’’ in the pre-

vious data. The output Q will not change states due to these

narrow shoulder-induced noise pulses. This fixed delay in

the clock line is called a time domain filter. This circuit is

also known as a ‘‘de-snaker’’, named after the snake ap-

pearance of the waveform which exhibits slight shouldering.

This ‘‘de-snaker’’ circuit works very well with waveforms

which exhibit only slight shouldering. Unfortunately, the new

methods used to increase the disk capacity do not produce

such simple pulse patterns.

There are several methods of increasing the disk capacity.

This includes plated media, thin film heads, and run length

limited codes. All of these techniques result in narrow puls-

es with increased shouldering. An example of these slimmer

pulses is shown inFigure 2.3 . Instead of the slight shoulder-

ing present in the MFM example, the signal returns to the

baseline between pulses. Since the shouldering is so exten-

sive, the ‘‘de-snaker’’ technique simply will not work here. If

a long delay were used to correct the shouldering present in

the top waveform, it would not capture the pulses at the

highest frequency.

TL/F/8663–39

Pulse waveforms for high resolution technologies. The large shouldering on

the outer tracks precludes the use of the de-snaker pulse detector.

FIGURE 2.3

Detecting pulse peaks of waveforms of such variable char-

acteristics requires a means of separating both noise and

shouldering-induced errors from the true peaks. The old self

gating circuits (such as the ‘‘de-snaker’’) will not work with

the new techniques to increase the disk capacity. Hence the

need for a circuit that includes a peak sensing circuit with an

amplitude sensitive gating channel in parallel. Such a circuit

is a key feature of the DP8464B Pulse Detector.

2.2 DP8464B FEATURES
Certainly a key feature of the DP8464B is the combination

of a peak sensing circuit with an amplitude sensitive gating

channel in parallel which allows the DP8464B to accurately

detect the peak of waveforms that preclude the use of the

traditional ‘‘de-snaker’’ circuit. The DP8464B, however, has

many other features that make it ideal for the disk drive read

channel.

Another key feature of the DP8464B is a wide bandwidth

automatic gain controlled (AGC) amplifier. The automatic

gain control removes the signal level variations of the read

signal. The amplifier’s wide bandwidth (20 MHz) insures that

timing errors will not be introduced by the amplifier’s pole.

The DP8464B offers considerable flexibility to the user, al-

lowing him to tailor various operating characteristics to his

specific needs. In particular, the user can set the frequency

response of the differentiator, the width of the pulses on the

encoded data output, the amount of hysteresis in the gating

channel, the signal amplitude at the output of the gain con-

trolled amplifier and the overall frequency response of the

system and AGC. This kind of flexibility is provided by strate-

gically placing pinouts at key points throughout the circuit.

Differential signal paths were utilized whenever possible to

minimize effects of power supply noise and external noise

pickup. The IC can be effectively disabled when the disk

drive is in a write mode, thus preventing saturation of the

input amplifier and preventing disturbance of the AGC level.

The IC is powered from a single a12V supply (which is

standard in most drives) and has an internal regulator and

separate analog and digital grounds in order to properly iso-

late the sensitive analog circuitry. It is presently offered in a

24-pin DIP but will soon be made available in a 28-pin PCC

surface mount package.

The DP8464B is fabricated on an advanced low power

Schottky process which allows the part to handle data rates

up to 15 Megabits/sec., 2, 7 Code.

2.3 THE DP8464B HARD DISK PULSE
DETECTOR OPERATION
The main circuit blocks of the DP8464B are shown inFigure
2.4 . The circuit consists of three main sections: the Amplifi-

er, the Time Channel and the Gate Channel. The Amplifier

section consists of a wide bandwidth amplifier, a full wave

rectifier and the Automatic Gain Control (AGC). The Time

Channel is the differentiator and its associated bi-directional

one shot, while the Gate Channel is made from the Differen-

tial Comparator with Hysteresis, the D flip-flop and its follow-

ing bi-directional one shot. Also, there is special circuitry for

the Write mode. To better understand the circuit operation,

let’s discuss each section separately.

2.3.1 Gain Controlled Amplifier
The purpose of the Amplifier is to increase the differential

input signal to a fixed amplitude while maintaining the exact

shape of the input waveform. The Amplifier is designed to

accept input signals from 20 mVpp to 660 mVpp differential

and amplify the signal to 4 Vpp differential. The gain is there-

fore from 6 to 200 and is controlled by the Automatic Gain

Control (AGC) loop.

2.3.2 Time Channel
The peak detection is performed by feeding the output of

the Amplifier through an external filter to the Differentiator.

The Differentiator output changes state when the input

pulse changes direction, generally this will be at the peaks.

The Differentiator can also respond to noise near the base-

line, in which case the Gating Channel will inhibit the output

pulse (as discussed in the Gate Channel section). The pur-

pose of the external filter is to bandwidth limit the incoming

signal for noise considerations. Care must be used in the

design of this filter to ensure the filter delay is not a function

of frequency. The output of the Differentiator drives a bi-

directional one shot which creates the Time Pulse Out.
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TL/F/8663–40

Main circuit blocks of DP8464B. The three main sections are the Amplifier (amplifier and AGC), the Gating Channel (comparator with hysteresis and D flip-flop), and

the Time Channel (differentiator and bi-directional one shot).

FIGURE 2.4

TL/F/8663–41

These signal waveforms illustrate the operation of the DP8464B. The noise in the Time Pulse Out (which occurs during the shouldering) simply clocks in old data

present at the output of the Differential Comparator with Hysteresis. A bi-directional one shot at the Encoded Data output provides a rising edge representing the

relative time position of the peaks at the Time Channel Input.

FIGURE 2.5
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2.3.3 Gate Channel
While the actual peak detection is done in the Time Channel

with the Differentiator, there is the problem of preventing the

output data from being contaminated when the Differentia-

tor responds to noise at the baseline. To prevent this, the

signal is also passed through a Gate Channel which pre-

vents any output pulse before the input signal has crossed

an established level. This Gate Channel comprises a Differ-

ential Comparator with Hysteresis and a D flip-flop. The hys-

teresis for this comparator is set externally via the Set Hys-

teresis pin.

The operation of this Gate Channel is shown in Figure 2.5 .

At the top is a typical waveform which exhibits shouldering

at the lowest frequency, and is almost sinusoidal at the

highest frequency. This waveform is fed to both the Time

and the Gate Channel. The hysteresis level (of abut 30%)

has been drawn on this waveform. The second waveform is

Time Pulse Out. While there is a positive edge pulse at each

peak, there is also noise at the shoulders. Since Time Pulse

Out is externally connected to the Time Pulse In, this output

is therefore the clock for the D flip-flop.

The third waveform is the output of the Comparator with

Hysteresis which goes to the D input of the flip-flop. The

true peaks are the first positive edges of the Time Pulse Out

which occur after the output of the comparator has changed

states. The D flip-flop will ‘‘clock’’ in these valid peaks to the

output bi-directional one shot. Therefore, the noise pulses

due to the Differentiator responding to noise at the baseline

just ‘‘clock’’ in the old data through the flip-flop so there is

no noise pulse on Encoded Data.

The Q output of the flip-flop drives the bi-directional one

shot which generates the pulses on Encoded Data. The

positive edges on Encoded Data correspond to the signal

peaks. The width of the data pulses can be controlled by an

external capacitor from the Set Pulse Width pin to ground.

This pulse width can be adjusted from 20 ns to 1/2 the

period of the highest frequency.

Design Example

A typical system implementation of the DP8464B is shown

in Figure 2.6 . The DP8464B is driven from the Read/Write

amplifier which is generally located very close to the actual

Read/Write head. This amplifier is fixed gain and pre-ampli-

fies the weak readback signal picked up by the head from

the surface of the disk.

TL/F/8663–42

Shown here is a typical 10 Mbit/sec MFM disk drive application. Signals are picked off the disk by the Read/Write head and amplified by the pre-amplifier. The

DP8464B further amplifies the read signal and accurately represents the time position of the peaks by the rising edge of the signal at the Encoded Data output pin.

The Data Separator locks up to the signal at the Encoded Data output and provides decoded MFM data to the Disk Data Controller. The Disk Data Controller

handles the interface between the disk drive and the computer.

FIGURE 2.6
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The output of the DP8464B drives a data separator (such as

the DP8465) which extracts the digital data from the encod-

ed data supplied by the DP8464B. The data separator uti-

lizes a phase-locked loop that locks onto the leading edge

of the encoded data signal from the DP8464B.

In addition to extracting the digital data from the encoded

data, the data separator synchronizes the digital data there-

by removing any timing jitter present in the encoded data

signal. The data separator implements this last function by

opening up timing windows that bracket the encoded data

signal. The encoded data signal need only appear within the

window to be detected. For 10 Mbit MFM, the window is

only 50 ns wide.

In order to guarantee that the drives have error rates on the

order of 1 per 10 to the 10th power, bits read (industry stan-

dard), the leading edge of the encoded data must fall well

within the 50 ns window. Because of this stringent criteria,

there is little room for error with regard to the accuracy that

the DP8464B can extract the relative time position of the

peaks of the read back signal.

One form of timing error is jitter of time position of the lead-

ing edge of the encoded data signal. This jitter can be a

result of noise output from the differentiator or noise pickup

in other portions of the read channel. These timing errors

will significantly affect the Encoded Data signal causing an

increase in the error rate.

The filter that drives the differentiator is important in reduc-

ing the noise input to the differentiator. For this reason, a

high order Bessel filter with its constant group delay charac-

teristic can be used in this application. The constant group

delay characteristic insures that the filter does not introduce

any timing errors by distorting the signal and moving the

position of the peaks. Often, this filter must be specifically

designed to correct phase errors introduced by the non-

ideal characteristics of the input read head. The typical
b3 dB point for this filter is around 1.5 times the highest

recorded frequency. Reducing the noise input to the differ-

entiator will ultimately reduce the amount of noise jitter on

the encoded data output.

Another way to reduce noise jitter is to limit the bandwidth of

the differentiator with a series combination of resistor, ca-

pacitor and inductor in the external differentiator network

and to use as large a differentiator capacitor as possible,

thereby maximizing the differentiator gain. In order to pre-

vent saturation of the differentiator, Schottky diode clamps

were added to the differentiator output thus allowing the use

of a larger differentiator capacitor.

An automatic gain control (AGC) circuit is used to maintain a

constant input level to the gating channel (which is typically

tied directly to the input of the differentiator). By maintaining

a constant signal level at this point, we insure not only a

large input level to the differentiator but also a constant lev-

el of hysteresis of the signal to the gating channel. Gain

control is also necessary because the amplitude of the input

signal will vary with track location, variations in the magnetic

film, and differences in the actual recording amplitude. The

peak-to-peak differential amplitude on the Gate Channel In-

put is four times the voltage set by the user on the Vref pin.

The actual dynamics of the AGC loop are very important to

the system operation. The AGC must be fast enough to re-

spond to the expected variations in the input amplitude, but

not so fast as to distort the actual data. A simplified circuit of

the AGC block is shown in Figure 2.7 . When the full wave

rectified signal from the Amplifier is greater than Vref, the

voltage on the collector of transistor T1 will increase and

charge up the external capacitor Cagc through T2. The max-

imum available charging current is 3 mA. Conversely, if this

input is less than Vref, transistor T2 will be off, so the capaci-

tor, Cagc, will be discharged by the base current going into

the Darlington T3 and T4. This discharge current is approxi-

mately 1 mA. The voltage on the emitter of T4 controls the

gain of the Amplifier.

If the AGC circuit has not received an input signal for a long

time, the base current of the Darlington will discharge the

external Cagc. The Amplifier will now be at its highest gain. If

a large signal comes in, the external Cagc will be charged by

the 3 mA from T2, thereby reducing the gain of the Amplifi-

er. The formula, I e C*(dV/dt) can be used to calculate the

time required for the Amplifier to go from a gain of 200 to a

gain of 6. For instance, if Cagc e 0.05 mF, the charging

current I is 3 mA, and the dV required for the Amplifier to go

through its gain range is 1V, then

dt e (0.05 mF* 1V)/(3 mA) or 17 ms.

By using the same argument, the time required to increase

the Amplifier gain after the input has been suddenly reduced

can be calculated. This time, the discharging current is only

1 mA, so

dt e (0.05 mF* 1V)/(1 mA) or 50 ms.

This time can be decreased by placing an external resistor

across Cagc.

2.4 READ/WRITE
In the normal read mode, the signal from the read/write

head amplifier is in the range of 20 mVpp to 660 mVpp.

However, when data is being written to the disk, the signal

coming into the analog input of the pulse detector will be on

the order of 600 mV. Such a large signal will disturb the

AGC level and would probably saturate the amplifier. In ad-

dition, if a different read/write amplifier is selected, there will

be a transient introduced because the offset of the pream-

plifiers are not matched.

A TTL-compatible READ/WRITE input pin has been provid-

ed to minimize these effects to the pulse detector. When the

READ/WRITE pin is taken high, three things happen. First,

the 1k resistors across the AMP IN pins are shunted by

300X resistors. Next, the amplifier is squelched so there is

no signal on the Amp Output. Finally, the previous AGC lev-

el is held. This AGC hold function is accomplished by not

allowing any current to charge up the external Cagc. The

voltage across this capacitor will slowly decrease due to the

bias current into the Darlington (see Figure 2.7) or through

any resistor placed in parallel with Cagc. Therefore, the gain

of the amplifier will slowly increase. All of these three events

happen simultaneously.

When the READ/WRITE input is returned low, the pulse

detector will go back to the read mode in a specific se-

quence. First, the input impedance at the Amp In is returned

to 1k. Then, after approximately 1.2 ms, the Amplifier is tak-

en out of the squelch mode, and finally approximately

1.2 ms after that, the AGC circuit is turned back on. This

return to the read mode is designed to minimize analog tran-

sients in order to provide stable operation after 2.4 ms.
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2.5 CONCLUSION
The push to higher disk capacities in increasingly smaller

drives has forced drive manufactures to utilize different me-

dia, heads and encoding. Each of these changes render the

traditional de-snaker pulse detector unusable. The

DP8464B pulse detector utilizes a new detection technique

that overcomes the limitations of the de-snaker. Further-

more, the DP8464B provides both gain controlled amplifica-

tion of the pre-amplified readback signal and the ability to

disable the circuit during write operations. The DP8464B is

easily adapted to a wide variety of applications through se-

lection of external components.
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The AGC Circuit senses the level of the signal at the Gate Channel Input and compares it to an externally set reference voltage. The signal that results from this

comparison (at the collector of T1) charges CAGC. The voltage across CAGC, when buffered by T3 and T4, provides the gain control voltage to the input amplifier.

FIGURE 2.7
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CHAPTER 3 DISK DATA SEPARATOR OVERVIEW
(DP8460/61/62/65 AND DP8451/55)

3.0 INTRODUCTIONÐTHE DATA
SEPARATOR
As was discussed in the chapter on Disk Drive Technology

(overview), the disk information which is recovered during a

read operation ordinarily would have no defined phase rela-

tionship with respect to the timing within the host system. In

order to establish a method of reconstructing a clock wave-

form with which the disk data may be entered into a shift

register for deserialization and decoding, clock information

is imbedded into the recorded bit pattern in any of a number

of different ways by the various encoding schemes dis-

cussed in Chapter 1. The schemes vary in their efficiency of

use of disk surface (bit density) and ease of recovery (chal-

lenge to the data separator), but they all are employed to

achieve a mixture of clock and data within the same serial

bit stream. It is then the function of the data separator to

accurately extract this clock information from the bit stream

and reconstruct a stabilized replica of the data, while at the

same time remaining essentially immune to the random dis-

placement of individual bits due to noise, media defects,

pulse crowding and anomalies in the data channel.

From a ‘’black box’’ standpoint, the data separator is fed a

logic-level digital signal from a pulse detector (DP8464)

within the disk head electronics (with positive transitions

representing flux reversals on the media) and a read gate

signal from the controller, and produces a reconstructed

clock waveform along with a re-synchronized data output

derived from the incoming disk pulse stream (see Figure
3.1). The regenerated clock and data signals have fixed tim-

ing relationships with respect to one another for use by sub-

sequent shift register circuitry.

3.0.1 Separators and Synchronizers
The term ‘‘data separator’’ actually applies to a device

which both regenerates a clock waveform from the bit

stream as well as decodes (separates) the original NRZ

data from the encoded disk data. This would include Nation-

al’s DP8461 and DP8465, both of which perform data syn-

chronization with MFM-to-NRZ data separation, while in-

cluding slight functional variations between devices. (The

DP8460 initially released device is being replaced by the

fully pin-for-pin compatible DP8465. The DP8461 pinout

matches the DP8465, but is intended for use with hard and

pseudo-hard sectoring only. Further details will be dis-

cussed later.) A device which performs clock regeneration

and data synchronization without the separation function is

simply called a data synchronizer. This would include the

DP8451, DP8455, and the DP8462; again, there are func-

tional differences between the devices, which will be dis-

cussed later. Additionally, the DP8461 and DP8465 also

have outputs available which allow them to serve as data

synchronizers, if desired (See Table 3.1).

The complete data separator circuit eliminates the need for

external decoding circuitry but is dedicated to only a single

code type. The data synchronizer requires an external de-

coding network but has the capacity to be used with any

coding scheme. Since the MFM environment is being ad-

dressed in this design guide, the discussion in the remainder

of this chapter will deal primarily with the integrated, MFM-

type data separator. The PLL fundamentals being presented

apply to all of the circuits.

3.0.2 Window
The data separator must establish what is called a ‘‘win-

dow’’ around the expected position of bits within the disk

data stream. Windows are laid end-to-end in time by the

data separator at a repetition rate (equal to the separator’s

VCO frequency) known as the disk code rate. Each window

is an allotment of time within which a disk bit, if detected,

will be captured and interpreted as if it had occurred exactly

at the window center. This allows for a random displace-

ment (jitter) of individual bits within the boundaries of the

window with no apparent effect on the accuracy of the data

recovery (error rate). Bits are displaced from a nominal posi-

tion in a fashion which could be represented by a bell-

shaped probability curve (see Figure 3.2), and it could be

easily seen that for optimum performance, the window must

be accurately centered about the mean of this curve. This is

traditionally a difficult goal to achieve, and is essentially the

primary responsibility of the data separator. Although vari-

ous techniques have been employed to attain this goal, the

phase-locked loop (incorporated within all National data

separator/synchronizers) has proven to date to yield the

most reliable and satisfactory results among all the synchro-

nization methods, and its use is the standard approach tak-

en within the disk industry.

TL/F/8663–45

FIGURE 3.1. DP8460-Series Data Synchronizer Timing Relationships
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3.1 PHASE-LOCKED LOOP OVERVIEW
A phase-locked loop is a closed-loop control system which

forces the phase from the output of a controlled oscillator to

track the phase of an external reference signal. It consists

of three essential elemental blocks; a phase detector, a

loop filter, and a voltage controlled oscillator (VCO) (see

Figure 3.3). The phase detector compares the phase of the

reference input with that of the VCO output and generates

an ‘‘error’’ signal at its output which is proportional to the

sensed phase difference. This error signal is filtered by the

loop filter (low-pass) to suppress any unwanted high-fre-

quency components within the error signal, and is then fed

to the VCO control voltage input. If the phase of the refer-

ence signal leads that of the VCO signal, the phase detector

develops a positive error voltage across the loop filter, and

the VCO responds by increasing its frequency (advancing

phase). This continues until the phase error is eliminated

and the control voltage returns to a quiescent value. When

the reference signal lags that of the VCO, the adjustment

occurs in the opposite direction until equilibrium (phase

lock) is again obtained.

TL/F/8663–46

FIGURE 3.2. Data Jitter

TL/F/8663–47
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A phase-locked loop is a system which forces the phase of the output from a voltage controlled oscillator (VCO) to track the phase of a reference signal.

FIGURE 3.3
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3.1.1 PLL Dynamics
Much of the performance of the PLL, given adequate design

in the major functional blocks, is determined by the loop

filter. This includes (1) the ability of the PLL to rapidly (or

slowly) track phase or frequency changes in the reference

signal, (2) the ability of the loop to re-aquire lock after en-

countering a large frequency step at the reference input,

and (3) the ability of the loop to exhibit stable behavior dur-

ing operation.

TRACKING

In many PLL applications, such as FM demodulation and

frequency shift keying demodulation, rapid PLL tracking

(high bandwidth) is a necessity. However, in the disk drive

application, where (1) frequency changes (disk rotational

speed variations) are gradual with respect to the data rate

and (2) it is desirable to suppress response to instanta-

neous bit shift (jitter), a very slow tracking rate (low band-

width) is necessary.

CAPTURE RANGE

The classical PLL is well able to maintain relative phase

lock to a reference signal, but is unable to pass true differ-

ence-frequency information through its phase detector (this

is true for the standard analog four-quadrant multiplier tech-

nique as well as for the gated-VCO technique employed in

disk drive data separation applications). With this being the

case, the PLL has a limited ability to re-establish lock when

an instantaneous input frequency change occurs. The new

frequency must lie inside a relatively narrow band on either

side of the current VCO frequency, or re-lock will not occur

(see Figure 3.4). This band is known as the capture range,

and is a direct function of the passband of the loop filter, or

more accurately, of the bandwidth of the PLL as a whole. A

digital frequency discrimination technique, however, is em-

ployed in National Semiconductor’s disk drive PLL’s which

provides an extended capture range and guarantees suc-

cessful lock to the reference clock input and, as a chip de-

pendent option, to the data as well. Consequences of hav-

ing a limited capture range are discussed in National Semi-

conductor Application Notes AN414, AN415, AN416 (Also

see ‘‘Frequency Lock’’ in section 3.2 of this chapter).

STABILITY

Mathematical analysis of the functional blocks of the PLL

show a 1/s factor in the VCO; i.e., it behaves as a integrator,

adding a pole to the transfer function. The loop filter adds at

least one additional pole, resulting in a system which is, at

minimum, second order in nature. Since the PLL is then a

closed loop, minimum second order system, it has the po-

tential for instability if improperly implemented. All of the

dynamic characteristics of the PLL, however, can be con-

trolled by loop filter selection, including bandwidth and cap-

ture range along with stability; thus great care must be taken

in the selection of the loop filter in order to achieve the

desired performance within the specific application.
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Capture range in a PLL is determined by the loop filter bandwidth.

FIGURE 3.4. Capture and Lock Range

3.2 THE PLL WITHIN A DISK DRIVE
SYSTEM
Many methods have been employed in implementing each

of the individual blocks within the phase locked loop (PLL),

with techniques being customer-tailored to specific applica-

tions. Design methods include analog and digital configura-

tions or a combination of both. For the application of a PLL

within a disk drive data separator (and specifically regarding

National’s family of data separator/synchronizers), a combi-

nation of digital and analog block design has been found to

provide the most efficient and reliable solution (see Figure
3.5). Here, since the waveforms to be compared are digital

signals and the phase relationships are indicated by logical

transitions (positive edges), the phase detector is com-

prised of a simple set of cross-coupled latches which pro-

duce ‘‘pump-up’’ (reference leads VCO) and ‘‘pump-down’’

(reference lags VCO) digital outputs. Since the filtering,

however, is most easily and flexibly performed with passive

analog components, the pump-up and pump-down signals

are converted into gated sourcing and sinking currents, re-

spectively, via an analog ‘‘charge pump’’ circuit, which is

used to develop an error voltage across a capacitive loop

filter (see Figure 3.6). This error voltage is used as a control

potential for a variable rate relaxation oscillator (emitter cou-

pled multivibrator VCO), whose oscillation is converted to

digital signal levels again for use both at the phase detector

input and as the regenerated clock waveform.

TL/F/8663–50
Goals:

1. Edge sensitive detector which eliminates dependence on waveform shape.

2. Unlimited capture range to ensure phase and frequency lock.

3. Zero phase difference when in lock to improve lock range.

FIGURE 3.5. Basic Disk System PLL
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FIGURE 3.6. Digital Phase Detector

PHASE DETECTOR

The digital phase detector employed within National’s data

separator/synchronizer circuits is actually a true phase/fre-

quency discriminator block capable of allowing a theoreti-

cally infinite capture range for the PLL (see Figures 3.7–
3.10). Essentially, the capture range is limited only by the

design constraints placed on the VCO’s frequency excur-

sion. In all of National’s current disk PLL circuits (excluding

the DP8460/50), this extended lock capability is employed

while the circuit is in the non-read mode and the PLL is

locked to a constant reference signal, guaranteeing proper

lock recovery from any given mislock which may occur dur-

ing a read operation.

PULSE GATE

The data returning from the disk is not a periodic waveform,

but instead has the possibility of bits either appearing or not

appearing within assigned positions (windows) in the data

stream (see Figure 3.1). The PLL is required to achieve and

maintain lock to this pseudo-random pattern, despite the

missing bits. This is analogous to the placement of teeth in

a gear (data separator) which are ready to mesh with anoth-

er gear (data stream), regardless of whether or not some

teeth on the second gear (data) are occasionally missing

(random data patterns).

In order to allow for the missing bits, the PLL employs a

Pulse Gate circuit, which functions as follows: a data bit

arriving at the PLL is sent to its corresponding input on the

phase detector, and at the same time trips a gate which

allows the next occurring VCO edge into the phase detec-

tor; the gate then closes following transmission of the VCO

edge. If no data bit arrives, no comparison occurs and the

VCO holds its frequency. Essentially, the PLL is attempting

to align each data bit with the nearest occurring VCO edge,

thus maintaining phase lock while frequency discrimination

is suppressed (see Figures 3.11 and 3.12).

Ratio of Average

CPO Current to Total

Current Available

TL/F/8663–52

Ensures unlimited capture range. The digital phase detector ensures fre-

quency acquisition by forcing the charge pump to always pump in the direc-

tion needed to make FVCO equal to FREF.

FIGURE 3.7. Digital Phase Detector
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When the digital phase-lock loop is out of lock, the output of the phase comparator has a duty cycle which varies between 0 and 100%. The charge pump is active

more than 50% of the average time but it only pumps current in the direction necessary to lock the VCO phase.

FIGURE 3.8. Digital Phase Detector
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Once the VCO is locked to the reference signal, the only phase difference which occurs will be that required to pump enough charge to compensate for any

leakage current in the charge pump, loop filter or bias current in the VCO control input.

FIGURE 3.9. Digital Phase Detector

TL/F/8663–55

Effect of phase difference on digital phase detector when the VCO and reference frequencies are equal. The net charge pumped during each period is equal to the

product of the charge pump current and the time difference between the phase comparator inputs.

FIGURE 3.10. Digital Phase Detector
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Ratio of Average

Current Pumped to

Total Available

Current

TL/F/8663–56

Phase detector gain when in lock

When the loop is in lock the net charge (Q) pumped during each period is

equal to the product of the charge pump current and the time difference

between the phase comparator inputs.

Q e Icpo (Tup b Tdown)

FIGURE 3.11. Digital Phase Detector Gain

without Pulse Gate

Ratio of Average

Current Pumped to

Total Available

Current

TL/F/8663–57

Each vertical transition represents a window boundary.

FIGURE 3.12. Digital Phase Detector Gain

with Pulse Gate
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FIGURE 3.13. Disk Data PLL

DELAY LINE

In the generation of the symmetrical bit-detection window

mentioned previously, a delay line is employed as shown in

Figure 3.13. The incoming data is allowed to trip the VCO

pulse gate immediately upon arrival, but is allowed into the

phase detector only after it traverses the delay line. To un-

derstand the purpose for the delay line, first consider the

case where the delay line is not present; given proper PLL

lock, the VCO would align its edge to occur exactly at the

same time as the arrival of each data bit. Any bits shifted

early would cause a small VCO phase-advancing correction

within the loop, which would be desirable. However, any bits

shifted even a very slight amount late would arrive after the

current VCO edge had passed and been suppressed by the

pulse gate. The bit would then have to be compared to the

subsequent VCO edge instead of to the current edge, pro-

ducing an erroneous phase correction. With the delay line in

place and set to delay the data bit by one-half of the VCO

period, the data bit would first trip the VCO gate and then

spend one-half of the VCO period traversing the delay line

before it reached the phase detector. Given the loop is in

lock, both the delayed bit and the VCO edge arrive at the

phase detector at exactly the same time. If the bit were early

up to one-half VCO cycle, it would still gate the appropriate

VCO edge through, and produce an appropriate phase cor-

rection at the phase detector. Also, if the bit were late up to

one-half of the VCO cycle, it would again still gate the ap-

propriate VCO edge through to the phase detector, as well

as produce the appropriate phase correction. Thus, the net

effect of the delay line is to allow the incoming data bit to

shift either one-half cycle early or one-half cycle late while

yet maintaining a proper comparison to the appropriate VCO

edge.

WINDOW ACCURACY

As mentioned previously, the integrity of the window align-

ment is crucial in maintaining an acceptable system error

rate. It can be easily seen that accuracy in the delay line is

critical in achieving this alignment. This has traditionally

made the implementation of a delay line a costly design

challenge. Within National’s data separator/synchronizer
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circuits, a proprietary technique has been employed which

extracts precise timing information from the 2F CLOCK in-

put waveform, and uses this information to regulate the tim-

ing within an on-chip silicon delay line. This in itself has

unique advantages since the 2F source is either (1) a highly

accurate crystal oscillator source, or (2) derived from the

disk servo clock which tracks the data rate and consequent-

ly allows the delay line to adjust its delay accordingly. Com-

pletely dependent on this 2F signal for timing information,

the delay remains independent of variations in its associat-

ed external components, power supply, temperature, and

silicon processing. It requires no adjustment (although fine

tuning is optional on the DP8462), and its accuracy is guar-

anteed within the window tolerance specification for the de-

vice.

FREQUENCY LOCK

The frequency discriminating capability of the phase detec-

tor within National’s data PLL circuits can be employed to

great advantage if used appropriately. It is brought into play

simply by the internal bypassing of the pulse gate circuit.

The advantages achieved are (1) the avoidance of mis-lock

to the reference clock input, (2) rapid and guaranteed lock

recovery from an aborted read operation, and (3) avoidance

of mis-lock within the disk PLL synchronization field (pream-

ble).

Items Ý1 and Ý2 above are easily attained by pulse gate

bypassing when the PLL is locked to the reference signal in

the non-read mode. Pulse gate bypassing allows the digital

phase detector to perform unrestricted frequency compari-

son and thus guarantees lock. Both items are employed

within all of National’s currently released data separator/

synchronizer circuits (see Table 3.1).

Incorporation of item Ý3 (employed within the DP8461 and

DP8451, and optional within the DP8462) is highly depen-

dent on preamble type and places specific requirements on

the controller’s sector search algorithm. First, there are sev-

eral common preamble types currently in use on disk drives;

(1) the MFM and 1,N type, (2) the 2,7 high frequency pream-

ble, the (3) the 2,7 low frequency preamble:

Code Type
VCO Cycles (Code Positions or

Windows) Per Recorded Preamble Bit

GCR* 1

MFM 2

1,7 2

1,8 2

2,7 3

2,7 4

*Note: GCR (Group Code Recording) is used almost exclusively in tape

drive systems; it is mentioned here for comparative purposes only.

Since each preamble is recorded at a different frequency

with respect to the VCO operating frequency, the VCO must

be internally divided down to equal the preamble frequency

for the particular code in use before being fed into the

phase detector along with the data pattern. (This function is

performed internally within specific National disk PLLs listed

in Table 3.1.) It is then the responsibility of the PLL to detect

the occurrence of frequency lock and revert back to the

pulse gate mode prior to leaving the preamble and encoun-

tering random data patterns. Second, while in the frequency

acquisition mode, the controller must allow a read operation

to begin (initial PLL lock to the data) only during the pres-

ence of the appropriate field, i.e., the system must employ a

hard-sectored or pseudo hard-sectored PLL control algo-

rithm which will guarantee the PLL read gate will only be

asserted at the start of the preamble on the disk, otherwise

serious PLL mislock problems will result.

DP846X EXPOSITION

Because of the varied requirements and applications which

exist for the data separator/synchronizer, National provides

an assortment of disk PLL circuits, including versions which

provide frequency lock for specific preamble types, as men-

tioned above.

TABLE 3.1. Data Separator/Synchronizer

Reference List

Device
Synchronized Separated Frequency Delay

Codes Codes Lock Trim

DP8461* MFM; 1,N MFM Reference None

& Data

DP8462* 2,7 None Reference Optional

1,N (Optional

MFM for Data)

DP8465* All MFM Reference None

DP8451 MFM; 1,N None Reference None

& Data

DP8455 All None Reference None

Note 1: ‘‘All’’ code synchronization does not include GCR.

Note 2: DP846X devices are in the 24-pin, 300 mil. package; DP845X devic-

es are in the 20-pin, 300 mil. package.

Note 3: *Also available in 28-lead plastic chip carrier.

Note 4: DP8461 and DP8451 pinouts match the DP8465 and DP8455, re-

spectively; for use with hard and pseudo-hard sectoring only.

Note 5: DP8451 and DP8455 are also available in 20-pin plastic chip carrier.

3.3 SYSTEM DYNAMICSÐLOOP FILTER
DESIGN
The key element contained within the PLL system for gov-

erning the loop dynamics and overall performance is the

loop filter. It is at this point that the user has the greatest

flexibility and control regarding the behavior of the PLL. As

previously mentioned, there are several requirements

placed on the dynamics of the loop, some of which tend to

conflict with others. Table 3.2 lists some of the issues at

hand, and where they lie with respect to one another.

TABLE 3.2

High Low High Low

Band- Band- Damping Damping

width width Factor Factor

Lock Time Good Poor Good Poor

Jitter Poor Good Poor Good

Rejection

Capture Good Poor Good Poor

Range

Noise Poor Good Poor Good

Immunity

Stability (No Relationship) Good Poor
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Although the designations of ‘‘good’’ and ‘‘poor’’ are very

general in nature, they apply fairly well here for comparative

purposes. An ideal PLL would be able to lock to any fre-

quency and/or phase step in a very short time with no pos-

sibility of missed or false lock, settle quickly to a highly sta-

ble state, and track any frequency variations encountered in

the data stream while at the same time rejecting all bit jitter

and extraneous noise. While all this is not possible with any

single loop filter, acceptable performance can be achieved

via careful compromise, with the design biased to accom-

modate the more critical parameters.

3.4 OVERVIEW OF FILTER DESIGN
OBJECTIVES
The first design objective to be discussed is the minimiza-

tion of acquisition time. This includes both acquisition of

phase lock to the data stream as well as acquisition of

phase lock to the crystal frequency (or servo track). Both of

these acquisition times impact the length of the preamble

field which precedes the address mark. Since longer pream-

bles result in more overhead per data sector, a decrease in

formatted disk capacity may result from excessively long

acquisition times. Acquisition times are directly controlled by

the phase locked loop filter.

The second design objective is the maximization of data

margin. Data margin measures the ability of the data sepa-

rator to allow the data bit to move from its expected time

position without a resulting data error. This movement of the

data bit away from its expected time position is caused by

noise, read channel asymmetry, magnetic domain interfer-

ence, and other factors in the head, media, and channel

portion of the drive system. The data separator generates a

window around the expected data position; however, the

window accuracy is affected by some factors in the data

separator. These factors include delay inaccuracy, VCO jit-

ter, phase detector inaccuracy, and phase locked loop re-

sponse to bit movement which occurred in preceding win-

dows. The last of these factors, loop response, is controlled

by the phase locked loop filter.

The final objective to be checked is the tracking of disk

data. The rate of change of phase between the VCO and

the read data is modulated by various mechanical phenom-

ena in the drive. Instantaneous variations in disk speed as

well as head vibration contribute to this modulation. The

maximum frequency of these mechanical resonances tends

to be in the 10 kHz or 64 Krads/sec range. Phase-locked

loop bandwidth must be wide enough to allow this modula-

tion to be tracked. This objective tends to be encompassed

by the acquisition time objective. However, it is conceivable

that a system which allows relatively long acquisition times

may come up against this barrier.

The loop filter design process may start with any one of

these objectives. If the disk format has been established, or

a certain disk capacity is desired, the acquisition perform-

ance may dictate the loop filter design. If data reliability and

error rates are of primary importance, the design may start

with margin loss considerations. In any case, all aspects of

the loop performance must be checked and the final design

is usually a tradeoff between the desired performance and

the achievable performance.

3.5 ACQUISITION PERFORMANCE
The read acquisition time is the time between the assertion

of READ GATE and the reading of the address mark. Also

of concern is the time required for the loop to acquire lock to

the crystal frequency. Many application-specific system pa-

rameters impact this portion of the loop design. Some of

these parameters which will be discussed include sector

search algorithms in soft sectored systems and frequency

differences between the crystal and the data in removable

media systems.

Before the READ GATE is asserted, the VCO is locked to

the crystal. When READ GATE is asserted, the phase differ-

ence between the VCO and the read data is random. The

first portion of the acquisition is where the loop captures

phase alignment. In the worst case, the initial phase align-

ment is such that the data bit is positioned at the edge of

the window which gives the proper polarity of error signal,

however, the loop cannot keep the bit in the window since it

started so close to the edge. One of the results is that the

incoming data will appear to be different than what is actual-

ly being read. Any system which desires to immediately

monitor the read data must wait for this initial cycle slip to

occur before reading. The second result is that a series of

error signals of the wrong polarity occurs after this initial

cycle slip while the phase aligns to the window center. The

duration of this slip and phase acquisition is approximately

1/0n for damping factors between 0.7 and 1.0. See Section

3.7 for acquisition plots. Note that 0n is the loop bandwidth

or the natural frequency of the loop and that the phase error

is zero at 0nt e1.

The next period of the acquisition is where the loop begins

to capture frequency. There is also some overshoot from

the phase acquisition during this period. This analysis as-

sumes that the frequency acquisition begins where 0nt e 1

and is superimposed upon the phase acquisition for t l

1/0n.

In a fixed media system the difference between the crystal

frequency and the read data frequency can be about 1%. In

a removable media system the data may be written in one

drive and read in another. The total difference between the

read data frequency and the crystal frequency can be twice

the rotational speed difference of the drive. For example, if

the rotational speed variation of the drive is a1% when the

disk is written, and then b1% when the disk is read, the

read back data frequency will be 2% slower than the crystal

frequency. Since a frequency difference becomes a phase

ramp, the phase error will initially grow during read acquisi-

tion while the loop attempts to hold the phase error to zero

(see Section 3.7). If the peak phase error which results ex-

ceeds the window tolerance, the loop will not capture within

the desired acquisition time. The data will slip out of its prop-

er window into the neighboring window and a series of error

signals of the wrong polarity will result.

When the data rate is 5 Mbit/sec, the window period is

100 ns and the peak phase error allowed is ideally 50 ns.

For a damping factor of 0.7, the peak phase error is given

by:

peak error e (0.45) (D0/0n) (200 ns/2q) a 0.21(Di)

where Di is the worst case initial phase (50 ns). The

200 ns/2q term converts radians to seconds. D0 is the
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worst case initial frequency difference which is determined

by the rotational speed variation of the drive. For a remov-

able media drive with 1% variation:

D0 e (2q/200 ns) (0.02) e 628 Krads/sec

The results are as follows

0n e 600 Krads/sec x peak phase error e 25.5 ns

0n e 500 Krads/sec x peak phase error e 28.5 ns

0n e 400 Krads/sec x peak phase error e 33.0 ns

0n e 300 Krads/sec x peak phase error e 40.5 ns

For 0n e 300 Krads/sec, with a damping factor of 0.7, the

loop will just barely capture. If a removable media system

were to use a 300 Krads/sec loop bandwidth, the capture

range analysis should be performed very carefully since the

numbers given here are very approximate. Capture perform-

ance improves for larger damping factors, however, total

acquisition time increases.

There is no precise definition of phase lock. At the end of

the preamble, there will be some residual phase error. The

loop is locked if this phase error contributes an acceptable

amount of margin loss during the reading of the address

mark. It is recommended that the residual error be about

2 ns in a 5 Mbit/sec data rate system:

2.0 ns (2q/200 ns) e 0.062 radians

If the damping factor is 0.7, the following results

0n e 600 Krads/sec x error e 0.062 at t e 7 ms

0n e 500 Krads/sec x error e 0.062 at t e 9 ms

0n e 400 Krads/sec x error e 0.062 at t e 12 ms

0n e 300 Krads/sec x error e 0.062 at t e 17 ms

The total read acquisition time includes the initial phase ac-

quisition as follows:

0n e 600 Krads/sec x 7 ms a 1.7 ms
e 9 ms e 5.5 bytes

0n e 500 Krads/sec x 9 ms a 2.0 ms
e 11 ms e 6.5 bytes

0n e 400 Krads/sec x 12 ms a 2.5 ms
e 15 ms e 9.0 bytes

0n e 300 Krads/sec x 17 ms a 3.3 ms
e 20 ms e 12.5 bytes

3.5.1. Crystal Acquisition
Analysis of the crystal acquisition time is similar to the read

acquisition time. In the case of the National DP8465 data

separator, however, a high bandwidth mode is provided to

decrease the acquisition time. The high bandwidth is acti-

vated when SET PLL LOCK is deasserted. This increases

the phase detector gain (increases the charge pump cur-

rent). When the phase detector gain increases, both the

loop bandwidth and the damping factor are increased. Loop

performance is poor if the damping factor gets much larger

than 1.0 and therefore the increase in loop bandwidth

should be limited to the point where the damping factor is

1.0. This means that:

0n(high track) e 0n(low track) (1.0/0.7)

Repeating the acquisition analysis for the four bandwidths

used before:

0n e 600 Krads/s (1/0.7) e 857 Krads/s x
acq e 5 bytes

0n e 500 Krads/s (1/0.7) e 714 Krads/s x
acq e 6 bytes

0n e 400 Krads/s (1/0.7) e 571 Krads/s x
acq e 7 bytes

0n e 300 Krads/s (1/0.7) e 429 Krads/s x
acq e 9 bytes

3.5.2. Margin Loss Due to PLL Response
Fast acquisition is desirable to minimize preamble lengths.

However, the wider the loop bandwidth, the larger is the

loop response to shifted data. Loop response to shifted

data results in margin loss. The data is shifted by noise and

other factors which contain no information about data fre-

quency changes. When the loop responds to this bit shift it

moves the windows for subsequent data bits thereby reduc-

ing the amount of shift allowed for these bits.

For a 5 Mbit/sec system with a maximum shifted early bit,

the following formula gives the loop response:

loss e 40[1 b (cos01 b g2 0nt b

g/01-g2 sin01-g2 0nt)exp(bg0nt)] Note 1.

where 40 is the phase step (in ns) due to the early bit, 0n is

the loop bandwidth, and g is the damping factor. The phase

detector output is active for 40 ns and the amount of loss is

determined by setting t e 240 ns which is the time to the far

edge of the next window where a bit may appear.

The 0n and g for this calculation will be the same as used in

the data acquisition analysis as long as t does not exceed 2

VCO cycles. If t is much greater than 2 cycles, the effective

phase detector gain is reduced and the 0n is reduced also

(see design example of 0n formula). This calculation also

assumes that the second pole in the filter is well outside the

loop bandwidth.

0n(max freq data) e 600 Krads/s x loss e 7.7 ns

0n(max freq data) e 500 Krads/s x loss e 6.4 ns

0n(max freq data) e 400 Krads/s x loss e 5.2 ns

0n(max freq data) e 300 Krads/s x loss e 3.9 ns

There are techniques for reducing this margin loss without

heavily impacting the acquisition performance. See Section

3.7 for details.

DESIGN EXAMPLE FOR 5 Mbit/s DATA RATE

Although there is no real standard, most of the track formats

for small Winchesters are using about 12 bytes of preamble.

There is a formated gap after the data ECC field but it can-

not be assumed that any of this gap is available for PLL

acquisition. Some of this gap will be lost when the sector is

updated due to rotational speed variation and the remainder

is required for write-to-read recovery of the read channel.

Note 1: Phaselock Techniques; Floyd M. Gardner, Second Edition, John

Wiley & Sons; pg. 48.
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As discussed, in a soft sectored disk drive, acquisition to the

crystal, as well as acquisition to the read data, must occur

within the preamble. (In a hard sectored drive some of the

preamble may be lost to uncertainty in sector pulse detec-

tion but usually most of the preamble is available for data

acquisition.) For this reason, the loop bandwidth during ac-

quisition must be in the 600 Krads/sec range for a soft sec-

tored drive. The 600 Krads/sec bandwidth gives 5 byte

crystal acquisition and 5.5 byte data acquisition. The margin

loss can be held to about 6.0 ns a 7.7 ns e 13.7 ns with

the DP8465-3. (This margin loss can be reduced if a longer

preamble/lower bandwidth were used or by using some of

the techniques discussed in the 10 Mbit/sec design exam-

ple.)

For the DP8465 with SET PLL LOCK asserted:

0n e 0(2.5) (FVCO)/(N) (C1) (Rrate)

Rrate should be set at 820X since the current in this resistor

does have a small effect on the VCO stability and 820X has

been determined to be the optimum value. FVCO is the cen-

ter frequency of the VCO in hertz. FVCO is 10 MHz for

5 Mbit/sec data rates. N is the number of VCO cycles per

data bit. MFM preamble data has 2 cycles per data bit. This

gives:

C1 e (2.5) (Fvco)/(N) (Rrate) (0n2)

e (2.5) (10E6)/(2) (820) (3.6E11)

e0.042E-6 (use 0.039 mF)

C1 should be an ultra-stable monolithic ceramic capacitor or

equivalent timing quality capacitor.

In the data field, the MFM data frequency can be half the

preamble frequency. This means that N e 4 in the band-

width equation. This reduces the bandwidth by 1/02:

0n (min) e (1/02) (6.25.1 Krads/s) e 442.1 Krads/s

where 625.2 Krads/sec is the computed bandwidth in the

preamble with C1 e 0.039 mF. Since there should be no

mechanical resonances anywhere near this frequency, the

loop will be able to track the data.

The damping factor should be about 0.5 when 0n is mini-

mum. Response to bit shift is minimized when the damping

factor is small; however, if the damping factor drops much

below 0.5 the system tends to be oscillatory (under-

damped):

g e (0n) (R1) (C1)/2 x R1 e (2) (g)/(0n) (C1)

R1 e 1/(442.1E3) (0.039E-6) e 58 (use 56X)

The actual damping during acquisition is then:

g(acq) e (625.2) (56) (0.039E-6)/2 e 0.68

The linear approximation used to predict loop performance

assumes that the phase detector output is constantly pro-

portional to the input phase difference. In reality, the phase

detector output is a pulse applied for a period of time equal

to the phase difference. The function of C2 is to smooth the

phase detector output over the cycle. C2 adds a second

pole to the filter transfer function as discussed in section

3.7. This pole should be far enough outside the loop band-

width that its phase and amplitude contribution is negligible

to the loop bandwidth. If:

C2 e C1/50 e 789 pF (use 820 pF)

the acquisition performance and the margin loss are not

significantly changed from the predictions. If a larger C2 is

used, the margin loss can be reduced at the expense of the

acquisition. This may be desirable for some systems. See

section 3.7 for discussion of the function of C2.

Note 1: Ibid.

The final loop component is Rboost. When SET PLL LOCK is

deasserted, Rboost is in parallel with Rrate to set the charge

pump current. If the parallel combination of Rrate and Rboost
is called Rp:

0n (high) e 0(2.5) (FVCO)/(N) (C1) (Rp)

Since the total set current, Iset, into the charge pump may

not exceed 2 mA, the parallel resistance Rboost and Rrate
(Rp) should also be restricted to:

Rp t Vbe/Iset e 0.7V/2 mA e 350X

Solving for Rboost:

Rboost e (Rp) (Rrate)/(Rrate b Rp)

e (350) (820)/(820 b 350) e 610.9 (use 619X)

Remember, Rboost is switched-in whenever SET PLL LOCK

is deasserted. This design example assumes that SET PLL

LOCK is deasserted whenever READ GATE is deasserted.

TL/F/8663–59

0n (acquisition) e 625 Krads/s g e 0.68

Lock time & 5 bytes.

0n (write mode) e 957 Krads/s g e 1.04

Lock time & 4 bytes.

0n (min data) e 442 Krads/s g e 0.48

FIGURE 3.14a. 5 Mbit/sec Design Example

TL/F/8663–60

FIGURE 3.14b. 5 Mbit/sec Design Example

DESIGN EXAMPLE FOR 10 MBIT/SEC MFM DATA RATE

At 10 Mbit/sec the window period is reduced to 50 ns and

margin loss becomes a much more important design param-

eter than at 5 Mbit/sec. The total bit shift allowed is half the

window (25 ns). If the National DP8465-3 is used, there will

be a maximum static loss (independent of the loop filter

components) of 6 ns. This part could be used as the starting

point for a 10 Mbit/sec design.

The margin loss due to loop response should be kept as low

as possible. The maximum allowed bit shift with the

DP8465-3 is (25 ns b 6 ns) or about 19 ns. The loss ap-

proximation formula is then:

loss e 19[1 b (cos01 bg2 0nt
b g/01 bg2 sin01 b g2 0nt)exp (bg0nt)] Note 1.
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where 19 is the phase step (in ns) due to an early bit. Evalu-

ation should be done with t e 120 ns:

0n e 600 Krads/s and g e 0.66 x loss e 1.9 ns

This 1.9 ns loss should be acceptable for most designs. The

total loss would then be 6 ns a 1.9 ns e 7.9 ns for a total

window of 34.2 ns with the DP8465-3. As discussed in Sec-

tion 3.7, the actual margin loss due to loop response will be

less than 1.9 ns due to the roll off of the second pole in the

loop filter.

The acquisition performance of a 600 Krad/s loop was ana-

lyzed in the 5 Mbit/sec design example. With a 2% frequen-

cy difference between the read data and the crystal, the

peak phase error was about 24 ns. At 10 Mbit/sec D0 is

doubled and the conversion term becomes 100 ns/2q. The

initial phase misalignment is 25 ns. The peak phase error is

then just over 20 ns. This is pushing the capture range of

the DP8465-3 since its allowed shift is only 19 ns. If the

system is fixed media with 1% or better rotational speed

variation there is no problem since the peak phase error is

reduced by a factor of two in this case. If capture is needed

at 2%, SET PLL LOCK can be deasserted during read ac-

quisition as discussed later.

Notice that the 5 Mbit/sec lock time was given in bytes (i.e.

5.5 bytes). At 10 Mbit/sec the read acquisition time will re-

main about the same but that means that the number of

bytes is doubled to 11 bytes. This read acquisition time can

be reduced without increasing the margin loss if the disk

controller will hold SET PLL LOCK deasserted (high) during

read acquisition. This increases the damping factor to 1.04

and the bandwidth to 940 Krads/sec. The result is a read

acquisition time of 8 bytes. The crystal acquisition time is

also 8 bytes so the total preamble length is 16 bytes in a

soft sectored disk drive. (This assumes zero monitoring

overhead. If x bytes are required to determine that the read

data is not preamble, the total preamble length would be

16 a x bytes.) Of course the price paid for this reduction in

acquisition time is that the controller must now control the

SET PLL LOCK input during acquisition.

The calculation of the loop components is similar to the 5

Mbit/sec data rate example:

C1 e (2.5) (FVCO)/(N) (Rrate) (0n2)

e (2.5) (20E6)/(2) (820) (3.6E11)

e 0.085E-6 (use 0.082 mF (5%))

C1 should be an ultra-stable monolithic ceramic capacitor or

equivalent timing quality capacitor. Evaluation of the band-

width formula with C1 e 0.082 mF gives:

0n e 0(2.5) (20E6)/(2) (820) (0.082E-6) e 609.8 Krads/s

The target damping factor at this bandwidth is 0.66:

R1 e (2) (g)/(0n) (C1)

e (2) (0.66)/(609.8E3) (0.082E-6) e 26.4 (use 27X)

The total set current into the charge pump through the par-

allel combination of Rboost and Rrate, (Rp), must not exceed

2 mA. For Iset s Vbe/Rp, then:

Rp l Vbe/Iset e 0.7V/ 2 mA e 350X

Solving for Rboost:

Rboost e (RP) (Rrate)/(Rrate b Rp)

e (350) (820)/(820b350) e 610.6 (use 619X)

This design example assumes that Rboost is switched in dur-

ing crystal acquisition and data acquisition.

If the margin loss due to loop response of 1.9 ns is accept-

able and acquisition performance is to remain unaffected:

C2 m C1/50 e 0.082 mF/50 e 1640 pF (use 1600 pF)

A smaller value of C2 is chosen for this example since the

1.9 ns of margin loss seems very acceptable whereas it is

undesirable to impact the capture range or the acquisition

time. Larger values of C2 may be used, however, the addi-

tional pole in the filter may begin to affect frequencies inside

the loop bandwidth. The major impact of large C2 is on the

capture range although some degradation in read acquisi-

tion time can be seen for larger values of C2. See section

3.7 for further discussion.

3.6 COMMENTS ON OTHER CODES
MFM is a 1,3 RLL code. This means that a minimum of one

empty window will occur between two windows which each

contain a disk data bit, and that a maximum of three empty

windows will occur between windows which each contain a

disk data bit. The most popular of the newer RLL codes are

the 2,7 codes, in which there are a minimum of 2 and a

maximum of 7 windows between windows containing a disk

data bit. Although the ratio of encoded disk data bit posi-

tions (windows) on the disk to non-encoded data (NRZ) bits

for both MFM and 2,7 code is 2:1, the two codes differ in the

actual number of recorded pulses required to store a given

number of NRZ bits (their NRZ-bit versus disk-bit ratio, or

efficiency). The 2,7 code requires fewer recorded bits than

MFM on average for disk encoding of the same amount of

information and has a 50% larger minimum bit spacing than

MFM. These allow, on a given disk, a theoretical increase in

data storage of 50% when 2,7 encoding is chosen over

MFM while the minimum flux transition spacing is kept con-

stant.

TL/F/8663–61

Controller must keep SET PLL LOCK deasserted for 8 bytes after READ

GATE is asserted.

0n (acquisition) e 933 Krads/s g e 1.03

0n (min data) e 431 Krads/s g e 0.48

0n (max data) e 610 Krads/s g e 0.66

FIGURE 3.15a. 10 Mbit/sec Design Example

TL/F/8663–62

FIGURE 3.15b. 10 Mbit/sec Design Example
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The impact of a 2,7 code on the data separator is signifi-

cant. Loop bandwidth is dependent upon the sample rate

into the phase detector. With MFM it has been seen that the

bandwidth in minimum frequency data is 1/02 times the

bandwidth in maximum frequency data. This is a ratio of

1:0.707. In a 2,7 code the ratio is 03/8 or 1:0.612. The

damping factor follows the bandwidth so a 2,7 code system

must be more carefully designed to avoid underdamped or

overdamped response.

Another complexity of 2,7 codes is that most systems are

not using the maximum frequency data in the preamble. The

100100 . . . . encoded data does not decode to a data pat-

tern with byte alignment. The 10001000 . . . encoded data

pattern decodes to all ones byte aligned data and is being

used more often. The lower frequency data increases the

read acquisition time and increases the probability of har-

monic lock. Channel induced pulse pairing (from channel

asymmetry), coupled with an initial phase alignment which

puts the data bit at the extreme window edge, may allow the

loop to stabilize out of phase. There are two techniques

which are used to eliminate this problem. The first is to start

the VCO in phase with the read data (zero phase start-up).

The second technique is to perform phase and frequency

comparison (i.e. do not window the data) during read acqui-

sition. The second technique is used on the National

DP8462 data separator which is specifically designed for

2,7 codes.

TL/F/8663–63

Controller must keep SET PLL LOCK deasserted for 6 ms after READ GATE

is asserted.

0n (acquisition) e 956 Krads/s g e 1.04

0n (min data) e 442 Krads/s g e 0.48

0n (max data) e 722 Krads/s g e 0.79

FIGURE 3.16a. 10 Mbit/sec 2,7 Code Example

TL/F/8663–64

FIGURE 3.16b. 10 Mbit/sec 2,7 Code Example

Note 1. Ibid.

In conclusion, loop filter design for 2,7 codes is more diffi-

cult than for MFM. In hard sectored drives, or pseudo hard

sectored drives with dc erased gaps, the problem is simply

the wide range of damping factors and can be easily solved.

3.7 LOOP FILTER DETAILS
Time domain response for a second order feedback control

system is well known. The response to a phase step and a

frequency step is shown in the graphs in Figure. 3.17. The

phase locked loop system is normally designed to have a

damping factor between 0.7 and 1.0 during acquisition so

these curves show the performance boundaries. The equa-

tions for the phase step response are:

g k 1 x i(t) e Di(cos01 b g2 0nt b

g/01 bg2 sin01 bg2 0nt)exp (bg 0nt)

g e 1 x i(t) e Di(1 b 0nt)exp (b0nt) Note 1

The equations for the frequency step response are:

g k 1 x i(t) e

(D0/0n) (1/01 b g2 sin01 bg2 0nt) exp (bg 0nt)

g e 1 x i(t) e (D0/0n) (0nt) exp (b0nt) Note 1.

These equations were used to derive the margin loss due to

bit jitter (i.e. phase steps) as well as the acquisition perform-

ance in the previous design examples. The second order

time domain response is the usual starting point for loop

filter design.

Disk data separation is complicated by the fact that the in-

put data stream is not a single frequency. Missing data bits

must not be allowed to generate error signals to the loop

since the loop bandwidth would have to be set unaccept-

ably low to filter out this erroneous information. As a result,

most phase detectors for disk data separators do not gener-

ate a continuous voltage dependent upon the input phase

difference. The discontinuity in the input data stream is dealt

with by only generating a phase detector output when a

data bit has arrived and only during the period of time corre-

sponding to the input phase difference.

TL/F/8663–65

FIGURE 3.17. Phase Error as a Function

of Damping and Phase Step
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There are some problems which result from a pulsed phase

detector output. First, oscillator response can be affected by

the phase relationship between these pulses and its internal

charging and discharging cycle. Second, the response of

the oscillator occurs in a quantum jump when the error

pulse is generated, reducing margin for later bits. These

problems are reduced by adding one or more poles to the

loop filter. These poles smooth the phase detector output

and reduce the loop response to bit jitter. As long as the

added poles do not add significant gain loss and phase shift

within the loop bandwidth, the system time domain re-

sponse will not differ appreciably from a pure second order

feedback control system.

The voltage output of the National DP8465 phase detector

is converted to a current which is sourced into the filter:

TL/F/8663–66

FIGURE 3.18 Charge Pump and Loop Filter

Equivalent Circuitry.

If Zf is the input impedance of the loop filter:

Zf e (1/sC2) // (1/sC1 a R1) e

(1 a sC1R1)/sC1(sC2R1 a C2/C1 a 1)

Vo e (Iin) (Zf) e

(Vin/Rp) (1 a sC1R1)/sC1(sC2R1 a C2/C1 a 1)

Vo/Vin e (sC1R1 a 1)/sC1Rp(sC2R1 a C2/C1 a 1)

The effect of C2 is to introduce a pole into the transfer

function of the loop filter. The pole location is where s e (1
a C2/C1)/C2R1 e 1/C2R1 if C2 kk C1.

The open loop gain is the product of the phase detector, the

filter, and the oscillator transfer functions. The phase detec-

tor transfer function is simply a constant, Kpd, in volts/radi-

an. The oscillator transfer function is Ko/s where the 1/s

term represents phase as the integral of frequency and Ko
is in units of radians/(volt x sec). The open loop transfer

function is then:

G(s) e (KoKpd) [st2 a 1]/[st1(st3 a 1)s]

where t1 e C1Rp, t2 e C1R1, and t3 e C2R1. The transfer

function has a zero at 1/t2, a pole at 1/t3, and two poles at

the origin.

Note: For the National DP8465 the KoKpd product is (2.5) (FVCO)/N where

Fvco is the oscillator frequency in Hertz and N is the number of oscilla-

tor cycles between data bits.

In the frequency domain, the open loop gain falls at 40 dB/

decade until equal to KoKpd/t1 at j0 e 1. The 40 dB/dec-

ade slope continues until the zero at j0 e 1/t2. At the zero

the slope changes to 20 dB/decade. The slope returns to

40 dB/decade when the pole breaks at j0 e 1/t3. The

phase shift begins at b180 degrees and asymptotically ap-

proaches b90 degrees. The phase is equal to b135 de-

grees at j0 e 1/t2. The phase plot turns around and starts

back toward b180 degrees as j0 approaches 1/t3 such

that at j0 e 1/t3 the phase equals b135 degrees.

If a second pole were in the filter around j0 e 1/t3, the

phase would equal b225 degrees at j0 e 1/t3 and stability

would require that the gain be below 0 dB before the phase

reached b180 degrees. This sometimes limits how closely

the poles can be moved to the loop bandwidth. When the

gain is 0 dB, the difference between the actual phase shift

and 180 degrees is referred to as the phase margin. The

open loop phase margin is related to the damping factor of

the second order system. Note that there is a pole in the

buffer amplifier of the DP8465 between the filter and the

VCO. This pole is at 5 MHz or about 31.4 Mrads/s and could

affect the phase margin in a very wide band loop.

The additional pole in the loop filter helps to improve read

margin because it lowers the loop gain at the frequency of

the bit jitter. The fundamental frequency content of the bit

jitter is slightly below the bit frequency since the pump up

error begins before the end of the window and the pump

down error ends after the end of the window. At 5 Mbit/sec,

the bit jitter frequency is 1/(200 ns a 80 ns) e 22.4 Mrads/

sec for 40 ns bit shifts. The 615 Krads/sec loop designed

earlier for 5 Mbit/sec data would have a gain of b28 dB at

j0 e 22.4 Mrads/s if C2 were not in the loop. With C2 e

820 pF, the gain is reduced to about b31 dB at the bit jitter

frequency. If the additional pole were added at j0 e 6.15

Mrads/s (10 0n) the gain would be b38 dB at the bit jitter

frequency for an extra 10 dB of noise rejection. C2 would be

0.0027 mF in this case.

It is difficult to analytically predict the effect of C2 on the

acquisition performance. Since C2 is moving close to the

loop bandwidth, the system behavior is not purely second

order. There are some computer programs which allow time

domain response to be predicted for third order systems but

normally it is not necessary to use these tools. It is usually

sufficient to start with a second order analysis and experi-

mentally measure the system performance as the third pole

(or poles) is brought closer to the loop bandwidth.
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CHAPTER 4 DP8466 Disk Data Controller Overview

4.0 INTRODUCTION
National’s Disk Data Controller (DDC) chip, DP8466, per-

forms many of the functions in the disk data electronics path

of either disk controllers or intelligent disk drives. The pri-

mary function of the chip is to correctly identify the selected

sector on disk and then to transfer that sector’s data to or

from memory.

The DDC performs serialization and deserialization of disk

data, CRC/ECC generation, checking and correction, data

buffering with a 16-word (32-byte) FIFO, and single or dual

channel DMA addressing. It can write NRZ or MFM encod-

ed data to the disk. The data separation required in the disk

data path electronics can be obtained by using one of Na-

tional’s Data Separator chips, DP8460 or DP8461/5. If 2,7

is used instead of MFM, 2,7 ENDEC chip could be used in

conjunction with the DP8462 2,7 Data Synchronizer. The

DDC is fabricated using the dual layer metal 2m
microCMOS process, which allows complex functions to be

implemented with high operating speeds and modest power

consumption. Internal gate delays of less than 2 ns allow

the DDC to function with disk data rates up to 25 Megabits/

sec. This enables the DDC to be used not only with 3(/2-

inch, 5(/4-inch and 8-inch drives, either Winchester or Flop-

py (or both), but also with high-end drives such as 14-inch

Winchester drives, vertically recorded drives, and optical

drives.

The DDC interfaces with drives compatible with the ST506,

ST412HP, ESDI, SMD and other interfaces. Also the DDC

may instead be part of an intelligent disk drive that has a

SCSI (SASI), or an IPI type interface. Refer to chapter one

where the block level boundaries of the various disk inter-

face standards are shown.

4.1 THE DDC ARCHITECTURE AND BASIC
OPERATION
An architectural block diagram of the DDC is shown in Fig-
ure 4.1 . The 64 internal registers consist of control, com-

mand, pattern and count registers. These registers are ini-

tially preloaded with information such as header or synch

bytes, ECC polynomial bytes, preamble or postamble pat-

terns, or address marks (for soft sectored drives) etc. Some

of the registers will be programmed each time the DDC

starts an operation, for example the command register.

The DP8466 has a range of commands that enable reading

and writing of both data, and header fields, checking for

header fields, formatting with either hard or soft sectored

formats, and aborting. Each of these operations can be per-

formed in various modes and an abundance of formats.

Most operations can be performed as single or multi-sector

operations.

In a typical disk read or write operation, the desired sector

(where the data information is to be read from or written to)

is first located by comparison of the header bytes. To

achieve this comparison, the incoming serial data from the

external data separator is deserialized into byte-wide data

that is fed both to a comparator and FIFO. The comparator

checks the address mark (if present) and the synch bytes to

align the incoming bytes. Once the incoming data stream

has been byte aligned, header comparison for the desired

sector then begins. As each header byte is deserialized it is

compared with the next preloaded header byte. If any of the

header bytes do not match, the desired sector has not been

located, but the DP8466 still performs a CRC/ECC check

on the header and waits for the ID segment of the next

TL/F/8663–67

FIGURE 4.1. The DDC Data Path Architecture
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sector. If after two disk revolutions the header is not found

the DDC will abort the operation. Once a header match is

detected, the DDC prepares to transfer data to or from the

data segment of the sector.

1. When writing a data segment to the disk, the DDC first

inserts the preamble pattern field, address mark (for soft

sectored drives) and synch fields, each byte repeated a

specified number of times. These fields are followed by the

data field bytes that are provided sequentially through the

FIFO and external memory. Internal CRC or ECC (or exter-

nal ECC) check bits are generated from the bits in the data

field and subsequently appended to it. The write operation

ends with the postamble. As each byte is serially transmit-

ted, the next byte becomes available to be serialized and

output. The serial output may be either NRZ data with the

associated write clock or MFM encoded data.

2. When reading a data segment from the disk, the DDC

deserializes the incoming data and byte aligns with the ad-

dress mark (if present) and synch fields using the compara-

tor. It then transfers the data field bytes into FIFO. At the

same time it checks incoming serial data using an internal

CRC code or ECC code.

For both read or write operations, disk data goes to or from

the internal FIFO. Once the FIFO has filled or emptied to the

selected threshold level, data may be transferred to or from

the external buffer memory in the selected burst length by

means of a DMA channel. A second DMA channel is avail-

able to transfer data to or from buffer memory to the system

(for systems that utilize a buffer memory).

If the operation terminates properly an interrupt is issued,

and the user may check status. If an error results during the

operation the DDC will also interrupt the microprocessor,

and the user must determine the appropriate action.

The DDC can be configured in three different modes; pe-

ripheral, master and slave. In the peripheral mode, the mi-

croprocessor accesses internal register to read or write

data. The DDC acts like a peripheral when it is being config-

ured, and when the microprocessor issues a command.

During the execution of a command and when the on-chip

DMA has been granted access to the bus for local and re-

mote transfers, the DDC goes into its master mode, and

becomes bus master. If during the command an external

DMA controls data transfer the DDC will go into a slave

mode.

4.2 PIN ASSIGNMENT AND DESCRIPTION
In this section a complete pin description is presented. The

pin assignment diagrams are shown in Figure 4.2(a) and

4.2(b) . Specific timing information for these signals can be

found in the DP8466’s Datasheet.

4.2.1 Bus Interface
Chip Select (CS): When the DDC is in the peripheral mode

the chip select signal must be asserted low to access en-

able microprocessor access. In the peripheral mode pins

RS0–5 are address inputs and pins AD0–7 are set for 8-bit

transfer of data between the DDC and microprocessor. CS

has no effect if on-chip or external DMA is performing a

transfer. (DDC in slave or master modes.)

Bus Clock (BCLK): The DDC uses BUS CLOCK input as

the reference clock when the DDC is bus master. It is used

only during RESET and DMA operations and is independent

of the disk data rate. BCLK may be the microprocessor

clock and must be at least (/4 the rate of READ CLOCK,

RCLK.

TL/F/8663–68

FIGURE 4.2(a). The DDC (DP8466) Connection Diagram

Address/Data (AD0–7): This 8-bit data/address bus port

has one microprocessor associated function and four mem-

ory transfer associated functions. When the DDC is in the

peripheral mode and CS is set low, this port transfers data

between the internal sections of the DDC and the micro-

processor. When external DMA is active (i.e. the DDC is in

slave mode) with LACK (local acknowledge) set low, data

bits D0–7 are transferred between the FIFO and memory.

When the DDC is controlling the bus (i.e. when on-chip DMA

is active), the AD0–7 bus is multiplexed between DMA ad-

dress and FIFO data bits. Using the single DMA mode,

A0–7 are issued on this port as are A16–23. When using

dual DMA, these lines are used to transfer both the local

and remote DMA address bits, A0–7. In either dual or single

channel mode, the data bits D0–7 are transferred between

FIFO and external memory through this port.

Address/Data (AD8–15): This 8-bit I/O port has four mem-

ory transfer functions (in the peripheral mode with CS low,

these pins remain indeterminant low impedance). In the

slave (external DMA active) mode with LACK set low, data

bits D8–15 are transferred between the FIFO and memory

when 16-bit transfers are enabled. When the DDC is con-

trolling the bus, (master mode) it issues address bits A8–15

on this port and can also issue address A24–31 if it is in

single channel DMA mode.

Register Select (RS0–5): In the peripheral mode, these 6

inputs are used to select the internal registers to be ac-

cessed by the microprocessor. These inputs feed ‘‘fall

through’’ latches that are controlled by the ADS0 input. The

RS0–5 inputs fall through and are decoded by the DDC

when the input level on ADS0 pin is high. The RS0–5 inputs

are stored on the falling edge of ADS0. This enables easy

connection to either multiplexed or non-multiplexed buses.
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FIGURE 4.2(b). The DDC Block Diagram with Pin Assignment

Address/Data Strobe 0 (ADS0): This I/O strobe has two

functions. In the peripheral mode, ADS0 becomes an input

and may be used as a microprocessor address strobe input.

In this mode when ADS0 is high, the address bits on RS0–5

enter the Register Select Latch and are latched on low go-

ing transition.

With the bus under DDC control, ADS0 becomes an output

that issues the address strobe to external memory at the

start of the DMA transfer cycle. The low going transition of

ADS0 coincides with the DMA address bits A0–15 being

valid on pins AD0-15. (Note: ADS0 when an output will still

latch ‘‘data’’ into the RS0–5 latches. Normally this is ran-

dom data and is of no consequence since CS is high. How-

ever when the system wants to access the DDC after a

DMA, the proper address must be loaded into the latches or

ADS0 must be high prior to CS going low.)

Address/Data Strobe 1 / Remote Request (ADS1/RRQ):

This output pin can be configured to have one of two func-

tions. If the DDC has been configured for 32-bit address

single channel DMA, the pin becomes ADS1. This address

strobe is issued either at the start of the very first memory

transfer cycle of a new disk operation or when the lower 16

address bits have just rolled over. In either case the address

on pins AD0–15 is A15–31 at the instance of low going

transition of ADS1.

If the DDC is configured to perform remote DMA transfers in

its dual channel mode, the pin becomes RRQ, or Remote

DMA Request. The DDC will assert the RRQ high whenever

it is ready to transfer data between buffer memory and the

system I/O port. The RRQ will be reset at the end of the

selected burst transfer length.

Remote DMA Acknowledge (RACK): This input pin must

be asserted high after RRQ has been set high, when the

external I/O device is ready to transfer data. Data will be

transferred between external buffer memory and the remote

I/O device until the DDC sets RRQ low, or until RACK is set

low externally. If RACK is removed during a transfer any

cycle in progress at this time will complete.

Local DMA Request (LRQ): This output pin is low when no

data transfer is required between FIFO and the external

buffer memory. The DDC asserts LRQ high when FIFO re-

quires data to be transferred to or from the external buffer

memory for both dual and single DMA mode. LRQ will return

low during the last cycle of the burst transfer or on emptying

or filling up the FIFO.

Local DMA Acknowledge (LACK): Once the DDC has set

LRQ high, and the external circuitry subsequently sets the

LACK input high the DDC becomes bus master. Data trans-

fers between the on-chip FIFO and external memory will

now proceed until the DDC sets LRQ low, or until LACK is

set low externally, in which case any cycle in progress at

this time will complete.

Read (RD): The RD strobe I/O pin has two functions. In the

peripheral mode RD is an input that when low causes data

from a DDC register (selected through pins RS0–5) to be

output on pins AD0–7 when CS is low. Pins AD0–7 will be

high impedance before and after the READ strobe.

When the DDC has bus control, with either LACK or RACK

active, the RD strobe is an active low output from the DDC

to be used by external memory. It enables data to be trans-

ferred from the selected memory location to either the on-

chip FIFO for local transfers or to an external I/O device for

remote transfers.

Write (WR): The WR strobe I/O pin has two functions. In

the peripheral mode WR is an input that when set low will

cause data present on pins AD0–7 to be loaded into a DDC

register (selected through pins RS0–5, and when CS is

low).

When the DDC has bus control, with either LACK or RACK

active, the WR strobe is an active low output used to write

data to the selected memory location from either the on-

chip FIFO for local transfers or from an external device for

remote transfers.

Interrupt (INT): The INT output is set active low whenever

the DDC wishes the controlling microprocessor to check

status. It is set high when the microprocessor services the

interrupt by setting the CS input low and reading the Status

Register.

Reset: The RESET pin is an input that is normally set high.

When RESET is set low, the DDC goes into the internal

reset mode. It clears the FIFO contents, the Status and Er-

ror registers and also deactivates LRQ, RRQ, WRITE GATE

and READ GATE.
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4.2.2 Disk Interface
Write Gate (WGATE): When the DDC writes data to the

disk during either a Write Data, Write Header or Format op-

eration, it asserts the WRITE GATE output pin active high at

the start of the operation. The transition coincides with the

first WRITE DATA bit being issued. WRITE GATE remains

high until either the last data bit of the sequence to be writ-

ten has ended, or when the DDC aborts or resets.

Write Data (WDATA): During a write disk operation, this pin

outputs serial disk data. The DDC can be configured to out-

put either NRZ or MFM encoded data on the WRITE DATA

pin. If NRZ data is selected its bit rate has the same period

as the WRITE CLOCK output. When the DDC has been

configured to issue MFM encoded data to the disk, data

pulses will be output on WRITE DATA as determined by the

MFM encoding rules. In either configuration, when WRITE

GATE is inactive low, so is WRITE DATA.

Write Clock (WCLK): When the DDC is configured to write

NRZ data, a synchronous clock is provided at the WRITE

CLOCK output. The WRITE CLOCK frequency is the same

as READ CLOCK. When the DDC is configured to output

MFM encoded data, clock information is not needed howev-

er this output will still toggle.

Address Mark Found/Early Precompensation (AMF/

EPRE): This pin has two modes. When the DDC is config-

ured to read from a soft sectored disk, this pin is ADDRESS

MARK FOUND, an active high input. Normally this input will

be low but whenever external circuitry detects an Address

Mark (such as a missing clock, or blank information) AMF

should go high for at least one period of READ CLOCK. This

will indicate to the DP8466 that a valid address mark has

been located.

When the DDC is configured to write MFM encoded data,

this pin becomes the output EARLY PRECOMPENSATION.

When it is high, the MFM pulse appearing on the WRITE

DATA output requires early precompensation. When low,

the MFM pulse does not require early precompensation.

If both functions are being used in the system, WRITE

GATE is used to determine the function of this pin. When

WRITE GATE is active high, this pin is an LPRE output,

otherwise it is an AMF input. External demultiplexing circuit-

ry can be used.

Address Mark Enable/Late Precompensation (AMF/

LPRE): This pin has two modes of operation depending on

whether NRZ or MFM data is written to the disk. When the

DDC is configured to write NRZ data on a soft sectored

disk, this output pin is ADDRESS MARK ENABLE. AME is

normally low and will remain low when the DDC is config-

ured for a hard sectored disk (bit HSS in disk format register

is set). On the other hand, for the soft sector configuration,

the DDC will set AME active high during the time any Ad-

dress Mark byte is serially output on WRITE DATA pin.

When the DDC is configured to write MFM encoded data,

this pin becomes LATE PRECOMPENSATION output. In

this configuraton if LATE PRECOMPENSATION is high,

then late precompensation is required on the MFM pulse

being output on WRITE DATA. If LATE PRECOMPENSA-

TION is low, late precompensation is not required. If both

EARLY PRECOMPENSATION and LATE PRECOMPENSA-

TION output pins are set low, no precompensation is re-

quired.

Read Gate (RGATE): When the DDC is set to read the disk,

such as in a Read Header, Compare Header, Ignore Head-

er, Read Data or Ignore Data operation, READ GATE will go

active high. This informs external data separator that it can

begin locking on to incoming disk data. If the data separator

fails to achieve locking, the DDC will set READ GATE inac-

tive for 18 bit times before another locking attempt is made.

READ GATE is also set inactive either at the end of the

specified operation or if the DDC aborts or resets.

Read Data (RDATA): Once READ GATE has been set ac-

tive high and external circuitry has locked on to the incom-

ing encoded disk data, the encoded data must be separated

into clock and NRZ data. The NRZ data connects to the

READ DATA input of the DDC, and is clocked into the DDC

on the positive edge of READ CLOCK. When READ GATE

is set low, the READ DATA input will be ignored.

Read Clock (RCLK): READ CLOCK is a clock input that

may have slightly differing frequencies, depending on the

READ GATE control pin. When READ GATE is inactive, this

clock should be derived from either a servo clock or a crys-

tal clock to produce a clock with a period close to the bit

rate of the disk data. After READ GATE has been set active,

and external circuitry has locked on to the incoming encod-

ed disk data, the READ CLOCK input must switch frequency

(without any short pulses or glitches) to a period identical to

the READ DATA signal.

Sector Pulse (SPULSE): In hard sectored drives the SEC-

TOR PULSE input goes high as the start of each sector

passes under the drive head. Once the DDC detects this

high signal (for at least one period of the READ CLOCK

input), it interprets this to indicate a sector operation can

begin. In soft sectored drive there is no sector pulse and the

start of each sector must be indicated by an Address Mark

byte or bytes, this pin should be tied to ground.

Index Pulse (IPULSE): All drives have an index pulse out-

put that goes active high as the beginning of any track pass-

es under the drive head. Once the DDC detects this high

signal (for at least one period of the READ CLOCK input), it

assumes an INDEX PULSE has occurred. The DDC uses

the INDEX PULSE input to begin various operations.

Serial Data Valid (SDV): This output pin goes high whenev-

er the DDC is issuing or receiving either header field bytes

and internal header CRC or ECC bytes, or data field bytes

and internal data CRC or ECC bytes. It is set high synchro-

nous with the first header or data bit appearing on the

WRITE DATA output pin, or the READ DATA input pin. If the

encapsulation mode is set then SCV is set high synchro-

nously with the first sync byte (address mark). If the start

with address mark bit is set and encapsulation is enabled

SDV will be set high at the first sync Ý2 byte. (See Chapter

5 and 6.2.) It is set low synchronous with the last bit of

internal CRC or ECC field ending on the WRITE DATA out-

put pin or the READ DATA input pin. If internal CRC or ECC

is not selected, it will be set low synchronous with the last

bit of the header field or data field. The SERIAL DATA VAL-

ID pin may be used to select external ECC circuitry or for

diagnostics in checking the lengths of the fields.

External ECC Field (EEF): This output pin is normally low,

but will go high at specified times if external ECC has been

selected. This will be during the time the external ECC field

check bits need to be generated (with WRITE GATE high)

or checked (with READ GATE high). It will be deasserted

(synchronous with SERIAL DATA VALID output going low)

after the last bit of the external ECC field has ended.
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External Status (EXT STAT): The EXTERNAL STATUS in-

put pin has three possible functions: Enabling wait states for

the DMA, or Supplying external synchronization information

and/or ECC information to the DDC. The user selects either

the first alternative, or the other two. In other words, gener-

ating wait states is mutually exclusive with external synch

and ECC. If the wait state alternative is selected, the use of

this status pin is limited to only supplying wait states to the

DMA bus cycle. If the latter two alternatives are selected,

input signals on EXTERNAL STATUS may provide synchro-

nization at the start of a header or data field, and external

ECC error status at the end of the external ECC field.

4.2.3 Power Supply
VCC, GND: The supply pins require a standard a5V g10%

regulated supply. As with any high speed controller that

must connect to high speed buses, output switching tran-

sients can cause supply noise glitches which can affect oth-

er circuitry within the IC. Thus, a good ceramic decoupling

capacitor is recommended to be connected across these

pins. This capacitor should be t0.1 mf and should be locat-

ed in close proximity to the VCC and ground pins. Good

GND and VCC planes are also recommended. Both of these

precautions are to minimize the effects of current switchings

on the chip affecting sensitive sections of the chip. With

inadequate decoupling or GND and VCC planes, inexplica-

ble behavior of the chip may result.

4.3 DDC FUNCTIONAL DESCRIPTION
This section is intended to provide a block level functional

overview of the DDC. The detailed operational information is

given in Chapter 7. A block diagram of the DDC is shown in

Figure 4.1 . The DDC is composed of a bus interface unit

which communicates with the microprocessor and memory.

It also is composed of a serializer and a deserializer that

communicates with the disk. A single/dual channel DMA

block provides intelligent on-chip data transfer. This DMA

controller transfers data to and from the internal multi-mode

FIFO block. A 32/48 bit ECC or 16-bit CRC correction block

is included for error generation and checking of disk data.

The functional description of each block follows.

4.3.1 Bus Interface
This block of the DDC provides an interface between the

DDC and system bus through its two input/output data bus

ports (AD0–7, AD8–15) and one input port (RS0–5). In the

peripheral mode, the internal registers of the DDC are se-

lected through pins RS0–5 and data is transferred between

microprocessor and the internal registers through the I/O

port AD0–7.

When the DDC is controlling the bus, two I/O ports (AD0–7,

AD8–15) provide 16-bit address both for the local and re-

mote DMA data transfers. In single channel DMA mode, an

address up to 32 bits could be obtained to access memory

up to 4 Gigabytes (see the DMA block description section).

Multiplexed along with the DMA address information on

these two ports is data information. In the 8-bit transfer

mode only AD0–7 is used, and the interface logic contains a

multiplexer to convert 16 internal data bits to 8 bits. For 16-

bit transfers, AD0–7 transfers the lower 8 bits and AD8–15

transfers the upper 8 bits between the FIFO and the system

bus.

4.3.2 Internal Registers
The DDC has 64 internal registers including parameter, pat-

tern and count registers. Some of these registers are read-

only, some write-only and the remainder read/write. These

registers can be classified in four categories:

1) Command and Control Registers

2) ECC/CRC Registers

3) Format Registers

4) DMA Registers

Each of the above mentioned classes is described in the

following paragraphs. A list of the DDC’s internal registers

with their hexadecimal addresses is given in Table 4.1.

COMMAND AND CONTROL REGISTERS

The Command and Control registers are the key registers of

the DDC. They control basic functions and operations of the

chip. The registers which can be included in this category

are Drive Command (address 10H), Operation Command

(address 11H), Status (address 00H), Error (address 01H),

Disk Format (address 35H), Sector Counter (address 12H),

Number of Sector Operations (address 13H), Header Byte

Count/Interlock (address 0FH), and Header Diagnostic

Readback (address 36H). Table 4.2 lists these registers

along with a short description.

The Drive Command register basically determines the oper-

ations to be performed on the disk data. Also it can be used

to set the DDC to format drives and to abort any operation

in progress. The operations determined by the drive com-

mand register can then be controlled through the Operation

Command register. The Operation Command register en-

ables the DDC to issue certain interrupt and acknowledge

signals during different operations. The Status register gives

the status of the operation while the Error register indicates

errors which may occur during these operations.

The DDC is adapted to the selected drive format through

the Format register which determines the format of the in-

formation to be written to the disk. The Start Sector, Num-

ber of Operations, and Header Byte count registers, in con-

junction with the Drive Command register, allow the DDC to

perform multisector operations. The Header Diagnostic

Readback register on the other hand enables the DDC to

perform a readback operation on the header bytes present

in the FIFO.
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TABLE 4.1. The DDC Internal Registers In Numerical Order

Hex
Name

Address

00 Status Register

01 Error Register

02 ECC Shift Register Out0/Polynomial

Preset Byte0

03 ECC Shift Register Out1/Polynomial

Preset Byte1

04 ECC Shift Register Out2/Polynomial

Preset Byte2

05 ECC Shift Register Out3/Polynomial

Preset Byte3

06 ECC Shift Register Out4/Polynomial

Preset Byte4

07 ECC Shift Register Out5/Polynomial

Preset Byte5

08 Polynomial Tap Byte0

09 Polynomial Tap Byte1

0A Polynomial Tap Byte2

0B Polynomial Tap Byte3

0C Polynomial Tap Byte4

0D Polynomial Tap Byte5

0E ECC Control

0F Header Byte Count/Interlock

10 Drive Command Register

11 Operation Command Register

12 Start Sector Number

13 Number of Sector Operations

14 Header Byte0 Pattern

15 Header Byte1 Pattern

16 Header Byte2 Pattern

17 Header Byte3 Pattern

18 Header Byte4 Pattern

19 Header Byte5 Pattern

1A Local Data Byte Count L

1B Remote Data Byte Count H

1C DMA Address Byte0

1D DMA Address Byte1

1E DMA Address Byte2

1F DMA Address Byte3

Hex
Name

Address

20 Data Postamble Byte Count

21 ID Preamble Byte Count

22 ID Address Mark Byte Count

23 ID Synch Byte Count

24 Header Byte0 Control Register

25 Header Byte1 Control Register

26 Header Byte2 Control Register

27 Header Byte3 Control Register

28 Header Byte4 Control Register

29 Header Byte5 Control Register

2A Data External ECC Byte Count

2B ID External ECC Byte Count

2C ID Postamble Byte Count

2D Data Preamble Byte Count

2E Data Address Mark Byte Count

2F Data Synch Byte Count

30 Data Postamble Pattern

31 ID Preamble Pattern

32 ID Address Mark Pattern

33 ID Synch Pattern

34 Gap Byte Count

35 Disk Format Register

36 Local Transfer Reg/Header

Diagnostic Readback

37 Remote Transfer Register

38 Sector Byte Count L

39 Sector Byte Count H

3A Gap Pattern

3B Data Format Pattern

3C ID Postamble Pattern

3D Data Preamble Pattern

3E Data Address Mark Pattern

3F Data Synch Pattern

TABLE 4.2. Summary of Control Registers

Address Register Name General Operations

00H Status Register Disk Operation, DMA Status (Read)

01H Error Register Error Determination of Operation

0FH Header Byte Count

10H Drive Command Start Disk Operation

11H Operation Command Reset, Remote DMA, INTR Operation

12H Start Sector Can Contain Sector Number

13H No. of Sector Operations Used in Multi-Sector Operation

35H Disk Format MFM, Hard Sector, External ECC

36H Header Diagnostic
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THE ECC/CRC REGISTERS

The ECC/CRC registers (addresses 02H to 0EH) are used

to set up the DDC for desired error detection and correction

configuration. Registers 02H to 07H are read-write and con-

tain the preset pattern for the internal ECC. The preset pat-

tern is the data that the ECC shift register is initialized to

prior to an operation. Typically this is all ones. During a cor-

recton cycle, reading these registers provides the syndrome

bytes to correct the erroneous data. Registers 08H to 0DH

are write-only and are used to load in the internal ECC poly-

nomial required for the drive format selected. The ECC Con-

trol register (address 0EH) is used for selecting the internal

ECC Correction Span, inversion of input or output check bits

to the ECC register and ECC encapsulation (the mode that

includes sync bytes (address marks) in the check bit calcu-

lation). These registers are listed in Table 4.3.

THE FORMAT REGISTERS

The Format registers, Table 4.4, (addresses 20H to 2FH,

30H to 35H and 38H to 3FH) determine and control the

format of the fixed fields for the selected drive type accord-

ing to the selected format. (Figure 4.3 shows the Sector

Format fields incorporated in the DDC). Registers 20H to

2FH contain the byte count of the fixed fields along with the

6 Header Control registers while Registers 30H to 35H and

38H to 3FH contain the patterns of the fixed fields along

with the Inter Sector Gap Count and the Sector Byte Count

registers. These Registers are shown in Table 4.4. Since

almost every pattern register has an associated count regis-

ter (which controls the repetition number of its field) or a

control register, Table 4.4 is organized to show both togeth-

er.

THE DMA REGISTERS

The DMA registers consist of the Local Transfer register

(address 36H), Remote Transfer register (address 37H),

and count and address registers, 1AH to 1FH. The Local

Transfer register controls the data transfers between the

DDC and buffer memory by controlling data and address

bus lengths, byte ordering, memory cycle and the burst

length. The Remote Transfer register, on the other hand,

controls the data transfers between the buffer memory and

the system I/O port in dual bus architectures. In addition to

the data and address bus lengths, the memory cycle length,

and determining the burst lengths, it also controls the trans-

fers in the dual channel DMA mode.

Registers 1AH and 1BH determine the byte count required

in a remote data transfer while registers 1CH to 1FH are

DMA Address bytes 0 to 3 for local and remote transfers.

Table 4.5 lists the DMA control and address registers, and

their function when the DDC is used in either dual channel

or single channel mode.

TABLE 4.3. ECC Control Registers

Shift Reg/
Polynomial

Polynomial
Tap

Register Description

Preset

02 08 ECC Shift Reg/Poly Preset and Tap 0

03 09 ECC Shift Reg/Poly Preset and Tap 1

04 0A ECC Shift Reg/Poly Preset and Tap 2

05 0B ECC Shift Reg/Poly Preset and Tap 3

06 0C ECC Shift Reg/Poly Preset and Tap 4

07 0D ECC Shift Reg/Poly Preset and Tap 5

0EH ECC Control

08H, 09H Data Byte Count

TABLE 4.4. Format Count, Control and Pattern Registers

Count/
Pattern

Header/ID Field
Count Pattern

Data Field/ECC

Control
Reg

Register
Reg Reg

Format Register

Reg Descriptions Description

20 30 Data Postamble 2A Ð Data External ECC

21 31 ID Preamble 2B Ð ID External ECC

22 32 ID Synch Field 1 2C 3C ID Postamble

23 33 ID Synch Field 2 2D 3D Data Preamble

2E 3E Data Address Mark

24 14 Header Byte 0 2F 3F Data Synch

25 15 Header Byte 1 34 3A Post Sector Gap

26 16 Header Byte 2

27 17 Header Byte 3 Ð 3B Data Format

28 18 Header Byte 4 38 Ð Sector Byte (LSB)

29 19 Header Byte 5 39 Ð Sector Byte (MSB)
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FIGURE 4.3. Sector Format Fields Incorporated in the DDC

TABLE 4.5. DMA Registers and Functions in Dual or Single Channel Mode

Addrs Register Name Single Channel Dual Channel

1AH Remote Count NA LSB Data Xfer Count

1BH Remote Count NA MSB Data Xfer Count

1CH DMA Addr 0 A0–A7 A0–A7 Local DMA

1DH DMA Addr 1 A8–A15 A8–A15 Local DMA

1EH DMA Addr 2 A16–A23 A0–A7 Remote DMA

1FH DMA Addr 3 A24–A32 A8–A15 Remote DMA

36H Local Transfer Configures Local or Single Channel

37H Remote Transfer Configures Remote (Dual Channel Mode)

37H DMA Sector Count DMA Sector Counting (Dual Channel)

4.3.3 The FIFO
The primary function of the DDC is to transfer data between

disk and the system. The DDC has been configured so that

during a disk data transfer operation, it does not occupy the

bus for the whole disk transfer. Instead, it allows burst trans-

fers so that the bus is free between the bursts for normal

system usage. Systems with a main microprocessor and

main memory will interface directly to the DDC. In this type

of application, burst data transfers will require occupancy of

the main system bus, so use of the bus must be granted at

the discretion of the system. For example, if the system is

performing a higher priority operation, it must not relinquish

the bus for disk data transfer.

Once the bus has been relinquished, the system is held

from performing other operations and a burst of data is then

transferred. For the DDC, these requirements mean first,

that some degree of data buffering is necessary to store the

continuous arrival or removal of disk data, and second, that

when the bus is granted, transfer must be fast. The amount

of data buffering will be dependent on the system, but the

majority of low-end systems should be able to respond to a

data transfer request from the DDC within 50 ms. Most disk

drives in this kind of application run at a data rate of

5 Mbits/sec, or one bit every 200 ns. Typically then, the

data buffer must be able to store around 250 bits. A 32-byte

FIFO has been included on the DDC enabling it to operate

with most bus systems.

The data is transferred between the FIFO and the local

memory (dual channel mode) or system memory in different

burst thresholds, 1, 4, 8 or 12 words for 16-bit wide word

transfers or 2, 8, 16 or 24 bytes for byte wide transfers. In a

disk read operation when the FIFO fills to the selected

threshold level with disk data, the DMA controller issues a

data transfer request. The FIFO continues to fill. Whenever

the DMA gets access to the system bus, it transfers data in

selected bursts. These bursts may be of fixed length or until

the FIFO empties. If the DMA request is not acknowledged,

and the disk data fills the FIFO before it reaches to its maxi-

mum 32-bytes capacity, the FIFO Data Lost error occurs

and the operation is aborted.

Conversely, in a disk write operation, the FIFO is first filled.

It then requests a new data burst when it empties to below

the selected threshold level. Depending on burst mode, the

DMA will then request a fixed number of bytes or fill the

FIFO. If the FIFO completely empties during the operation, a

FIFO Data Lost error is again generated.

Figure 4.4 shows the basic blocks that compose the FIFO. It

consists of a 16 x 16 bit dual port RAM array, which is ad-

dressed by a read counter and a write counter. These coun-

ters are decoded to address the array and also to feed the

status logic which takes the difference between these point-

ers to generate the threshold signals. The input and output

data ports of the FIFO can be connected to the serializer/

deserializer or bus interface block. The direction of the FIFO

is determined by the disk operation, read or write. An 8-bit

bus interface is supported in 8-bit transfer mode by treating

the FIFO as two interleaved banks of 8 bits.
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4.3.4 The DMA
The DDC has an important feature that helps both in saving

external ICs and in increasing data throughput, namely pow-

erful DMA capability. With on-chip DMA capability, there is

no need to dedicate a channel of a DMA controller for disk

transfers. This offers two advantages: first, it may alleviate

the need for a DMA controller chip, and second, memory

transfer time will be faster because DMA controllers are rel-

atively slow, usually around 2 Mbytes/sec maximum

throughput. The DDC can transfer data much faster than

this, especially when selected to transfer 16 bits each cycle.

This faster transfer rate offers a much lower bus occupancy

time, freeing the bus sooner for other usage.

When using the DMA capability, the DDC becomes bus

master during the data transfer operation. In bus master

mode the DDC issues incrementing address information at

the start of each memory cycle. Each read or write memory

cycle takes four clock periods, using a similar sequence to a

four clock cycle microprocessor with multiplexed address

and data bus. In some cases a five clock cycle sequence is

used when two address words must be multiplexed to form

the DMA address. Figure 4.5 shows a typical read or write

cycle of 4.

TL/F/8663–71

FIGURE 4.4. Simplified Block Diagram of DDC’s FIFO

TL/F/8663–72

FIGURE 4.5. DDC-to-Memory Word Transfers (16-Bit Address)
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The block diagram on the DMA section is shown in Figure
4.6 . The heart of the DMA is a sequencer/PLA that uses

inputs from the FIFO (FIFO Request) and disk control logic

(DC Ready) for local DMA. It also generates signals for the

remote channel to determine if a transfer is necessary. It

then issues the requests, and once the acknowledge is re-

ceived, the PLA sequences through the DMA cycle by plac-

ing the address onto the data/address bus (via the bus in-

terface block) and manipulating ADS0, ADS1, read, and

write strobes. The various counters are then incremented. In

addition to the address counters, there are counters to keep

track of bytes per sector (local and remote channel), bytes

per header (local and remote), number of total sector opera-

tions, and remote counter burst length. The DMA sector

counter is used in the tracking mode (described later), and

enables the destination DMA whenever it is not zero. The

remote transfer counter is decremented after each remote

transfer and is used to set the total length of the transfer.

When it reaches zero the sequencer halts remote DMA op-

erations.

The DDC can be configured into two DMA modes, Single

Channel and Dual Channel. The Dual Channel Mode has

two sub-modes: Tracking and Non-Tracking. The general

operation of these modes is described below.

SINGLE CHANNEL

In single channel DMA mode the DDC interfaces directly to

main memory having 32 address bits available to access up

to 4 Gigabytes of memory. Figure 4.7(a) shows the DDC in

single channel DMA configuration. The lower 16 address

bits are normally issued at the start of each memory cycle

so that most memory cycles comprise four clocks. The up-

per 16 bits are issued at the start of an operation or if the

lower 16 bits rollover. In these cases, the memory cycle

becomes 5 clock periods, the upper 16 bits are issued dur-

ing first clock period and the cycle then completes the next

four clock periods as in normal read or write operation. The

upper two bytes of address information should be latched

during the first clock period.

DUAL CHANNEL

Some systems may require the DDC to interface to a local

bus with its own dedicated buffer memory before it interfac-

es to the main system. Such an application would be in

intelligent disk drives that comply with the SCSI (SASI) or IPI

interfaces. Intelligent drives may receive or transmit data

whenever the controlling unit is ready. Another application

could be in higher end systems, where the main memory is

hooked onto a main bus such as the Q-BUSTM, MULTI-

BUSÉ, VME or Future Bus. These buses are usually very

busy and often impose high latency times while the main

processor is performing important tasks. Once the bus is

free, it is advantageous to be able to transfer all the disk

information in as short a time as possible to minimize bus

occupancy. For these types of applications, the dual chan-

nel capability of the DDC is ideal.

In the dual channel mode, the DMA generates a 16-bit ad-

dress for both the local and remote transfers. The local

channel controls the data transfers between the FIFO and

the local buffer memory. The remote channel, on the other

hand, controls data transfers between the addressed local

buffer memory and the main system bus through an I/O

port. A DMA channel in the system DMA controller could

TL/F/8663–73

FIGURE 4.6. Block Diagram for Dual/Single Channel DMA Controller
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then transfer the data from the port to system memory. Re-

fer to Figure 4.7(b) . The local request and remote request

are issued when the DDC requires a transfer, the microproc-

essor and bus arbiter respond by acknowledging the re-

quests. If both channels are requesting, the system should

arbitrate the acknowledge, however the local DMA has a

higher priority if both requests are acknowledged.

The dual channel mode can be further divided into two

modes, Tracking (non-overlapping) and Non-Tracking (over-

lapping). These dual channel modes are described below.

TRACKING OR NON-OVERLAPPING MODE

In Tracking or Non-Overlapping Dual DMA mode the DMA

controls the local and remote transfers in such a way that

the local buffer memory appears to the system as a large

TL/F/8663–74

(a). The DDC in Single Channel DMA Mode

TL/F/8663–75

(b). The DDC in Dual Channel DMA Mode

FIGURE 4.7
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FIFO. This allows the system to transfer data to or from the

local buffer memory whenever the system is ready, but with

protection against overlapping of disk data. Basically this

mode of operation is more applicable to multi-sector opera-

tions where the DDC efficiently interleaves bursts of data

into and out of the buffer memory using both channels.

Each channel has 16 address bits, allowing up to 65k of

buffer memory to be used by the two channels. While doing

a remote transfer in a disk read operation, data is read

(bursted out) from the same local memory area where it was

written to (bursted in) during the local transfer. Similarly, in a

disk write operation, data is read from the same local mem-

ory area where it was written to during the remote transfer.

In both cases, buffer memory addresses for local and re-

mote transfers are issued such that data is never over-

lapped. If the two channels track very closely, then large

amounts of contiguous data can be transferred, making the

buffer memory appear to be a multi-megabyte FIFO.

The protection against overlapping of disk data is enabled

by use of the DMA Sector Transfer Counter in the DDC. The

counter is initially reset at the start of the operation. It is

then incremented each time the source has transferred a

sector of data into the buffer memory, and is decremented

each time the destination has transferred a sector of data

from the buffer memory. Whenever the count is zero, desti-

nation transfers are inhibited, so preventing the destination

from catching up and overtaking the source transfers.

NON-TRACKING OR OVERLAPPING MODE

Some systems require that the two DMA channel are com-

pletely independent of each other. For this type of applica-

tion the DDC can be configured to set up both DMA chan-

nels independently. The Local and Remote operations may

be from different areas of memory or common areas. The

local DMA may already be performing an operation when

the Remote DMA is instructed to begin an operation. Like-

wise a Remote operation can be in progress when the Local

operation is initialized. One operation can be for reading

memory and the other for writing. This puts the burden on

the user to protect from overwriting the buffer memory. In

other words, the controlling microprocessor has the respon-

sibility of ensuring that no memory overwriting occurs when

both local and remote transfers are in progress. This mode

(a). ECC Shift Register Logic TL/F/8663–76

TL/F/8663–77
PPB e Polynomial Preset Byte

(b). Detail of 4-Bit Section of Shift Register
PTB e Polynomial Tap Byte

FIGURE 4.8 SRB e Shift Register Buffer
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also gives the user the freedom to use the remote DMA

controller with no restrictions, even for general non-disk

transfers, such as for high level commands or status tran-

fers.

4.3.5 Error Detection and Correction
A fixed CRC code for detecting errors only, and a program-

mable ECC code for detecting and correcting errors can be

used via the on-chip Error Detection and Correction block.

The DDC has full polynomial programmability for 32 bits or

48 bits of ECC appendage, along with a programmable cor-

rection span from 3 to 15 bits and a programmable preset.

The DDC can also be easily interfaced to external ECC cir-

cuitry if desired.

The Error Detection and Correction block mainly consists of

a 48-bit shift register with XOR taps. It generates and then

appends the check bits to header and data fields. The CRC

uses the standard CCITT polynomial that provides 16 gen-

erated check bits. The CRC-CCITT code is hardware imple-

mented in the DDC. The ECC code may be a Fire code or a

computer generated code with either 32 or 48 generated

check bits. The selected 32- or 48-bit ECC polynomial can

be implemented by means of the 48-bit shift register and the

Polynomial Tap and Preset Byte registers (addresses 02H

thru 0DH).

The ECC Shift register logic is shown in Figure 4.8 . In this

figure the internal data bus connects to the Polynomial Pre-

set Byte Registers (PPB). These register bits feed into the

shift register latches. Any bit set in the PPBs will preset a

corresponding flip-flop before an ECC operation begins,

while all others will not be set. The Polynomial Tap Byte

Registers feed the XOR gates in the ECC Shift Register.

When a PTB bit is reset, the associated XOR gate is en-

abled for a particular ECC register bit. This effectively cre-

ates the ECC polynomial tap. The outputs of each shift reg-

ister flip-flop bit input to a set of output buffers which drive

the internal DDC data bus. This enables reading of the ECC

registers. The ECC outputs also go to a combinational logic

block that decodes the contents of the ECC shift register

and the correction span. If at the end of a detection cycle

the ECC shift register contains zero then no error was de-

tected.

TL/F/8663–78

(a) Disk Write Operation

TL/F/8663–79

(b) Disk Read Operation

FIGURE 4.9

57



INTERNAL CHECK BIT GENERATION AND CHECKING

When writing to the disk, the CRC/ECC shift register is pre-

set from the Preset ECC registers. At the same time that the

DDC is outputting either the Header field or Data field bytes

as a serial data stream through the Serializer, it is feeding

them serially into the CRC/ECC shift register as shown in

Figure 4.9(a) . When the last bit of the Header or Data field

has been transmitted out of the DDC, the DDC begins shift-

ing out the generated check bits from the CRC/ECC shift

register starting with the MSB and ending with the bit 0.

After the specified number of check bits have been append-

ed the DDC internally switches to the next field.

When reading from the disk, the shift register is first preset

from the Preset ECC registers before the read data opera-

tion begins. The incoming Header or Data field is serially fed

into the CRC/ECC shift register as shown in Figure 4.9(b) .
When all the Header or Data field bits and all the generated

check bits have entered the CRC/ECC shift register, the

status of the bits in the CRC/ECC shift register is checked

for the all zeroes condition. If this condition is met, it signi-

fies the field contains no errors. If any of the CRC/ECC shift

register bits are high, the field contains an error. The Header

and the Data field errors are indicated by the Status and

Error registers respectively.

INTERNAL ERROR CORRECTION

The DDC is capable of correcting from 3 to 15 contiguous

bits in error for selected 32- or 48-bit polynomials. The value

desired is set in the ECC Control Register, in other words, it

can correct a span of the selected amount. The DDC can be

put in the Correction Mode through the Operation Com-

mand register. The CRC/ECC shift register contains a non-

zero 32- or 48-bit pattern which is used to determine the

location of the bytes in error and the error pattern. The most

significant 3 to 15 bits of the 32 or 48 bits are selected as

the Syndrome bits, while the rest are checked for a zero

detect. During the correction mode, the CRC/ECC shift reg-

ister is reverse shifted. Also, reverse shifting guarantees

that the correction cycle will be completed within the time it

takes to read one sector of the disk.

When the reverse shifting of the shift register begins, the

Data Byte Counter register begins decrementing from its

preloaded value of the number of data and ECC bytes in the

sector. Another 3-bit counter is used to keep track of byte

boundaries in the serial bit stream of the whole sector. Re-

verse shifting continues until all zeroes are detected in the

(32-C) or (48-C) bits of the CRC/ECC shift register (where C

is the correction span selected). When this occurs and the

3-bit counter contains all zeroes, the clock is stopped. At

this point the C syndrome bits contain the bit error pattern of

the byte indicated by the Data Byte Counter register. If the

3-bit counter count was not zero when the zero-detect oc-

curred, then the CRC/ECC shift register has to undergo fur-

ther reverse shifts to byte align the right byte in error. If the

Data Byte counter register count goes to zero and the zero-

detect is not obtained, then the error is non-correctable. If

either the zeroes condition is determined or the Data Byte

counter decrements to zero, an INTERRUPT is issued to

indicate to the microprocessor that the correction cycle has

finished.

The results of the correction cycle are indicated by the

Status register. In the case of a correctable error, the error

must be in either the Data field or the check bits of the ECC

field or overlapping both fields. If the error is only in the ECC

field then the memory data is correct and no further action is

needed to complete the correction. But if the error is in the

Data field then it can be corrected by XORing the C syn-

drome bits in the CRC/ECC shift register with the contents

of the relevant memory location determined from the final

Data Byte Counter register count.

EXTERNAL ECC

Some users may wish to use an ECC polynomial code with

a different number of check bits. Some encoding schemes

require a wider error correction span, or some users may

prefer some high integrity ECC codes such as Reed-Solo-

mon code. For these reasons DDC has been configured to

interface easily to external ECC circuitry.

When the DDC is configured to utilize an external circuit for

ECC code, the external ECC code may use any polynomial

that generates from 1 to 31 bytes of check bits. The exter-

nal circuitry is informed by the DDC when data is valid and

when to generate check bits (for writing) or detect (when

reading) through SDV, EEF and EXT STAT pins. Refer to

Section 4.2 for pin description. The external ECC may be

used to encapsulate internal CRC/ECC field as a confirma-

tion of error detection.

4.3.6 The Serializer-Deserializer
This section of the DDC interfaces to the disk. The Serializer

takes byte wide data either from the internal registers or the

FIFO into a shift register and serially outputs the bits in a

continuous bit stream, starting with the most significant bit.

This serial data is then fed into the Error Detection and Cor-

rection block for check bit generation. When the CRC/ECC

appendage is about to begin, the serializer stops shifting out

and the Error Detection and Correction block begins shifting

out the check bits, again most significant bit first. At the end

of the appendage the Serializer starts shifting out further

information to finish the segment. The serial data passes

through the MFM Encoding and Precompensation block, if

selected, or is output to the external encoder.

During a read operation, the incoming serial NRZ data feeds

into the Deserializer and the CRC/ECC block, most signifi-

cant bit first. The Comparator continually checks the incom-

ing data for a synchronizing pattern that matches the pat-

tern loaded into the internal pattern registers. Once a match

occurs, the DDC then knows the byte boundary such that all

further bytes from the deserializer are byte synchronized to

the boundary first established. CRC/ECC fields, postamble,

and preamble fields are not required to be deserialized, and

do not enter the deserializer. Once the address mark and/or

synch byte have aligned, the header bytes preloaded into

the internal registers are sequentially output to the Compar-

ator as each incoming byte is ready. The Comparator

checks all the header bytes in turn for a match. If a full

match is detected, the DDC checks the CRC/ECC append-

age and prepares for the following data field. Finally, the

data field is read, and serial data bytes are converted to

parallel. They then enter the FIFO from the Deserializer to

be transferred by the DMA.

The basic blocks associated with the Serializer/Deserializer

are shown in Figure 4.10. For Serialization, data from either

the Pattern Registers, Sector Counter, or FIFO is multi-

plexed to a holding latch. The holding latch will load the

Serializer/Deserializer shift register at the appropriate time
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(determined by the disk controller’s PLA). This data is shift-

ed through the EEC/Data MUX and the MFM or NRZ logic

to the Serial Data output pin. When serializing data the write

clock feeds the shift register.

For Deserialization of data, Read Data and Read Clock

feeds the internal data bus. Once byte alignment is deter-

mined, a byte clock controls loading data into the FIFO.

MFM ENCODING AND PRECOMPENSATION

The DDC can be set to output MFM encoded data and Pre-

compensation information in a disk write operation. The

MFM Encoding and Precompensation block of the DDC

consists of a 5-bit shift register, and MFM and Precompen-

sation encode logic. The NRZ data coming out of the Serial-

izer passes through the shift register and then is fed into the

MFM and Precomp encode logic. The MFM Encode logic

converts this NRZ data into MFM and also inserts the miss-

ing clocks when Address Mark fields are required to be writ-

ten to the disk.

The DDC can be programmed to output two control signals,

EARLY PRECOMP or LATE PRECOMP, if precompensation

is desired. The information on these output pins is then used

by the external Precomp Circuitry (MUX, Delay logic, etc.) to

perform the actual Precompensation. These pins perform

an algorithm that compensates for the bit shifting that oc-

curs when the magnetic flux transitions are recorded on the

disk.

The MFM Encoder and precompensation block are shown

in Figure 4.11 also. After serialization, logic performs the

MFM encoding. 5 bits from the encoder monitor previous

and subsequent data to determine whether early, late, or no

precompensation is needed.

TL/F/8663–80

FIGURE 4.10. Serializer/Deserializer Block Diagram
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CHAPTER 5 The DDC Registers and Commands

5.0 INTRODUCTION
In this Chapter, the DDC’s (DP8466) registers and its com-

mand operation will be described in more detail. Initially, a

general overview of the registers is given. This section can

be used to supplement the data sheet register descriptions.

Then details on the various methods of formulating com-

mands and operations are described. Understanding the

wide variety of operating modes presented in this section

will enable a better understanding of which modes are suit-

able for which applications.

5.1 INTERNAL REGISTERS AND
COUNTERS
In this section a detailed description of internal Command,

ECC/CRC, Format and DMA pattern, control and count reg-

isters, and various counters is provided. A summary descrip-

tion of the registers is given below, as well as a description

of important command bits. Additional details of the DDC’s

registers are given in the DP8466’s Data Sheet.

5.1.1 Command Registers and Counters
The Command registers and counters are listed in Figure
5.1 and explained in the following paragraphs. These regis-

Name Hex Address

Drive Command Register 10H

Operation Command Register 11H

Disk Format Register 35H

Status Register 00H

Error Register 01H

Sector Counter 12H

Number Of Sector Operations 13H

Header Byte Count Register 0FH

Interlock Complete Signal

Header Diagnostic Readback 36H

FIGURE 5.1. Command Registers and Counters

ters include the drive and Operations Command registers,

Disk Format register, Error and Status registers, Sector

Counter and Sector Operations Counter registers.

DRIVE COMMAND (DC) REGISTER (Address e 10H)

The drive command register is shown in Figure 5.2. This

register is loaded when the DDC is required to perform a

command. Disk operations are started after loading this

write-only register. This register can be loaded to start a

new command when the Next Disk Command bit is set in

the Status register. The bit descriptions are given below.

Re-Enable (RED)

When loading a disk command a zero should be written to

this bit to permit normal operation. A one should be written

to the bit to re-enable the DP8466 after either a reset via the

RESET pin or RES bit in the Operation Command Register.

Start Operation (SAIS)

Bit SAIS determines when the operation for the command

being written to the drive command register shall begin. If

SAIS is high, the operation will begin when the DDC detects

either an INDEX or SECTOR PULSE for hard sectored

drives, or immediately for soft sectored drives. If SAIS is low

the operation only begins when the DDC detects an INDEX

PULSE.

Single/Multi Sector Operation (MSO)

Bit MSO of the drive command register indicates whether

the operation is for just one sector or a number of sectors. If

MSO is set high then the DDC can perform a multi-sector

operation. Multi-sector operations usually are handled on

logically (by sector address) contiguous rather than physi-

cally contiguous sectors. The DDC can perform both types

of multi-sector operations.

D0 RED RE-ENABLE 0 e No Action

1 e Re-Enabled

D1 SAIS START OPERATION 0 e Start on Index Pulse

1 e Start on Index/Sector

Pulse or Immediately

D2 MSO SINGLE/MULTI-SECTOR 0 e Single

OPERATION 1 e Multi

D3 FMT FORMAT MODE 0 e Normal

1 e Format

D4 HO1 HEADER OPERATIONS 00 e Ignore Header

D5 HO2 01 e Compare Header

10 e Write Header

11 e Read Header

D6 DO1 DATA OPERATIONS 00 e Invalid*
D7 DO2 01 e Check Data

10 e Write Data

11 e Read Data

*Unless used with an Ignore Header operation. When HO1, HO2, DO1 and DO2 are written as 0 then no operation is

performed. This is useful when Re-Enabling the DDC by setting the RED bit, for example.

FIGURE 5.2. Drive Command Register Bit Assignments
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Format Mode (FMT)

The DDC can be set to format a disk by setting bit FMT high.

The DO2, DO1, HO2, and HO1 bits must be set for a write-

header/write-data operation, 1010. (For details please refer

to the disk formatting section).

HEADER OPERATIONS (HO2, HO1)

Bits HO2 and HO1 determine the operation to be performed

on the ID fields. The details are given below.

Ignore Header (HO2 e 0, HO1 e 0)

In an Ignore Header operation, after the byte alignment of

Address Mark and/or Synch fields, the header bytes com-

parison and ECC/CRC checks are not performed. This re-

sults in reading or writing the associated data with respect

to any sector encountered.

Compare Header (HO2 e 1, HO1 e 1)

Compare Header operation is the normal mode of header

operation for locating the selected sector. In this operation

the header bytes are compared with the corresponding val-

ues in the pattern registers and CRC/ECC checks are also

carried out.

Write Header (HO2 e 1, HO1 e 0)

Write Header operation is normally performed during disk

formatting. The Header bytes are written to the disk either

from the pattern register or the buffer memory through FIFO

depending upon the FIFO Table Format (FTF) bit of the Disk

Format register.

Read Header (HO2 e 1, HO1 e 1)

Read Header operation performs CRC/ECC checks and

transfers the header bytes into buffer memory through the

FIFO for diagnostic purposes. If during this operation, a

header containing a CRC/ECC error is encountered, the op-

eration is aborted immediately and the header fault bit

(Status Register) is set. An interrupt is generated, but no

Error register bits are set.

DATA OPERATIONS (DO2, DO1)

Bits DO2 and DO1 determine operations to be performed

on data fields.

Check Data (DO2 e 0, DO1 e 1)

After the preceding header operation and the byte align-

ment, the Check Data operation performs the CRC/ECC

checks on the data fields. It does not transfer the data field

to the FIFO and hence no data is transferred to memory via

the DMA channels.

Read Data (DO2 e 1, DO1 e 0)

Read Data operation, on the other hand, transfers data to

external memory via FIFO after performing CRC/ECC

checks.

Write Data (DO2 e 1, DO1 e 1)

In Write Data operation, after the associated header opera-

tion, data bytes are written to the selected sector from the

FIFO using the DMA channel.

OPERATION COMMAND (OC) REGISTER

(Address e 11H)

Operation command register, shown inFigure 5.3, is a write-

only register and may be updated before each disk opera-

tion. This register controls some of the basic DDC operating

modes, such as interrupts, starting remote DMA, starting a

correction, and precompensation.

Reset (RES)

When RES is set high, the DDC enters the standby mode

and remains in this mode until this bit is reset and a one is

written to the RED bit in the Drive Command register. To

properly reset the DDC this bit must remain set for 32 read

clock periods and 4 bus clock periods (with both clocks ap-

plied). This bit has the same effect as setting the RESET

input pin low. Read and Write Gate are deasserted, the

FIFO is cleared, DMA requests are removed, the Error regis-

ter is cleared and status register is cleared except the Next

Disk Command is set, and the abort bit is reset. The param-

eter registers, sector counter and number of sectors regis-

ters are not affected.

Enable Interrupts (EI)

Bit EI, when set high, enables the DDC to issue interrupts

when certain conditions are met, such as upon successful

completion of a command.

Enable Header Complete Interrupts (EHI)

Setting bit EHI high will enable the DDC to issue an interrupt

at the completion of a header operation so that it can be

loaded with new information before the next ID operation

begins. New commands can be loaded or some pattern in-

formation could be updated during the data operation of a

sector.

D0 RES RESET 0 e Normal Operation

1 e Reset DDC

D1 EI ENABLE INTERRUPTS 0 e Disabled

1 e Enabled

D2 EHI ENABLE HEADER 0 e Disabled

COMPLETE INTERRUPTS 1 e Enabled

D3 SRI START REMOTE INPUT 0 e No Remote Read

1 e Start Remote Read

D4 SRO START REMOTE OUTPUT 0 e No Remote Write

1 e Start Remote Write

D5 EP ENABLE 0 e Disabled

PRECOMPENSATION 1 e Enabled

D6 SCC START CORRECTION 0 e No Cycle

CYCLE 1 e Start Cycle

D7 IR INTERLOCK MODE 0 e No Interlock

1 e Interlock Mode

FIGURE 5.3. Operations Command Register

Start Remote Input (SRI)

The DDC initiates the transfer of data from the system to

local memory when SRI is set high. This enables the start of

remote transfers (non-tracking dual DMA mode) to the local

buffer.

Start Remote Output (SRO)

The DDC initiates the transfer of data from local memory to

system when bit SRO is set high. This starts remote trans-

fers from the local buffer.

Enable Precompensation (EP)

The DDC will allow precompensation if bit EP of the opera-

tion command register is set high. This bit is valid only if the

AMF/EARLY PRECOMP and AME/LATE PRECOMP pins

are configured as write precompensation control pins.

Start Correction Cycle (SCC)

The internal correction cycle is initiated by setting bit SCC

high (see ECC section).
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Interlock Mode (IR)

In some situations, if it is desired to update the header bytes

(during disk formatting) or issue a new drive command be-

fore the next command, the DDC must be put in Interlock

mode by setting bit IR high.

In interlock mode, after every header operation, the DDC

issues an interrupt after Header Match Complete flag,

(HMC), in the status register goes high, indicating that the

information can be updated before the beginning of the next

header operation (or during the current data operation).

Within this time, microprocessor has to update the informa-

tion (header bytes or drive command register) and then

write the header byte count to the Header Byte count regis-

ter to indicate completion of update.

DISK FORMAT (DF) REGISTER (Address 35H)

Disk Format register, shown in Figure 5.4, is a write-only

register and is usually updated when a different drive type is

selected. This register controls some of the major format

features of a disk, such as MFM, type of ECC/CRC, and

configuring address marks.

D0 MFM NRZ/MFM ENCODE 0 e NRZ

1 e MFM

D1 SAM START WITH ADDRESS 0 e Start with Preamble

MARK 1 e Start with AM

D2 HSS HARD OR SOFT SECTOR 0 e Soft

1 e Hard

D3 FTF FIFO TABLE FORMAT 0 e Use Registers

1 e Use FIFO

D4 IH1 INTERNAL HEADER 00 e None

D5 IH2 APPENDAGE 01 e 16-bit CRC

10 e 32-bit ECC

11 e 48-bit ECC

D6 ID1 INTERNAL DATA 00 e None

D7 ID2 APPENDAGE 01 e 16-bit CRC

10 e 32-bit ECC

11 e 48-bit ECC

FIGURE 5.4. Disk Format Register

MFM/NRZ Encode (MFM)

When writing to the disk, the DDC can output either MFM

encoded data if MFM is high, or NRZ data if MFM is low.

Start with Address Mark (SAM)

If SAM is low, the format begins with the Preamble field

followed by the Address Mark field. If SAM is high, the first

field is Address Mark followed by the Preamble field. This

supports ESDI or SMD drive formats.

Hard or Soft Sector (HSS)

The DDC can be configured for soft or hard sectored drives

by setting bit HSS low or high, respectively.

FIFO Table Format (FTF)

If bit PTF is low, the header bytes are taken from the inter-

nal pattern registers during the disk formatting. If FTF is

high, these bytes will be written from the FIFO through local

DMA channel. This bit is used only during disk formatting.

Internal Header and Data Appendages

(IH1, IH2, ID1, ID2)

The Internal Header Appendage (IH1 and IH2) and the In-

ternal Data Appendage (ID1 and ID2) bits of the Disk For-

mat register control CRC/ECC appendages for header and

data fields. The appendage options which could be selected

are no appendage (00), 16 bit CRC CCITT polynomial (01),

and 32- and 48-bit programmable ECC codes (10, 11 re-

spectively). If none of these internal ECC or CRC codes is

selected, then an external header ECC code must be ap-

pended. Also, even if the internal codes are being append-

ed, an external ECC code of up to 31 bytes may be added to

encapsulate header, data and internal CRC/ECC fields.

STATUS (S) REGISTER (Address e 00H)

Figure 5.5 shows the flags in the Status register, which is a

read-only register. This register provides status on current

operation of the DDC. This includes DMA local and remote

status, correction cycle status, operation error, and ready

for next command’s status. The flags are set or reset by

conditions detected by the DDC. The flags are also reset

when either the RESET input pin or RES bit in the operation

command register are set. The flags in the Status register

either provide the status of different operations in progress

or the results of these operations.

D0 HF HEADER FAULT

D1 NDC NEXT DISK COMMAND

D2 HMC HEADER MATCH COMPLETE

D3 LRG LOCAL REQUEST

D4 RCB REMOTE COMMAND BUSY

D5 LCB LOCAL COMMAND BUSY

D6 CCA CORRECTION CYCLE ACTIVE

D7 ED ERROR DETECTED

FIGURE 5.5. Status Register

Header Fault (HF)

The Header Fault flag (HF) is set when a header field error

is detected after a Compare Header operation. This is set

when an ECC or CRC error is detected in any header field

read. This may or may not be on the header that the DDC

was looking for. During a disk operation if a header error

was detected, and subsequently the correct sector was

found, this bit will be reset. If the correct sector was not

found, the DDC will timeout with the HF bit set. It is reset

when the DDC is reset or when a new command is issued.

The HF will abort the operation immediately if the operation

is a read header, and any header read has a CRC/ECC

error. In this case no Error register bit is set.

Next Disk Command (NDC)

The Next Disk Command flag, when set, shows that the

DDC is ready to receive a header byte update and another

disk command. It is reset when a new disk command is

issued to the DDC.

Header Match Completed (HMC)

In a Compare Header operation, after a header match, the

Header Match Completed flag is set. This bit is reset at the

end of the data operation. This flag is automatically set in

Ignore and Write header operations or when any header

field is encountered after a Read Header operation.

Local Request (LRQ)

The Local Request flag follows the LRQ exactly. It is set

coincident with the LRQ output when the FIFO first requires

a data transfer. The flag is reset whenever the LRQ pin is

deasserted.
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Remote Command Busy (RCB)

The Remote Command Busy flag is set at the start of a

remote transfer operation and is reset at the completion of

the last memory transfer. This can be used to determine if

the remote DMA channel is in operation.

Local Command Busy (LCB)

The Local Command Busy flag remains set through the en-

tire period the local DMA channel is busy in transferring data

between the FIFO and buffer memory. This is the same

function as the RCB except local DMA.

Correction Cycle Active (CCA)

The Correction Cycle Active flag is set at the beginning of a

Correction Cycle (when the Start Correction Cycle bit is set

in the Operation Command Register) and is reset at the end

of the cycle whether the error is located or not.

Error Detected (ED)

Error Detected flag is set if any of the error flags in the Error

register is set. This is the logical ORing of all the Error regis-

ter bits.

ERROR (E) REGISTER (Address e 01H)

Error register, shown in Figure 5.6, is also a read-only regis-

ter. The flags of this register are set by conditions within the

DDC and reset by the next new command to the Drive Com-

mand register. The flags are also set low when either the

RESET input pin is set low, or the Reset bit (RES) in the

Operation register is set.

D0 HFASM HEADER FAILED ALTHOUGH

SECTOR MATCHED

D1 DFE DATA FIELD ERROR

D2 SNF SECTOR NOT FOUND

D3 SO SECTOR OVERRUN

D4 NDS NO DATA SYNCH

D5 DL FIFO DATA LOST

D6 CF CORRECTION FAILED

D7 LI LATE INTERLOCK

FIGURE 5.6. Error Register

Header Failed Although Sector Matched (HFASM)

The HFASM (Header Failed Although Sector Matched) flag,

when set, indicates that the Sector byte(s) of the header

field match correctly but there is an error in other header

byte(s). This flag can only be set if the Enable HFASM

Function (EFH) bit of at least one of the Header Control

registers is set high during a Compare Header operation.

This bit will be set if any one of the header byte(s) with its

EHF bit set matches but any other header bytes don’t

match. For example, assume a 6 byte header with the first

two bytes having their EHF bit set. If during a compare

header operation the first byte matched, but any of the 2nd

through 6th bytes don’t match this HFASM bit is set.

When executing a Compare Header-Check Data command,

and this flag is set, the operation is aborted allowing the

header bytes to be read from the FIFO for disk diagnostics.

If this bit is set during a Compare Header-Read (or Write)

Data, the command is aborted, but the header is not stored

in the FIFO.

Data Field Error (DFE)

After a successful header match, if an internal CRC/ECC or

external ECC error is detected during a Read Data or Check

Data operation, the Data Field Error flag will be set.

Sector Not Found Error (SNF)

If the Header Match Completed flag of the Status register is

not set for two consecutive index pulses in a Compare

Header operation (i.e., the correct header was not found),

then the Sector Not Found bit is set to indicate that the

desired sector cannot be found. The operation is aborted

and an interrupt is issued.

Sector Overrun (SO)

If during the time when data is being transferred between

disk and the FIFO, either the SECTOR PULSE or INDEX

PULSE inputs go active, then the sector is assumed to have

overrun and the Sector Overrun flag (SO) is set. Operation

is aborted. RGATE or WGATE are deactivated, and an inter-

rupt is generated.

No Data Synch (NDS)

If an INDEX PULSE (hard or soft sectored drives) or a SEC-

TOR PULSE (hard sectored only) is encountered while the

DDC is looking to byte align on the first data synch byte

(synch 1 or 2), this bit is set. Also if the DDC recognizes the

first synch byte but not subsequent synch bytes then this bit

is also set.

FIFO Data Lost (FDL)

This bit is set if the FIFO overflows during a Read Data

operation. This normally would occur when the host does

not allow the DMA to empty the FIFO faster than the Disk

Data is being read. FIFO Data Lost is also set during a Write

Data operation when the DDC empties the FIFO writing to

the disk, and attempts to read the empty FIFO again. In

either case the operation will be aborted.

Correction Failed (CF)

If by the end of a Correction Cycle (Data Byte Counter dec-

rements to zero) the error has not been located, then the

error is not correctable and the Correction Failed flag is set.

Late Interlock (LI)

If the Interlock Complete register is not written to by the

time the next header field arrives, and the DDC is in Inter-

lock mode, then the Late Interlock flag will be set.

START SECTOR (SC) REGISTER (Address e 12H)

The Start sector (and Number of Sector Operations Coun-

ter) facilitates multi-sector operations. This counter can be

programmed to replace the header byte designated by the

user to be the sector number. Thus, in a multi-sector opera-

tion, the Sector Counter is initialized with the sector number

to start on. As a header is compared, and its data field is

read or written, the sector counter is incremented at the end

of that sector’s header operation. This enables immediate

operation on the next logical sector. Operation continues

until the Number of Sector Operations Counter decrements

to zero. The sector counter is enabled if bit substitute sector

counter bit of any Header Control register is set high, and

the contents of Sector Counter will be substituted for the

corresponding Header Byte.

NUMBER OF SECTOR OPERATIONS COUNTER (NSO)

REGISTER (Address e 13H)

In a multi-sector operation, the Sector Operations Counter

is preset to the logical number of sectors to be consecutive-

ly operated on. It is decremented after every sector’s head-

er operation and when decremented to zero, terminates the

active command.
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HEADER BYTE COUNT (HBC)/INTERLOCK REGISTER

(Address e 0FH)

This 4-bit read-write register, normally used during format-

ting, is loaded with the number of header bytes to be written

to (or read from) disk. The allowable number of header

bytes is from 2 to 6. On read-back, only the three least

significant bits of this register are valid.

Another important function of this register is when the DDC

is in the Interlock mode (explained in formatting section).

During a multi-sector operation, if it is desired to update any

header byte (for example in the case of disk formatting) or if

the next drive command has to be changed, then this regis-

ter must be written with the actual header byte count value

after updating the header bytes. This will basically strobe

the internal hardware to recognize that interlock (update)

has occurred.

FIFO HEADER DIAGNOSTIC READBACK (HDR)

REGISTER (Address e 36H)

This is a read-only register and allows the FIFO contents to

be read one byte at a time. Normally, data or header bytes

may be read for diagnostic purposes through this register

(described later). There is no way to write to the FIFO ex-

cept under DMA control. In order to read the header bytes in

the same order as they are read from the disk, the Reverse

Byte Ordering bit in the local transfer register must be reset.

5.1.2 Error Correction/Cyclic Redundancy
(ECC/CRC) Registers and Counters
The ECC/CRC registers and counters are listed in Figure
5.7. These registers enable programming of various modes

of ECC, the ECC pattern, and access to the ECC shift regis-

ter for performing correction cycles. They are explained in

the following paragraphs.

Name Hex Address

ECC Shift Register Out0 Register 02H

ECC Shift Register Out1 Register 03H

ECC Shift Register Out2 Register 04H

ECC Shift Register Out3 Register 05H

ECC Shift Register Out4 Register 06H

ECC Shift Register Out5 Register 07H

Polynomial Preset (Byte0) Register 02H

Polynomial Preset (Byte1) Register 03H

Polynomial Preset (Byte2) Register 04H

Polynomial Preset (Byte3) Register 05H

Polynomial Preset (Byte4) Register 06H

Polynomial Preset (Byte5) Register 07H

Polynomial Tap (Byte0) Register 08H

Polynomial Tap (Byte1) Register 09H

Polynomial Tap (Byte2) Register 0AH

Polynomial Tap (Byte3) Register 0BH

Polynomial Tap (Byte4) Register 0CH

Polynomial Tap (Byte5) Register 0DH

ECC Control Register OEH

Data Byte Count (LS) Register 08H

Data Byte Count (MS) Register 09H

FIGURE 5.7 ECC/CRC Registers and Counters

ECC SHIFT REGISTER OUT0–OUT5 REGISTERS

(Address e 02–07H)

The 48-bit long CRC/ECC shift register of the DDC can be

read through these 6 read-only registers at any time. If 32

byte ECC is used then only registers 0, 1, 4, and 5 are used.

After a correction cycle has occurred, these registers con-

tain the ECC syndrome bits. The memory address of the

sector in error and the data bit in error are calculated by the

mP, and then the bits of these registers are XORed with the

data in order to correct the error (assuming the error is cor-

rectable).

POLYNOMIAL PRESET (PPB) 0–5 REGISTERS

(Address e 02–07)

The selected ECC polynomial preset pattern is loaded into

the ECC/CRC shift register from these six Polynomial Pre-

set registers. These are write only registers. The preset bit

pattern could be all ones, all zeroes or a combination. This

is the value the ECC shift regsiter is loaded with prior to

shifting in the ECC pattern. The most significant bit of PPB5

is the most significant polynomial bit, X47, and the least sig-

nificant shift register tap is the least significant bit of PTB0.

For 32-bit ECC, PPB2 and PPB3 are set to all zeroes, and

are not used.

POLYNOMIAL TAP BYTE (PTB) 0–5 REGISTERS

(Address e 08–0DH)

The ECC shift register is tapped at every bit by an XOR

element. Wherever an exclusive-OR tap is required into the

32-bit or 48-bit shift register a zero should be set in the

corresponding PTB0–5 bits. All polynomial elements not in

the equation (and hence not tapped) must be disabled by

setting all these bits to a one. The tap X32 (or X48 for 48-bit

polynomial) is always present and is not programmable. The

taps X31 (or X47) to X0 are fully programmable. The MSB of

PTB5 corresponds to the most significant tap, X47, and the

LSB of PTB0 is the least significant tap, X0. For 32-bit ECC,

PTB2 and PTB3 are not used and must be set to all ones. In

this case PTB5’s MSB becomes X31.

ECC CONTROL (EC) REGISTER (Address e 0EH)

The ECC Control register, shown in Figure 5.8, is a write-

only register. This register works in conjunction with the

Disk Format register to set the ECC modes. The bit descrip-

tion is given below.

D0 CS0 CORRECTION SPAN SELECT

D1 CS1 0011 3 bit span

D2 CS2 thru thru

D3 CS3 1111 15 bit span

D4 HE ENCAPSULATION 0 e Encapsulated

HEADER 1 e Not Encap-

sulated

D5 IEO INVERT ECC OUT 0 e Normal

1 e Inverted

D6 IDI INVERT DATA IN 0 e Normal

1 e Inverted

D7 DEN DATA ENCAP- 0 e Encapsulated

SULATION 1 e Not Encap-

sulated

FIGURE 5.8. ECC Control Register

Correction Span Select Bits (CSO–CS3)

The number of bits which the ECC circuit attempts to cor-

rect, generally known as the correction span, is determined

by CS0–CS3. Errors longer than the correction span will be
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treated as non correctable errors. The allowable correction

span for 32-bit ECC is 3 to 15 bits and for 48-bit ECC it is 3–

15 bits. Setting the CS bits to any correction span that is

outside the maximum allowable range of 3–15 bits causes

the CRC/ECC to default to a 3 bit correction span.

Header Encapsulation (HEN)

When this bit is reset, the bit patterns of the Synch and/or

Address Mark fields are included in ECC/CRC calculations.

Some disk formats want these bytes included in check bit

calculations (i.e., IBM 3740 floppy format). When this bit is

set the Synch and/or Address Mark fields are excluded

from the CRC/ECC calculation, and only the header field

bytes are included.

Invert ECC Data Out (IEO)

When the shift register data out bit is set high, all the data

and check bits coming out of the ECC shift register are in-

verted in a disk write operation. Otherwise the ECC data is

not inverted.

Invert Data in (IDI)

This bit controls data and check bits when they enter the

ECC shift register during a disk read operation. When this bit

is set high, both data and check bits will be inverted. When

low true data is input.

Data Encapsulation (DEN)

The DEN bit performs the same function for the data field as

the HEN bit does for the Header field. When reset DEN will

include the Synch and Address Mark fields in the CRC or

ECC calculations. If set these fields are not included in the

check bit calculations.

DATA BYTE COUNTER REGISTERS

(Address e 08H, 09H)

The Data Byte Counter registers are used during a correc-

tion cycle, and are preset by the mP prior to starting a cor-

rection cycle. They are set to the sum of the number of

bytes in the data and ECC fields of the sector just read.

During the correction cycle, the data byte count is decre-

mented after shifting by 8 bits in the ECC shift register each

byte. At the completion of the correction cycle, and if the

error is correctable, the contents of the data byte counters

are added to the starting address of the sector in error to

determine the location of the memory byte or bytes in error.

Details on this, are provided later.

5.1.3 Format Pattern and Count Registers
The Pattern, Count and Control registers used during disk

formatting are listed in Figure 5.9 and explained in the fol-

lowing paragraphs.

PATTERN REGISTERS

(Address e 30–33H, 3A–3FH, 14–19H)

The pattern registers hold byte information for the various

fields of a formatted disk. These registers are written to the

disk during a format operation. The Synch or Address Mark,

Header, and ID postable pattern are read and compared to

the pattern registers during a Compare Header operation.

The Data Address Mark, and Data Synch are compared

when doing a data field read, and are written to the disk

during a disk data write or format. Associated with each

pattern register (except the header pattern registers) is a

byte repetition counter register that sets the field length,

described below.

All the pattern registers listed in Figure 5.9 are preloaded

with the value of their respective fields such as ID and Data

fields. The fields which are allowed in the DDC pattern regis-

ters are ID and Data Preamble, Address Mark, Synch, Post-

Name Hex Address

ID Preamble Register 31H

ID Preamble Byte Count Register 21H

ID Synch Ý1 (AM) Pattern Register 32H

ID Synch Ý1 (AM) Byte Count Register 22H

ID Synch Ý2 Pattern Register 33H

ID Synch Ý2 Pattern Register 23H

Header (Byte0) Pattern Register 14H

Header (Byte0) Control Register 24H

Header (Byte1) Pattern Register 15H

Header (Byte1) Control Register 25H

Header (Byte2) Pattern Register 16H

Header (Byte2) Control Register 26H

Header (Byte3) Pattern Register 17H

Header (Byte3) Control Register 27H

Header (Byte4) Pattern Register 18H

Header (Byte4) Control Register 28H

Header (Byte5) Pattern Register 19H

Header (Byte5) Control Register 29H

ID External ECC Byte Count Register 2BH

ID Postamble Pattern Register 3CH

ID Postamble Byte Count Register 2CH

Data Preamble Pattern Register 3DH

Data Preamble Byte Count Register 2DH

Data Address Mark Pattern Register 3EH

Data Address Mark Byte Count Register 2EH

Data Synch Pattern Register 3FH

Data Synch Byte Count Register 2FH

Data Format Pattern Register 3BH

Sector Byte Count (L) Register 38H

Sector Byte Count (H) Register 39H

Data External ECC Byte Count Register 2AH

Data Postamble Pattern Register 30H

Data Postamble Byte Count Register 20H

Gap Pattern Register 3AH

Gap Byte Count Register 34H

FIGURE 5.9. Format Registers and Counters

amble and Gap. Up to six header byte patterns can be pro-

grammed, thus enabling a header field of six bytes (exclud-

ing synch and preamble).

During an operation these registers must not be read, as

this will interfere with the DDC’s internal access to these

registers. This could cause internal PLA’s to misinterpret

these registers, and lead to sporadic misbehavior of the

DDC. These registers may be written to any time. If written

to during an operation they will take effect immediately.

One data byte pattern register is provided. This pattern is

used during a format operation as the data field byte. It is

repeated for the length of the data field in the sector.

BYTE COUNT REGISTERS

(Address e 20–23H, 2A–2FH)

The Byte Count registers determine the number of times

each field’s pattern can be repeated. All of ID and Data

Preamble, Address Mark, Synch, Postamble, External ECC,

and Gap patterns can be repeated for maximum 31 times.

The Gap pattern, on the other hand, can be repeated for

255 times. As mentioned earlier, there can only be six Head-

er bytes and 64K data bytes in any format for the selected
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drive. The length of Header and Data bytes is controlled by

the Header Control and Sector Byte Count registers, re-

spectively (described below).

During an operation these registers must not be read, as

this will interfere with the DDC’s internal access to these

registers. This could cause internal PLA’s to misinterpret

these registers, and lead to sporadic misbehavior of the

DDC. These registers may be written to any time. If written

to during an operation they will take effect immediately.

HEADER BYTE CONTROL REGISTER

(Address e 24–29H)

These six read/write registers control the associated six

header bytes. Each of the six registers is 4-bits long and

performs the same functions. One of these is shown in Fig-
ure 5.10 and the functional description of each bit is given in

the following.

D0 HBA HEADER BYTE 0 e Header Byte Disabled

ACTIVE 1 e Header Byte Enabled

D1 SSC SUBSTITUTE 0 e Header Byte Used

SECTOR NUMBER 1 e Sector Counter Used

D2 EHF ENABLE HFASM 0 e Header Used Normally

FUNCTION 1 e Header Interpreted as

Sector Number

D3 NCP NOT COMPARE 0 e Header Used for Compare

1 e Header Disabled

FIGURE 5.10. Header Byte Control Register (One of Six)

Header Byte Active (HBA)

This bit determines whether the corresponding Header byte

is to be included in the Header field or not. If set low, the

corresponding header byte will be omitted from the header

field and setting it high will include the corresponding byte in

the header field. Only 4 out of 6 header bytes can be dis-

abled. Also, only two consecutive header bytes can be dis-

abled.

Note: All the other bits in this register must also be set to zero if the header

byte is to be disabled.

Substitute Sector Counter (SSC)

This bit when set high, enables the DDC to substitute the

Sector Counter register’s contents in the header byte pat-

tern register instead of the actual header byte during a write

operation, or to compare the Sector Counter register’s con-

tents with the corresonding header byte during a read oper-

ation. This is normally done in a multi-sector operation to

enable automatically incrementing the sector number.

Enable Header Failed Although Sector Matched Func-

tion (EHF)

If bit EHF of any header control register is set high, then the

associated header byte is designated as that byte that must

match in order to enable generation of an HFASM. In this

mode, if this header byte matches but any of the other

header bytes don’t, then an HFASM error and an interrupt is

generated. In a Compare Header-Data operation, the head-

er bytes are loaded into the FIFO and can be examined by

the host by reading the FIFO Diagnostic Register (Address
e 36H). This can also be used during a Compare Header-

Read Data, but the FIFO will not store the header bytes, see

Error Register description, HFASM.

When this bit is reset the corresponding header byte is com-

pared normally.

Not Compare (NCP)

When this bit is set low, the Header byte will be written and

compared normally. On the other hand, if this bit is set high,

the corresponding Header byte will always be declared

matched regardless of the actual comparison results. In oth-

er words the comparison is disabled. This can be used to

read a group of sectors.

5.1.4 DMA Registers and Counters
The DMA registers and counters enable programming of the

DMA start address (in single or dual channel mode), transfer

length, and the various modes of operation. The Operation

Command register controls actual starting of the Remote

DMA operation. The DMA registers are listed in Figure 5.11
and explained in the following paragraphs.

Name Hex Address

DMA Sector Counter 37H

Local Transfer Register 36H

Remote Transfer Register 37H

Remote Data Byte Counter (L) 1AH

Remote Data Byte Counter (H) 1BH

DMA Address (Byte 0) Counter 1CH

DMA Address (Byte 1) Counter 1DH

DMA Address (Byte 2) Counter 1EH

DMA Address (Byte 3) Counter 1FH

FIGURE 5.11. The DMA Registers and Counters

DMA SECTOR COUNTER

(Address e 37H)

This read only register is used only when the DDC is config-

ured in the dual channel tracking mode. This counter keeps

track of the number of sectors transferred by the remote

DMA channel (local RAM to/from system), and the local

DMA channel (DDC to/from local RAM). When this register

is 0, remote channel transfers are inhibited. This counter

ensures that the source channel will not overtake the re-

mote channel. This eliminates the chances of overwriting

while transferring data to or from the local memory, or trans-

ferring non-data.

LOCAL TRANSFER (LT) REGISTER

(Address e 36H)

This write-only register, shown in Figure 5.12, controls the

data transfers between the DDC and buffer memory, using

the local DMA channel or single channel mode. It is config-

ured at the time of initialization and normally need not be

written to again. The Local Transfer register is not affected

by reset or abort operations.

Local DMA Enable (SLD)

This bit when set high, enables the local DMA channel,

Tracking or Non-Tracking. If this bit is not set high, the on-

chip DMA will not transfer data. This bit is used to enable

control of starting/stopping a DMA operation. If it is perma-

nently disabled, external DMA circuitry can be used.

Local Word Data Transfer (LWDT)

This bit determines the length of the data word to be trans-

ferred between the DDC and buffer memory. When set to 0,

single 8-bit bytes are transferred each DMA cycle and the

address increments by 1. If this bit is set, 16-bit words are

transferred each DMA cycle and the address increments by

2.
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Reverse Byte Ordering (RBO)

This bit controls the order of bytes in a 16-bit word transfer.

When RBO is set low, the first byte to be read from the disk

will be placed in the least significant half of the word (AD0–

AD7) and when RBO is set high, the LS byte will be mapped

to AD8–AD15. This is only valid for data entering the FIFO.

This byte should be reset for 8 bit transfers.

Local Slow/Fast Read and Write (LSRW)

This bit can add one wait state cycle to the DMA transfers.

When this bit is reset the Read and Write cycle is 4 clock

periods, but if this bit is set, one wait state is added and the

read or write cycle is 5 clock periods. This extends the RD

and WR strobes by one bus clock period, and allows the

DDC to access slower memories.

Long Address (LA)

This bit determines the Local DMA address bus width and is

only valid if Local DMA is enabled and the Remote channel

is disabled. When Long Address is low, 16 address bits are

issued and strobed by ADS0 pin. When Long Address is

high, 32 address bits are issued, the lower 16 bits are

strobed by ADS0 pin, the upper 16 address bits are strobed

by ADS1/RRQ pin. The most significant 16 address bits are

only issued when a rollover from the least significant 16

address lines occurs or on the first DMA cycle of a multi-

byte transfer. When the most significant 16 address bits are

issued, that DMA cycle is 5 clock periods long if no internal

or external wait states are used.

Dump FIFO/Exact Burst (LTEB)

This bit controls how the data is burst to/from the FIFO. If

this bit is reset the FIFO will fill or empty completely. When

the disk is being read, the FIFO will wait until the FIFO is

filled to the programmed threshold. At this time the DDC will

completely empty the FIFO to buffer RAM even if more data

entered the FIFO during the burst. During a disk write, when

the FIFO is emptied to the programmed threshold, the DMA

will fill the FIFO.

When this bit is set, the DMA will only transfer a fixed num-

ber of bytes to/from the system. For reading the disk, when

the FIFO fills to the programmed threshold, the DMA will

burst the exact number of bytes that are in the FIFO. Any

bytes entering the FIFO after the burst begins will be trans-

ferred at the next burst. For a disk write, when the FIFO

empties to the selected threshold, an exact number of bytes

will be DMAed to the FIFO, whether the FIFO has emptied

more or not.

Local Burst Length Select (LBL1, LBL2)

Bits LBL1 and LBL2 offer different burst lengths and the

thresholds according to when data will be transferred to or

from the FIFO. These burst lengths/thresholds could be 2,

8, 16 or 24 bytes, if these bits are programmed, 00, 01, 10,

or 11, respectively.

REMOTE TRANSFER REGISTER (Address e 37H)

This write-only register, shown in Figure 5.13, determines

the mode of transfers between the local buffer and the sys-

tem I/O port (remote DMA channel) if the DDC is in dual

channel mode. The register should be loaded at initialization

and normally need not be written to again. It is not affected

by reset or abort.

Remote DMA Enable (SRD)

This bit, when set high, configures the DDC in dual channel

DMA mode, and enables the remote DMA channel.

Remote Word Data Transfer (RWDT)

The data bus may be configured to be either 8 or 16 bits

during remote transfers between buffer memory and main

system. If RWDT is high, transfers are 16 bits wide, and the

remote address information is incremented by 2 each mem-

ory cycle and bit A0 remains low. If RWDT is low transfers

are 8 bits wide, and the remote address increments by 1.

Enable External Wait (EEW)

If EEW is high, the EXTERNAL STATUS pin of the DDC will

be enabled to supply wait states in both the local and re-

mote DMA bus cycles. A side effect using this feature is that

external synchronization and external ECC cannot be used.

When EEW is low, no external wait states can be inserted,

and external synchronization and external ECC may be

used.

Remote Slow Read/Write (RSRW)

This bit allows for slower memory or slower system cycle

time and is only valid if the Remote DMA Enable bit is high.

In this case, if RSRW is set, each remote DMA cycle be-

comes five clock periods rather than four, and both the RD

and WR strobes are widened by one clock period.

D0 SLD SELECT LOCAL DMA 0 e Disabled

1 e Enabled

D1 LWDT LOCAL WORD 0 e 8-Bit

DATA TRANSFER 1 e 16-Bit

D2 RBO REVERSE BYTE 0 e AD0–7 e LSB, AD8–15 e MSB

ORDER 1 e AD0–7 e MSB, AD8–15 e MSB

D3 LSRW LOCAL SLOW READ 0 e 4 Clock Transfer

AND WRITE 1 e 5 Clock Transfer

D4 LA LONG ADDRESS 0 e 16-Bit

1 e 32-Bit

D5 LTEB LOCAL TRANSFER 0 e Transfer Until FIFO Empty

EXACT BURST 1 e Transfer Exact Burst

D6 LBL1 LOCAL BURST LENGTH 00 e 1 Word/2 Bytes

D7 LBL2 (FIFO THRESHOLD) 01 e 4 Words/8 Bytes

10 e 8 Words/16 Bytes

11 e 12 Words/24 Bytes

FIGURE 5.12. Local Transfer Control Register

67



Tracking Mode (TM)

This bit configures the DDC in Tracking or Non-Tracking

DMA modes when it is set high or low, respectively. In Non-

Tracking mode, the DMA channels are independent and ad-

dresses are allowed to overlap, while in Tracking mode,

channel addresses are maintained at least one sector apart.

Remote Transfer Exact Bursts (RTEB)

When the DDC is performing a remote transfer, the condi-

tion of this bit determines when RRQ is de-asserted after

the exact number of words or bytes, specified by RBL1 and

RBL2, have been transferred. If RTEB is low, RRQ wil re-

main asserted until the whole count, specified by the Re-

mote Data Byte Counter, has been transferred.

Remote Burst Length (RBL1, RBL2)

These bits select the burst transfer lengths during a remote

transfer operation between buffer memory and a system

I/O port if RTEB is set high. These length could be 2-byte

(1-word), 8-byte (4-word), 16-byte (8-word) and 32-byte

(16-word).

D0 SRD SELECT REMOTE 0 e Disabled

DMA 1 e Enabled

D1 RWDT REMOTE WORD 0 e 8-Bit

DATA TRANSFER 1 e 16-Bit

D2 EEW ENABLE EXTERNAL 0 e Disabled

WAIT STATE 1 e Enabled

D3 RSRW REMOTE SLOW 0 e 4 Clock Transfer

READ AND WRITE 1 e 5 Clock Transfer

D4 TM TRACKING MODE 0 e Non-Tracking

1 e Tracking

D5 RTEB REMOTE TRANSFER 0 e Transfer Whole Count

EXACT BURST 1 e Transfer Exact Burst

D6 RBL1 REMOTE BURST 00 e 1 Word/2 Bytes

D7 RBL2 LENGTH 01 e 4 Words/8 Bytes

10 e 8 Words/16 Bytes

11 e 12 Words/24 Bytes

FIGURE 5.13. Remote Transfer Control Register

REMOTE DATA BYTE COUNT REGISTERS

(Address e 1AH (LSB), 1BH(MSB))

These registers determine the byte count required in a re-

mote data transfer. They are preloaded with a maximum

count equal to the desired total DMA transfer, and are dec-

remented by the DDC after each transfer until a count of

zero is reached. This counter is 16 bits wide, therefore up to

a total of 65,536 bytes can be transferred. Presetting this

register to all zeroes transfers 65,536 bytes. The count can

be read at any time during the transfer.

This register is also used in tracking mode DMA to keep

track of whether a sector is ready to be transferred by the

remote channel.

DMA ADDRESS (BYTE0–3) REGISTERS

(Address e 1CH–1FH)

The DMA address registers issue dual channel local and

remote addresses during the local and remote transfers or

single channel addresses. When using the dual channel

DMA mode, registers 0 (LSB) and 1 (MSB) are used for

holding and incrementing the local DMA channel address.

Registers 2 (LSB) and 3 (MSB) contain the address informa-

tion for remote DMA transfers. These registers can be pre-

set to any address (within 64k) and can be read at any time.

In single channel DMA mode, the 4 registers are concate-

nated to form a 32-bit address, thus the single DMA channel

can address up to 4 Gigabytes.

5.2 DDC COMMANDS
The DDC can be configured to perform various disk and

related operations. These include disk read and write opera-

tions, error correction operation, formatting operations, and

DMA operations. DMA and error correction commands are

considered separately later. To understand the operation

better, it is useful to break up the DDC’s execution of a

command into three phases:

1. Command Entry Ð mP loads bytes and command word

prior to execution.

2. Command Execution Ð Once loaded the DDC performs

the operation.

3. Result Ð After execution is terminated the mP reads the

DDC to determine whether an error terminated the oper-

ation.

Since the DDC is primarily reading and writing to the disk

drive, it has a rich set of disk read and write functions and

each of these can be used is several modes. This creates a

large array of commands that provides versatility. However

there are about 10–15 commands/modes that would nor-

mally be used. This section will present the basic command

operations first, then common commands are shown as

combinations of the operations and finally a simplifying list is

created.

A typical read/write command is composed of two opera-

tions; ID field operations and disk data field operations. Bits

DO2, DO1, HO2, HO1; FMT in the Drive Command Regis-

ter, determine the command to be executed. The two least

significant bits enable some specific options to the com-

mands. A list of all the possible commands is given inFigure
5.13. These commands are executed by setting up all the

registers with the desired modes and header information,

and as the last step the Drive Command register is loaded

with the command. Once loaded the DDC will execute the

command.

The header and data operations are described individually

below. They repeat some of the information given in the

register bit description in Chapter 4. Following the header

and data operations, the more useful combinations of these

are described.

5.2.1 Header Operations
Ignore Header

The DDC will use the preamble for PLO locking, and will

check for the ID field’s byte synch fields. The DDC will ig-

nore the actual header contents, and treat any values as a

match, and a data field operation will proceed on the subse-

quent data field.
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DO2 DO1 HO2 HO1 FMT

0 0 0 0 0 No Operation,

No Format (No Operation)

0 1 0 0 0 Ignore Header, Check Data,

No Format

1 0 0 0 0 Ignore Header, Write Data,

No Format

1 1 0 0 0 Ignore Header, Read Data,

No Format (Recover Data)

0 1 0 1 0 Compare Header, Check Data,

No Format

1 0 0 1 0 Compare Header, Write Data,

No Format (Normal Write)

1 1 0 1 0 Compare Header, Read Data,

No Format (Normal Read)

0 1 1 0 0 Write Header, Check Data,

No Format

1 0 1 0 0 Write Header, Write Data,

No Format

1 0 1 0 1 Write Header, Write Data,

Format (Normal Format)

0 1 1 1 0 Read Header, Check Data,

No Format (Get Header Info)

1 1 1 1 0 Read Header, Read Data,

No Format

0 0 0 1 X Compare Header, No Data Operation

*** ILLEGAL COMMAND ***
0 0 1 0 X Write Header, No Data Operation

*** ILLEGAL COMMAND ***
1 1 1 0 X Write Header, Read Data

*** ILLEGAL COMMAND ***
0 0 1 1 X Read Header, No Data Operation

*** ILLEGAL COMMAND ***
1 0 1 1 X Read Header, Write Data

*** ILLEGAL COMMAND***

FIGURE 5.14. The DDC Commands

Compare Header

This operation usually preceeds a normal disk read or write

in which a particular sector is operated on. After preamble

and synch fields are compared, the DDC compares every

byte in the header to the pattern registers. Only if a com-

plete match of the header bytes and no CRC/ECC error

occurs, then the data field operation is executed.

Write Header

The DDC will write header information typically when for-

matting the disk, but operations allow the DDC to write indi-

vidual headers in a hard sectored disk as a method of cor-

recting a header. In this operation the entire ID field is writ-

ten, preamble, both byte synch fields, header bytes, and

CRC/ECC bytes.

Read Header

This is used when the host desires to know what a header

is, usually when trying to determine where a disk drive head

is located. This operation will compare the synch fields and

then read the header bytes into the FIFO. CRC/ECC is

checked.

5.2.2 General Data Operations
No Data Operation

This bit combination is valid only when the header operation

is ignore header. Using this with other header operations will

cause ‘‘unpredictable’’ results. Using this with the Ignore

Header function is a NOP command and can be used when

the user wishes to change non-command bits in the com-

mand register without executing a disk command.

Check Data

This is essentially a data NOP. If executed the DDC will read

the data field just like a read data operation, but no data will

be transferred to the system. The data field CRC/ECC is

checked at the end of the operation.

Read Data

To fetch data from the disk drive this operation is used. The

DDC first checks the data synch field to byte align and then

it reads the data from the disk drive and sends it to the FIFO

for transfer to external memory. After all bytes have been

transferred, the data field’s CRC/ECC bytes are checked.
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Write Data

This is the inverse of the read data command. The DDC will

begin by writing the data preamble field and synch fields.

Data is input from the external memory into the FIFO, and

this data is written to the disk. During the writing of data,

CRC/ECC is being generated, and is appended to the data

field.

5.2.3 When a Command Starts
As a command is loaded, the microprocessor can decide

when the DDC should start the operation. There are two

choices, which are programmed by loading bit SAIS in the

Drive Command Register, Start at Index or Sector.

If this bit is set, the operation will be started at the beginning

of the next sector (if hard sector) or immediately (if soft

sectored). This is normally used for a normal read or write

operation. Since the operation starts asynchronously to

where the head is located over the track, starting immedi-

ately means that the sector will be read/written within one

disk revolution worst case. If the command is started on an

index pulse, it is likely that the head will pass the sector

before it gets to the index to start the command, wasting a

full revolution.

If this bit is reset when a command is loaded, the DDC will

wait for the disk to revolve until the index pulse is seen. This

mode would usually be used for track oriented operations.

For example, a format and/or multi-sector operation would

be most useful if started at the beginning of a track rather

than the middle.

It is possible to execute any valid command starting either

at the next sector or at the index pulse, thus many special-

ized command combinations are possible.

5.2.4 Multi-Sector Versus Single Sector
Operations
All of the disk command op codes listed below have a multi-

sector bit that determines whether the operation is a multi-

sector or single sector operation. The DDC can be pro-

grammed to read one specific sector, several sectors, or an

entire track in one operation. In a multi-sector operation the

DDC will read a group of logically or physcially contiguous

sectors. Logically contiguous means the DDC reads sectors

with sector numbers that are in numerical order, but need

not appear physically in order on the drive’s track. For ex-

ample, sectors are numbered physically on the drive as 5, 4,

6, 1, 3, 2, will be read 1, 2, 3, 4, 5, 6. This enables interleav-

ing sectors. In order to do this the multi-sector bit must be

set and several other registers and modes must be deter-

mined.

Usually a single sector operation can be considered the de-

fault operation, and additional steps must be taken to exe-

cute a multi-sector command. To review, a single sector

operation will first execute a header operation followed by a

data operation and then terminate. For a normal read or

write, the header bytes are compared to the header pattern

registers, and when the desired header is found the data

field is operated on.

In a multi-sector operation, the DDC will re-execute the

same command over again. The number of times the com-

mand is executed depends on the value programmed into

the Number of Sector Operations Register (Address e

13H) with a maximum of 255. For most read or write com-

mands, multi-sector operations will also need to select and

program the Sector Counter (although some commands

won’t). For a given disk ID format one of the header bytes is

the sector number. The header byte that has been designat-

ed the sector number must have its control register pro-

grammed to substitute the sector counter for the header

pattern register. The sector counter is then programmed

with the number of the first sector to be read/written.

After the command starts, the first sector is operated on.

Then the Sector Counter increments and the Number of

Sector Operations Counter decrements. If this has not

reached zero the command is re-executed until the Number

of Sector Operations Counter does reach zero. Program-

ming a 1 into the Number of Operations Counter will cause

the command to execute once.

The preceding describes how a multi-sector read or write

would normally be executed. An example of when the Sec-

tor Counter may not need to be enabled might be a track

dump command which is a read header-read data. Since

sector numbers are not compared all the header fields the

data fields can be sequentially read.

5.2.5 Interlock Mode Operation
The Interlock mode can be used to enable a microproces-

sor to update commands or parameters on the fly just after

the previous command finishes with the header operation.

This enables the mP to execute a series of commands on

contiguous sectors. These commands may be the same

one repeated, a format for example, or a different one exe-

cuted sequentially. Interlock is enabled by setting the Inter-

lock bit, and enabling the header interrupt in the Operation

Command register, or polling the Next Disk Command

status bit.

In the Interlock mode, and when a command is first issued,

an interrupt at the end of the header operation informs the

mP that the DDC is ready to accept a new command. The

mP updates the header, or command registers, and lastly

writes to the Header Byte Counter Register. This update

must take place before the end of the CRC/ECC field of the

present sector. If the Header Byte Counter is not written to

before the header of the following sector, the DDC will set

the Late Interlock bit in the Error Register, and abort the

operation.

The Interlock mode can be used either in single sector or

multi-sector operations. In a single sector operation, the mP

updates all the header and control registers. It then writes

the new command into the Disk Command register, and fi-

nally writes to the Header Byte Counter. This enables differ-

ent commands to act on physically sequential sectors, i.e.

read to one, write from the next.

In a multi-sector operation, the mP sets the Number of Sec-

tor Operations to the number of sectors to be read or writ-

ten. The mP writes the command to the Disk Command reg-

ister once at the beginning of an operation. Then the mP

updates the header and mode registers after each interrupt.

Finally, before the end of each data ECC field the Header

Byte Counter is loaded. The DDC will automatically repeat

the command until the Number of Sector Operations coun-

ter reaches zero. This command mode is useful for operat-

ing on physically sequential sectors that are not logically

sequential. For example, formatting a track with interleaved

sector numbers.

While executing in interlock mode, any pattern or count reg-

isters may be written to. However, it is recommended to not

write to data pattern or count registers, as timing of the mP

write relative actual disk data being operated on will deter-

mine whether the write will effect the present or next sector.

During the operation, the pattern or count registers must

not be read, as this will cause spurious operation.
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Actually, the Interlock mode is somewhat misleading. For

any command being executed, the DDC will be ready for the

next command after it has successfully completed a header

operation. The only action the Interlock mode takes is en-

abling an Error bit that tells the mP when it didn’t update the

DDC in time.

5.2.6 Command Termination, Resetting,
and Re-enabling
Once a command starts execution, it will perform its desired

task, or an error will be encountered that will prevent the

command from executing. These errors could result from

reading the disk, losing data while not transferring it fast

enough, or not finding the header it is looking for after two

index pulses have occurred. In these cases, the DDC will

terminate the operation, set an error flag, and set itself into

an error state from which it must be reset before the next

command can be executed.

The errors that the DDC recognizes are listed in the Error

register. Errors caused by corrupted disk data or format are:

Data Field Error

No Data Synch

Sector Not Found

Sector Overrun

Errors caused by not transferring data or parameters to the

disk fast enough are:

FIFO Data Lost

Late Interlock

Errors that occur because the disk controller is looking for a

sector header that is non-existent, or the disk head is on the

wrong track are:

Sector Not Found

Header Failed Although Sector Matched

Additionally, during a correction cycle an error will be indi-

cated if the correction failed and a Correction Failed error is

set.

When an error occurs the DDC will terminate the command,

and will issue an interrupt (if enabled). Once the error is

flagged, the CPU must read the error register and then reset

the DDC.

To reset the DDC, the CPU first must set the Reset bit in the

Operation Command register. Then it must reset the Reset

bit. This has reset the DDC into the default state. Now the

DDC can be re-enabled by setting the Re-Enable bit high,

and the DDC is then ready to receive the next command.

5.2.7 Summarizing Most Useful DDC
Commands
As one can see there are a multitude of possible commands

that the DDC can implement, and the header-data opera-

tions with the various modes tend to be very cryptic. To try

to simplify the commands,Figure 5.15 lists most of the com-

mon commands, a mnemonic, and the command op code.

These commands assume the disk format is fairly standard,

with the header at least containing one byte for the sector

number. These are by no means all of the commands.

Some specialized ones may be desirable, and can be as-

sembled from the previous descriptions. Or, if the user de-

cides to be creative with the header format other commands

or modes may be useful, and maybe encryption/decryption

of the header for data security could be implemented.

These commands are header-data operations with the mul-

ti-sector and start on sector or index bit configured to their

most common way. For example, Read Sector (SRD) starts

on a sector pulse (or immediately) and is not multi-sector.

Multi-Sector Read Track is multi-sector and normally would

start on the index pulse (but doesn’t have to) so that the

entire track’s data can be read starting at the physical be-

ginning of the track.

The read, write, format track commands assume that the

Number of Sector Operations register is loaded with the

number of sectors per track.

The logical multi-sector read, write commands assume that

either the Sector Counter is enabled, or the Interlock mode

is used.

Command Name Op Code

Read Single Sector RDSS 11010010 D2H

Read Sector ID RDID 01110010 72H

Read Multi-Sector RDMS 11010110 D6H

Logical

Read Track RDTK 11010100 D4H*
Read Track Blind RDTB 11000100 C4H*
Read ID Multi-Sector RDIM 01110100 74H

Read Track Data/ID RDDI 11110100 F4H*

Write Single Sector WRSS 10010010 92H

Write Multi-Sector WRMS 10010110 96H

Logical

Write Track WRTK 10000100 84H*

Format Track FMTK 10101100 ACH

Format Track No Gap FMNG 10100100 A4H

Find ID FNID 01010010 52H

Find ID Multi-Sector FNMS 01010110 54H

Recover Header RCID 01100010 62H

Re-Enable Controller RENB 00000001 01H

No Operation NOP 00000000 00H

*Note: For an entire track operation, the Number of Sector Operations

Counter should be set to the number of sectors per track.

FIGURE 5.15. Common Configurations

of the Command Bits

SINGLE SECTOR READ (Compare Header-Read Data)

Op Code e 11010010

This command is used to perform a normal disk read opera-

tion by disabling the multi-sector operation and starting im-

mediately/sector pulse. The header bytes loaded into the

DDC are compared to header information read off the disk

drive. The DDC continues to scan the drive until a match is

found. Once a header has matched, data in the subsequent

data field is read from the disk and transferred to the system

via the internal FIFO and DMA operations.

READ SECTOR ID (Read Header-Check Data)

Op Code e 01110010

This is a single sector command, which starts immediately.

It will read the first sector header that the drive head passes

over, and transfers it to the external memory. This is useful

if the system gets lost and would like to know where the

drive head is without recalibrating the drive to track zero.

READ MULTI-SECTOR LOGICAL

(Compare Header-Read Data)

Op Code e 11010110

This is a multi-sector command that starts immediately.

There are two modes that can be used for this command.

One is to use the sector counter to sequentially read logical
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sectors. The second is to use the Interlock mode. If the

sector counter is used then the logical sectors are read se-

quentially by sector number. In the Interlock mode the logi-

cal sectors can be read in any logical sequence, depending

on mP update of header bytes.

This command can be modified to do a single sector read in

multi-sector mode, by setting the Number of Operations to

one and, preferrably, changing the Start bit from start on

index to start immediately.

READ TRACK (Compare Header-Read Data)

Op Code e 11010100

The Read Track command has the same op code as the

Multi-Sector Logical Read, except that the command is

started on an index pulse. This will cause a read of all sec-

tors ensuring that all other header bytes are compared and

header CRC/ECC is checked. Of course the Number of

Sector Operations counter must be set to the number of

sectors per track. If the track is to be read in a logical order,

then the sector number header byte can be compared to

the Start Sector register. For a physically contiguous read

the sector number header byte can be set to not compare.

READ TRACK BLIND (Ignore Header-Read Data)

Op Code e 11000010

This command will not compare the header field for a

match, but will read the first data field that the DDC encoun-

ters and all subsequent data fields no matter what the head-

er contains. The DDC will read in the data from the drive

and DMA it to external memory.

READ ID MULTI-SECTOR (Read Header-Check Data)

Op Code e 01110100

This is a multi-sector command that starts at an index pulse

and reads every header on the track (assuming the Number

of Sector Operations equals the number of sectors on the

track). This can tell the system what the entire track’s head-

er format.

READ TRACK ID AND DATA (Read Header-Read Data)

Op Code e 11110100

The read track command uses the Read Header-Read Data

command in multi-sector mode, starting on the index pulse,

and setting the Number of Sector Operations counter to the

number of sectors on a track. This will read both the header

and data fields of all sectors on a track. This can be used as

a diagnostic tool to dump the entire contents of the disk

drive’s track.

WRITE SINGLE SECTOR (Compare Header-Write Data)

Op Code e 10010010

This command is used to perform a normal disk write opera-

tion to an individual sector. The multi-sector bit is reset and

the command is started on a sector pulse or immediately.

The header bytes are compared as in a disk read. Once the

header matches, data is written to the associated data field

by the DDC.

WRITE MULTI-SECTOR LOGICAL

(Compare Header-Write Data)

Op Code e 10010110

This is the same as the Multi-Sector Logical Read com-

mand. This one starts immediately, and can use the Inter-

lock mode or Sector counter to change the header informa-

tion. The sector counter enables logically sequential sector

writing, and Interlock mode enables mP to update sectors

on the fly.

As in the read command, by programming the Number of

Sector operations counter to 1 results in a multi-sector

mode single sector write. Also the start operation bit should

be set to start on a sector pulse.

WRITE TRACK (Compare Header-Write Data)

Op Code e 10010100

The Track Write is similar to the Multi-Sector Logical Write

command, but several modes are set up differently. First

this command starts on an index pulse, and second the

header byte corresponding to the sector number is pro-

grammed to not compare. This causes every sector to be

written to in a physically sequential order.

FORMAT TRACK (Write Header-Write Data)

Op Code e 10101100

This command is commonly used when disk formatting is to

be performed. The format bit in the disk command register

normally should be set to execute this command. The entire

ID Field and Data Field, one or more sectors, are written to

the disk either from the header byte registers or from the

FIFO, depending on which mode of disk formatting is select-

ed (refer to chapter on Disk Formatting). The remaining

header and data fields are written from the respective pat-

tern registers.

FORMAT TRACK NO GAP (Write Header-Write Data)

Op Code e 10100100

There is a special format option which can be used in hard

sectored drives by not setting the format bit in the Disk

Command register and using a multi-sector operation. This

enables writing of a format without intersector gaps. This

may be useful if the drive puts servo information in the gaps.

This would be overwritten with the normal format.

FIND HEADER/ID (Compare Header-Check Data)

Op Code e 01010010

This command is normally used to perform a diagnostic op-

eration, operating almost like the Compare Header-Read

Data command. It will first scan and compare the header

information. The data field is read but not transferred.

FIND ID MULTI-SECTOR (Compare Header-Check Data)

Op Code e 01010100

This command is a multi-sector version of the Find Header,

and can be used to verify all the headers on a track are

valid.

RECOVER HEADER (Write Header-Check Data)

Op Code e 01100010

This command will start immediately, and rewrite the header

field for the first sector encountered. This can be used as a

method of recovering a damaged or unreadable ID field. To

do so actually requires the interlock mode executing this

command following a Find Header command. To recover

the sector in error, the sector physically preceeding is found

and the Find header is executed followed immediately by

this command. The new header is then written over the

damaged one.

RE-ENABLE (Re-enable bit set)

Op Code e 00000001

This command is used as part of the Reset/Re-Enable op-

eration which is normally used to recover from an error con-

dition. First the Reset bit in the Operation Command register

is set, then reset. To finally enable the DDC for another

command, the Re-Enable bit is set (see previous section).

NO OPERATION (Ignore Header-No Data Operation)

Op Code e 00000000

As mentioned previously, this is a NOP command. The DDC

will not perform any operation.

ILLEGAL COMMANDS

Figure 5.14 lists several commands as illegal commands.

They are not implemented by the internal PLA, and execut-

ing these commands will cause erroneous results.
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CHAPTER 6 System and Disk Interfacing with DDC

6.0 INTRODUCTION
In a typical disk controller design, the DDC interfaces to the

controlling microprocessor, memory and/or main system

bus (such as MULTIBUSÉ, VME bus or IPI and SCSI) on the

system side, and to the disk drives (via various disk interfac-

es such as ST506, ESDI and SMD) on the disk side. Figure
6.1 shows the DDC in a typical disk controller design. As

mentioned in previous chapters, the DDC (disk data control-

ler) controls only the disk data path. It takes 8- or 16-bit

wide data from the system bus, serializes it and then writes

it to the disk in a disk write operation. While reading the disk

data from the disk, the DDC deserializes the data and puts it

back to the system bus. Before any disk operation can be

performed, a track seek operation must be performed. The

drive control signals required to perform a seek operation,

can be generated using additional simple circuitry.

In this chapter, various DDC hardware interfaces to the host

system and disk drive will be discussed in detail. DDC pro-

gramming algorithms for carrying out disk operations are

discussed in detail in chapter 7. The hardware interfacing is

divided into two parts, system side and disk side.

6.1 SYSTEM SIDE INTERFACE
The DDC goes through three configuration modes when it

performs a disk operation. When a microprocessor access-

es the DDC to initialize it for a particular disk operation, it

becomes a peripheral to the microprocessor (peripheral

mode). While performing a disk operation and whenever the

FIFO requires a data transfer to or from the external memo-

ry, the DDC becomes the bus master (master mode) and

uses its on-chip DMA channels to perform the desired data

transfers. If the desired data transfers are carried out by an

external DMA controller, the DDC becomes a slave to the

external DMA (slave mode controller).

In the following sub-sections the DDC’s hardware interfac-

ing with the microprocessor (peripheral mode), memory

(master mode), and external DMA (slave mode) are dis-

cussed. The logic needed for arbitration of bus control be-

tween the DDC and microprocessor, and, to provide drive

control signals are also discussed. In addition to the hard-

ware connections, typical timing for various signals is also

discussed.

TL/F/8663–81

FIGURE 6.1. A Typical DDC-Based Disk Controller
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6.1.1 Microprocessor-DDC Interface
The DDC must be initialized by a microprocessor (or micro-

controller) in order to perform various disk operations. Fig-
ure 6.2(a) shows a basic microprocessor-DDC interface.

When the microprocessor accesses the DDC, all 64 internal

registers appear to it as unique memory or I/O locations.

Each register can be randomly accessed and operated on.

Only eight bits of data can be transferred to or from these

registers using pins AD0–7. All the registers can be individu-

ally selected using six register select lines, RS0–5. Using

these dedicated lines with an address strobe input, ADS0,

the chip can be used in both multiplexed and demultiplexed

address bus environments. Basically, the ADS0 and RS0–5

together act like a flow through latch.

With multiplexed address and data lines, a positive strobe

pulse on ADS0 will latch the address. The ADS0 line may be

derived from a microprocessor address strobe line such as

ALE. In systems with a dedicated address bus (demulti-

plexed), ADS0 may be pulled high to allow address informa-

tion to flow through the latch. Finally, by applying CS and

RD or WR strobes, the selected register is accessed.Figure
6.2(b) shows a typical timing for a multiplexed and demulti-

plexed system bus when the DDC is in Peripheral mode.

TL/F/8663–83

FIGURE 6.2(b). DDC Register Read/Write in

Peripheral Mode

*Latched Register Select: ADS0 e Active

Non-Latched Register Select: ADS0 e Tied High

TL/F/8663–82

FIGURE 6.2(a). A Simplified Microprocessor Interface in Peripheral Mode

74



6.1.2 Bus Arbitration Logic
When the FIFO fills up (during a read operation) or empties

(during a write operation) to the progammed threshold level,

the DDC issues a local request (LRQ) to carry out local

buffer memory transfers. Similarly, the DDC issues a remote

request (RRQ) when local buffer memory needs a data

transfer on the remote channel. Upon receiving the request

(LRQ or RRQ), the current bus master should generate an

acknowledge (LACK or RACK) to transfer bus control to the

DDC. The request essentially puts the microprocessor (cur-

rent bus master) on hold. The DDC keeps LRQ or RRQ

asserted for the entire selected data burst transfer. This en-

ables the DDC to remain bus master during this time while

the microprocessor is on hold. See Figure 6.3(a) for typical

RRQ-RACK and LRQ-LACK timing.

Generally, the LRQ-LACK or RRQ-RACK pins of the DDC

are connected to the HOLD-HOLDA type (or BUSREQ-

BUSACK type) of pins on the microprocessor through some

additional combinational logic. This additional logic would

be responsible for providing a smooth bus arbitration be-

tween the DDC and other possible bus users (like micro-

processor). It must remove the possibility of any bus conten-

tion and may also prioritize DDC’s DMA requests with other

requests which may be present in the system. See Figure
6.3(b) for typical bus arbitration logic connections.

The Address strobes (ADS0 and ADS1) from the DDC and

similar address strobe signals from the microprocessor may

also be used in the bus arbitration logic, to generate a com-

mon set of address strobes for the system. This is useful if

the demultiplexing address latches are to be shared be-

tween the DDC and the mP.

The DDC samples the RACK and LACK inputs during

Ti(idle) or T4 for each memory transfer. In general, the arbi-

tration logic should leave LACK/RACK high for the duration

of the burst. It may also toggle LACK/RACK so long as

LACK/RACK are high during T4 when the local channel has

transferred one sector (in tracking mode-dual DMA), or

when the remote DMA is enabled (in non-tracking mode).

6.1.3 The DDC-Memory Interface
After becoming bus master, the DDC communicates with

the buffer or system memory if its on-chip DMA is chosen

for data transfers. This communication takes place via a 16-

bit multiplexed address/data bus, AD0–15, and supported

by RD, WR, ADS0 and ADS1 strobes. The DDC is pro-

grammed in one of the three basic DMA modes; single

channel, dual channel non-tracking and dual channel track-

ing. (See chapter 7 for detailed explanation on DMA pro-

gramming). The hardware aspects of using the DDC in one

of these modes are discussed below.

SINGLE CHANNEL DMA

In single channel DMA mode, the DDC takes care of data

transfers between the FIFO and external memory using its

local DMA channel. In this mode, the DDC can be set to

generate either 16-bit or 32-bit of address. This gives sys-

tem architects a great deal of flexibility. With 32-bit single

channel DMA, up to 4 GBytes of memory can be accessed

which is ideal in a system where the buffer memory is locat-

ed within the main system memory. Factors like sector

length, number of sectors per track and DMA burst length

should be considered in determining the appropriate buffer

memory size.

TL/F/8663–84
FIGURE 6.3(a). A Typical LRQ/RRQ-LACK/RACK Timing for a Data Burst Transfer

TL/F/8663–85

FIGURE 6.3(b). Arbitration Logic Connections
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DUAL CHANNEL DMA

For systems where disk data is first buffered in a local mem-

ory before being transferred to the host memory via a host

I/O port, the DDC offers two channels of DMA to handle the

necessary data transfers. The ‘‘local’’ DMA channel con-

trols data transfer between the FIFO and local buffer memo-

ry, while the ‘‘remote’’ DMA channel controls data transfer

between the local buffer memory and the host I/O port. The

two DMA channels can be operated independently of each

other or the remote channel can be made to track the local

channel. In either case, both channels can address a 64k

address space. In the rare cases where a dual bus architec-

ture and more than 64k bytes of local buffer memory are

required, the DDC should be programmed for single chan-

nel, 32-bit addressing mode to handle FIFO-to-buffer trans-

fers, leaving the buffer-to-host transfers to an external DMA

controller.

For the purpose of the following discussion, it is helpful to

introduce the concept of ‘‘source’’ and ‘‘destination’’ chan-

nels. In a disk read operation, the source channel is the

local DMA channel, and the destination channel is the re-

mote DMA channel. Conversely, in a disk write operation,

the source channel is the remote DMA channel and the

destination channel is the local DMA channel. In both cas-

es, the source channel controls data transfers from the data

source to buffer memory, while the destination channel con-

trols data transfers from buffer memory to data destination.

As an example, in a disk read operation, the source channel

is the local DMA channel and controls data transfers from

the FIFO to the buffer memory, the remote channel be-

comes the destination channel and controls transfers from

buffer memory to the host.

Non-Tracking Dual Channel DMA Mode

In this mode, the local and remote channels operate as two

independent DMA channels. This allows the microprocessor

to tightly control data movement between the FIFO, buffer

memory and the host I/O port. It also allows the microproc-

essor to process disk data in the buffer memory before

transferring them to the destination, for example. This extra

degree of control imposes an extra burden on the micro-

processor. It is now responsible for preventing any destina-

tion channel transfers that may result in a data overrun situ-

ation. This can occur since the destination channel will con-

tinue to transfer data out of the buffer memory even though

that section of memory has not been written to by the

source channel.

Tracking Dual Channel DMA Mode

In this mode, the DDC keeps track of data transfers occur-

ring over the two DMA channels. It forces the two DMA

channels to track each other appropriately to prevent data

overruns.

The tracking mechanism is implemented through a DMA

sector counter, or DSC, which keeps track of the difference

between the number of sectors transferred via the source

and destination channels. The DSC is incremented every

time a sector of data has been transferred into the buffer

memory via the source channel, and decremented each

time a sector of data has been transferred out of the buffer

memory via the destination channel. The destination chan-

nel will not initiate the transfer of a new sector of data un-

less the DSC is non-zero. Thus the destination channel will

not initiate the transfer of a new sector until it has been

completely transferred into memory by the source channel.

With appropriate choice of DMA data burst lengths, the lo-

cal buffer memory then appears to the DDC as an extension

of the internal FIFO.

DATA TRANSFER TIMING

Memory Read/Write Cycles

A standard DMA memory cycle consists of 4 BCLK periods,

with the exception of the extended DMA memory cycle as-

sociated with the 32-bit addressing single channel DMA

mode.

Referring to Figure 6.4(a) , a standard memory cycle con-

sists of four bus states, T1 to T4, each lasting for one BCLK

period. The cycle begins with the rising edge of BCLK in T1,

at which time the 16-bit memory address is put out on the

address/data bus. ADS0 is also asserted during T1 and can

be used by the memory to strobe in the address on its nega-

tive edge. The low order address bits (A0–A7) are put out

on port AD0–7, and the high order address bits (A8–A15)

on port AD8–15. The address remains on these ports for

the remainder of T1. At the start of T2 the address is re-

moved and, depending on whether a read or write access is

required, either the Read Strobe (RD) or the Write Strobe

(WR) is asserted. These strobes stay asserted until the end

of T3. If a write access to buffer memory is required, the

DDC will put its FIFO data on the address/data ports at the

beginning of T2 until the end of T3. If a read access to buffer

memory is required, then the DDC expects valid memory

data to be placed on these ports during T2 to T3 so that the

required data setup time referenced to the positive edge of

RD is met. At the beginning of T4, the appropriate acknowl-

edge input (LACK/RACK) is sampled. If the sampling oc-

curred when the acknowledge input is high, then the next

memory cycle will be permitted to start at the end of T4.

Otherwise the DDC will relinquish control of the bus. If the

acknowledge input is de-asserted prior to the rising edge of

BCLK in T4, the current memory cycle will be completed

before the DDC frees up the bus.

The extended DMA memory cycle is used only in the 32-bit

addressing single channel DMA mode. Since there are only

16 address/data lines available, the 32-bit addresses must

be split into two groups of 16 bits and multiplexed onto the

address/data ports. The low order 16-bit address is handled

exactly as for the 16-bit addressing DMA modes. Additional-

ly, a separate address strobe (ADS1) is provided so that the

high order address bits can be stored in an external address

latch.

As shown inFigure 6.4(b) , the extended DMA memory cycle

is essentially the standard DMA memory cycle with an addi-

tional state T0 inserted prior to T1. At the start of T0, the

high order address bits are placed on the address/data

ports for the duration of T0. The address strobe ADS1 is

also asserted and can be used by the memory system to

latch in the high order address on its negative edge. Events

occurring from T1 to T4 are exactly the same as in the case

of the 16-bit addressing DMA modes.

Once initialized at the beginning of a DMA block transfer,

the external high order address latch only needs to be up-

dated whenever the lower order 16-bit address rolls over.

Thus the extended DMA memory cycle is only required at

the beginning of a block transfer, and each time the lower

order address rolls over. Consequently, even when 32-bit

addressing is required, the vast majority of DMA memory

cycles will be the standard 4-clock cycle.

Prior to commencing any DMA transfers, the DDC must re-

quest and be granted control of the address/data bus.

Whenever a DMA channel (local or remote) is ready for a

transfer, the corresponding request output (LRQ or RRQ) is

asserted to request control of the address/data bus. When

such control is granted by the system via the appropriate

acknowledge input (LACK or RACK), the DMA cycles will
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commence. Figures 6.5(a) and 6.5(b) illustrate the signal

timings for a burst DMA transfer over the local and remote

DMA channels.

Referring to Figure 6.5(a), a local transfer is requested by

the DDC by asserting LRQ high when the FIFO threshold is

reached. The DDC samples the LACK input at each positive

edge of BCLK thereafter until a logic high is detected on the

LACK input. At which point the DDC assumes control of the

bus and starts a burst transfer. The burst spans over N

memory cycles (where N is equal to the FIFO threshold in

byte mode or half the FIFO threshold in word mode), or until

the FIFO is full or empty. In the last transfer cycle of a burst,

LRQ is de-asserted at the start of T2 and the DDC relin-

quishes control of the bus at the end of T4.

The remote transfer operation can be programmed to trans-

fer data in bursts or to transfer the entire block in one

stream. If burst mode is selected, the remote channel will

transfer data in bursts with the user-programmed number of

bytes per burst as illustrated in Figure 6.5(b) . As in the case

of local transfers, the DDC first requests bus control by as-

serting remote request (RRQ) high. The remote acknowl-

edge input (RACK) is then sampled at each positive edge of

BCLK until it (RACK) goes high. The DDC then starts the

first of a series of N transfer cycles, where N is the pro-

grammed number of bytes or words per burst. In the last

cycle of the burst, RRQ is de-asserted at the beginning of

T2 and the DDC gives up control of the bus at the end of T4
if the entire block has been transferred. Otherwise, RRQ is

re-asserted at the start of T4 to request bus control for the

next burst. This allows other peripherals with equal or higher

priority to gain access to the bus between bursts. The bus

arbitration logic must de-assert RACK prior to T4 to ensure

that the DDC will not initiate another memory cycle. It

should also hold off RACK to the DDC until such peripherals

have completed their transfers.

If the remote channel is programmed to transfer an entire

block in a continuous stream, then RRQ will not be de-as-

serted until T2 of the last transfer cycle. If the system can-

not tolerate such prolonged bus usage by the DDC, then the

bus arbitration logic may de-assert RACK to force the DDC

to relinquish bus control. If RACK is de-asserted prior to T4,

the DDC will complete the current transfer cycle and relin-

quish bus control. Otherwise the following transfer cycle will

be completed before the DDC will free up the bus. When

this technique is used to gain access to the bus, the arbitra-

tion logic must delay the granting of bus access to another

device for time Td from the de-assertion of RACK, where Td
is given by:

Td e (Period of BCLK)
a (Duration of one DMA memory cycle).

Note that the duration of a DMA memory cycle may vary

depending on the number of wait states that may be insert-

ed, as explained in a later section.

In both tracking and non-tracking modes, the local channel

has priority over the remote channel for bus access.

Bus Latency

The DDC can be operated at a 20 MHz Bus Clock (BCLK).

With this frequency data can be transferred between the

FIFO, local memory and system I/O port at the rate of 5

Mega-Transfers/sec (or 10 MBytes/sec) assuming a 4

clock periods memory cycle. With 15 Mbits/sec disk data

rate, the 32-byte FIFO can be filled in approximately 17 ms.

TL/F/8663–86

FIGURE 6.4(a). 4-Clock DMA Memory Cycle

(DDC in 16-Bit Single and Dual Channel DMA Modes)

TL/F/8663–87

FIGURE 6.4(b). 5-Clock Extended DMA Memory Cycle

(DDC in 32-Bit Single Channel DMA Mode)
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TL/F/8663–89

FIGURE 6.5 (a). Typical Local DMA Burst Transfer Timing
(H e Host, A e DDC Address, D e DDC Data)

TL/F/8663–88

FIGURE 6.5 (b). Typical Remote DMA Burst Transfer Timing
(H e Host, A e DDC Address, D e DDC Data)

TL/F/8663–90
FIGURE 6.5 (c). Interleaved Remote and Local Transfer Timing

Note NR e Remote DMA Transfer Cycle Number N

ML e Local DMA Transfer Cycle Number M
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At 20 MHz bus clock (i.e. clock period of 50 ns and memory

cycle of 200 ns) and assuming word-wide DMA transfers,

the DDC will take 16 c 200 ns e 3.2 ms to empty the FIFO.

This essentially shows that microprocessor bus is free for

17 b 3.2 e 13.8 ms (81.2% of the time). In other words, the

DDC will need bus control after every 17 ms.

The selection of the FIFO threshold level should be based

on the maximum amount of time the system takes to re-

spond to a DMA request, often called bus latency. If the

system has a longer latency, then a smaller threshold

should be programmed. This will allow greater time for the

system to respond without overflowing the FIFO. The disad-

vantage to programming lower FIFO thresholds is that more

requests are made, tying up the system bus more often. For

example, with an 8 byte threshold a request would be made

about every 4.5 ms.

A second consideration is whether to have an exact burst,

or burst until the FIFO empties. If the system has significant

latencies then the FIFO should be emptied. If the system

must not relinquish the bus for too long then a fixed burst

size must be chosen.

The bus latency should be calculated for a given disk and

DMA transfer rate to determine appropriate FIFO threshold.

Programming the DMA for various burst transfer options is

discussed in depth in chapter 7.

Local and Remote Interleave Timing

In dual channel DMA mode, the local and remote transfers

can be interleaved using the DDC in tracking mode (see

chapter 7 for details). A typical local and remote data trans-

fer interleave timing is shown in Figure 6.5(c) . In this case a

remote transfer is interrupted by the higher priority local

transfer. Taking the same example given in the previous

sub-section, the remote transfers can be carried out during

the 81.2% of time when the local channel is not using the

bus.

Slow Read/Write

The Read or Write strobes (RD or WR) can be extended by

adding extra wait state(s). It can be done internally by set-

ting the LSRW bit in Local Transfer register (and) or the

RSRW bit in Remote Transfer register. This will generate an

extra cycle (TW) between the T2 and T3 clock cycles as

shown inFigure 6.6(a) . These strobes can also be extended

by setting the EEW bit in the Remote Transfer register in

conjunction with driving the EXT STAT input high. This will

add extra wait states between clock periods T3 and T4, as

shown in Figure 6.6(b) . The DDC samples the EXT STAT

input at the positive edge of T3 during each DMA (local or

remote) memory cycle. If EXT STAT is sensed high and the

EEW bit of the Remote Transfer Register is set, then a wait

state (TW) of a bus BCLK period will be inserted after T3.

During such wait states, the DDC continues to sample EXT

STAT at the positive edges of BCLK. If EXT STAT is sam-

pled high, a new wait state will be inserted at the end of the

current one. If EXT STAT is sampled low, then the next

state will be T4.

6.1.4 DDC-External DMA Interface
If the on-chip DMA is not to be used, an external DMA con-

troller must be used to service the FIFO. A typical DDC-ex-

ternal DMA interface is shown in Figure 6.7(a) . The LRQ

asserted by the DDC is acknowledged by the external DMA

and the DDC becomes a slave to the DMA controller. The

DMA controller carries out the local transfers and deasserts

LACK after LRQ is deasserted by the DDC. A typical FIFO

Read/Write sequence by the external DMA is shown in Fig-
ure 6.7(b) .

6.1.5 Drive Control Signals Logic
The drive control signals generation is not incorporated on

the DDC which makes it interfaceable with any type of disk

TL/F/8663–92

FIGURE 6.6 (a). DMA with Internal Wait States

TL/F/8663–91

FIGURE 6.6 (b). DMA with External Wait States
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interface. These signals can be generated simply with an

I/O port associated with the controlling microprocessor.

The microprocessor prepares the control signals for a par-

ticular drive interface and writes it to the I/O port. In high

performance multi-drive, multi-interface systems, a dedicat-

ed microcontroller (COPSTM, 8048 or HPC) or microproces-

sor (NSC800TM, Series 32000É etc.) may be used to pro-

vide control signals for various drives. In this case, the con-

trolling microprocessor (or host) instructs the microcontrol-

ler to perform a complete disk seek operation.

6.1.6 DDC in Typical System
Configurations
The DDC can typically be used in two types of system archi-

tectures, i.e. a single bus system or a dual bus system.

SINGLE BUS SYSTEM

Single bus systems usually are standalone systems con-

trolled by a microprocessor. In such system, each compo-

nent of the system communicates with the rest of the sys-

tem through a single bus. For example, in a single board

microcomputer, all the functional components like memory,

I/O ports etc. communicate with the controlling microproc-

essor via main system bus.

The DDC when used in such a system, becomes another

component that communicates with the controlling micro-

processor via the main system bus. It also communicates

directly with the system memory using its on-chip DMA ca-

pability (usually the local channel). A single bus system gen-

erally requires a large system memory, so using the DDC in

its single channel DMA mode becomes very worthwhile as it

can access up to 4 GBytes of memory in this mode. The

DDC in a typical signal bus system is shown inFigure 6.8(a) .
The controlling microprocessor sets up the drive signal con-

trol logic to perform track seek operations and the DDC to

perform disk operations.

In high performance single bus systems, it may be desirable

to use a dedicated microcontroller to control the DDC and

to generate the drive control signals instead of involving the

main system microprocessor in such tasks. Figure 6.9
shows the disk controller design in a 32-bit single bus sys-

tem. Here an HPC or other single chip microcontroller is

used to program the DDC for various disk operations and to

generate drive control signals compatible with the desired

interface. As mentioned above, the DDC is typically config-

ured in single channel DMA mode when used in a single bus

system environment. There is no restriction on using the

DDC in dual channel DMA mode except total address capa-

bility. Figure 6.10 shows a single bus system with the DDC

in dual channel DMA mode, transferring data between the

FIFO and 64k-pages of 16 MBytes system memory. Exter-

nal latches were added to extend the address range to 24

bits. To use them the host mP would load the most signifi-

cant 8 bits with the 64k page to transfer data to/from. In this

design the local and remote DMA channels are restricted to

operating in the same page. To overcome this an additional

latch and some logic gating the LACK and RACK signals

could be used to enable operation of each channel in differ-

ent pages.

TL/F/8663–93

FIGURE 6.7 (a). A Typical External DMA-DDC Interface
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TL/F/8663–94

FIGURE 6.7 (b). DDC FIFO Read/Write by External DMA

DUAL BUS SYSTEM

Systems usually have two or more buses associated to

them. One set of buses for local communication and anoth-

er main system bus for communication with the host. These

systems contain sub-systems (or modules) of the main sys-

tem (the host). The purpose of the local bus architecture is

to allow peripheral processors to control specific tasks, off-

loading the host CPU. Thus the local bus has in addition to

peripherals, such as the DDC, a local microprocessor, mem-

ory and an interface to the main system. All the sub-systems

access the main system through the I/O channels connect-

ed to the main system bus (such as MULTIBUSÉ, VME

etc.).

The DDC easily fits into a dual bus system when configured

in the dual channel DMA mode. The local DMA channel

communicates with local memory and the remote DMA

channel is used to transfer data between local memory and

a system I/O port. The main system’s DMA controller then

takes the data to/from the I/O port from/to main memory.

The DDC in a typical dual bus system is shown in Figure
6.8(b) . The local microprocessor receives commands from

the host using DDC’s remote channel and then sets up the

drive control logic and the DDC for different disk operations.

The arbitration block arbitrates the bus between the DDC

(while in bus master mode) and the local microprocessor.

Figure 6.11 shows a dual bus system with local microproc-

essor using 48 kbytes of local memory space as ROM and

RAM, and allowing only 16 kbytes of local buffer.

Figure 6.11 shows a possible local bus implementation.

Here a local CPU such as the NSC800, 32008, 80188,

64180, etc. controls both the DDC and the disk control port.

The local CPU is also in charge of receiving commands

from the main system, caching disk sectors, and performing

any logic to physical sector address translations.

In this design we have optionally segmented a special 16k

for sector data buffers. This is not necessary, but does en-

sure the DDC will not access the local CPU’s data memory

inadvertently (this could be done in software as well). The

HC646 and some read/write logic form the pass thru port

for the commands/data from the main system. The DMA

external controller, which may reside on the CPU (80188,

64180) or in the main system, controls transfers from main

memory to/from the port. The DDC’s remote DMA controls

data transfers between local memory and the pass thru

port.

INTELLIGENT PERIPHERAL BUS

A special case of the Dual Bus architecture are intelligent

peripheral buses, such as SCSI and IPI. In this case the

local bus is the intelligent disk drives bus, and the second

bus is the SCSI or IPI bus which will connect to a main

system through a host adapter. The dual channel DMA

mode of the DDC is ideally suited to this application. The

local DMA channel can manage transfers between the

DDC’s FIFO and the drives buffer RAM, while the remote

DMA is passing information to/from the SCSI or IPI bus.

The design of the system interface is very similar to Figure
6.11, except that the read/write interface logic block and

the ’HC646 is replaced by a SCSI or IPI interface, and the

systems remote DMA controller is located at the system

end of the bus and not on the drive. With the DDC’s two

channel capability eliminates the need for an external DMA

controller on the SCSI or IPI drive.
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TL/F/8663–95

FIGURE 6.8(a). The DDC in a Single Bus System

TL/F/8663–96

FIGURE 6.8(b). The DDC in a Dual Bus System
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6.2 DISK SIDE INTERFACE
The disk side hardware connections/orientation is a func-

tion of the disk interface standard used, the encoding/de-

coding scheme and the local intelligence used for disk con-

trol signals. The Disk System Controller essentially consists

of a data separator (DP8465), the Disk Data Controller

(DP8466) and some local microprocessor for disk control

like the NSC800 or a microcontroller like the HPC. The Disk

Pulse Detector (DP8464) is situated on the drive for all the

interface standards, while the data separator is on the drive

for the ESDI and SMD interfaces. Figure 1.9(a) in chapter 1

also shows the interface points for the various standards. If

MFM encoding is used it can be programmed to be part of

the DP8466, details can be found in chapter 7; where-

as in case of 2,7 RLL code, the DP8463 (2,7 ENDEC)

could be used in conjunction with the DP8462 (2,7 data

synchronizer).

6.2.1 Generalized Disk Interface with
DP846X Chip Set
The DP8464 pulse detector receives signals from the disk’s

read amplifier, and converts these signals to a digital pulse

train. The DP8465 Data Separator receives digital pulses

from a pulse detector circuit (such as the DP8464). After

locking on to the frequency of these input pulses, the

DP8465 separates them into synchronized data and clock

signals. If the input pulses are MFM encoded data, the data

is made available as decoded NRZ data to be deserialized

directly by the disk data controller DP8466. If the RLL code

is used, the synchronized data output is available to allow

external circuitry to perform the data decoding function. All

the digital input and output signals are TTL compatible. The

raw MFM from the pulse detector in the drive is connected

to the ENCODED DATA input of the DP8465. The DELAY

DISABLE input determines whether attempting lock-on will

begin immediately after READ GATE is set or after two

bytes. Typically in a hard sectored drive, READ GATE is set

active as the sector pulse appears, meaning a new sector is

about to pass under the head. Normally the preamble pat-

tern does not begin immediately, because gap bytes from

the preceding sector usually extend just beyond the sector

pulse. Allowing two bytes to pass after the sector pulse

helps ensure that the PLL will begin locking on to the pre-

amble, and will not be chasing non-symmetrical gap bits.

Attempting to lock-on to a fixed preamble pattern speeds up

lock-on, and after another two bytes the PLL will nominally

have locked-on. Thus DELAY DISABLE should be set low

for this kind of disk drive. For soft sectored drives, the con-

troller normally will not wait for the index pulse before it

attempts lock-on, so that READ GATE may go active at any

time. Chances are the head will not be over a preamble field

and therefore there is no need to wait two bytes before

attempting lock-on. DELAY DISABLE can therefore be set

high. If a non preamble field is passing by as READ GATE

goes active. The DP8465 will not indicate lock, and so no

data decoding will occur nor will MISSING CLOCK DETECT-

ED go active. Normally, if lock-on has not been achieved

after a certain time limit, the controller should de-activate

READ GATE and then try again. For MFM encoded disk

drives, the LOCK DETECTED output will be connected back

to the SET PLL LOCK input. As the PLL achieves lock-on,

the DP8465 will automatically switch to the slower tracking

rate and decoded data will appear at the NRZ READ DATA

output. Also the READ CLOCK output will switch from half

the 2f clock frequency to the disk data rate frequency. If a

delay is required before the changeover occurs, a time de-

lay may be inserted between the two pins. The ZEROES/

ONES PREAMBLE input selects which preamble the chip is

to lock-on to. Figure 6.12 gives schematics of the data sep-

arator in a disk systemÐwhen in the controller and when on

the drive. For more specific details on the DP8465 refer

chapter 3.

If the drive uses the RRL code such as ‘‘2,7’’, instead of

MFM, the PLL function of the DP4862 may be used in con-

junction with the 2,7 ENDEC (DP8463), as shown in Figure
6.13. The DP8463 performs encoding of NRZ data to RLL

encoded data, and RLL encoded data back to NRZ data. It

uses the SYNCHRONIZED DATA output of the DP8462

along with VCO CLOCK to lock-on to the preamble and then

decode data. For more specific details on the DP8463 refer

to it’s data sheet.

The most important component in the disk side is the physi-

cal disk interface itself. We shall discuss the interface de-

tails for some major interface standards viz., STxxx, ESDI

etc. Higher level interfaces, like SCSI, incorporate the whole

controller board on the drive and interface with the host

through a host adapter on to the system bus. However the

DDC as such interfaces to the host microprocessor for com-

mands and status.

6.2.2 Interfacing the DDC to the
ST506/ST412HP Standard
The schematic in Figure 6.14 shows the interfacing of the

DDC to a ST506/ST412HP disk interface. The ST506/

ST412HP interface standard has a control cable which is

daisy chained to the drives (assuming a multiple drive sys-

tem). On selecting the drive all the signals on the control

cable are associated with the drive selected. The data cable

is radial in nature and is multiplexed at the controller using

the drive select output on the data cable. The ST506/

ST412HP interface standard supports MFM encoding and

soft-sectored formatting only. Since the DDC does not take

care of the disk control signals, this is done using some

local intelligence, indicated as the Disk Signals Controller

block, DSC. The drivers are open collecter drivers as per

the requirements of the interface standard. The DDC re-

quires NRZ data, hence the MFM encoded data from the

drive is sent to the data separator, which synchronizes the

data and decodes it to NRZ. The missing clock detect out-

put of the data separator is used to trigger the address mark

found (AMF) input of the DDC. While writing data to the disk,

the DDC provides MFM encoded data, and the necessary

precompensation is provided using an external delay line in

conjunction with the early and late precompensation out-

puts (EPRE/LPRE) of the DDC. The DDC and the DSC

could interface to the system bus of the host system or

could interface to the host system through an intelligent in-

terface like SCSI or IPI, as mentioned in the previous sec-

tion.

The basic operation of the interface is as follows. The DSC

first selects the drive select lines. Then the head selected

by the head select lines is positioned over the desired track

by issuing step pulses in conjunction with the direction line.

Once the head is positioned, indicated by the seek com-

plete line, the DDC is ready to initiate a read/write opera-

tion. This interface’s read path is through the data separator

and hence a lot depends on the selection of the data sepa-

rator. The data separator then feeds the controller. The

write path consists of write data out of the DDC going to a

precompensation block. The output of the precompensation

block goes over the ST506 interface to the drive.
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TL/F/8663–A0

FIGURE 6.12 (a). Data Separator Residing in the Controller

TL/F/8663–A1

FIGURE 6.12 (b). Data Separator Residing in the Disk Drive
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Interfacing the DP8463 2,7 ENDEC in a Disk System

TL/F/8663–A2

FIGURE 6.13. DDC and DP8463-2,7 ENDEC (a) Generalized Disk System Block Diagram

TL/F/8663–A3

FIGURE 6.13. DDC and DP8463-2,7 ENDEC (b) Specific DP846X Solution
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TL/F/8663–A4

FIGURE 6.14. Disk Data and Control Paths (ST506/ST412HP)

The necessary sequence of events (with associated timing

restrictions) for proper read/write operation of the STxxx

drive are shown in Figure 6.15. The DDC specifications are

in compliance with the above requirements. The DDC has

an on board encoder for MFM encoding and provides the

precompensation outputs EPRE/LPRE, which are used by

some external logic to generate the delays, as shown in

Figure 6.16(a) and (b)

WRITE DATA PATHÐPRECOMPENSATION

This consists of a differential pair that defines the transitions

to be written on the track. The transition of the aMFM

WRITE DATA line going more positive than the bMFM

WRITE DATA line will cause a flux reversal on the track

provided WRITE GATE is active. To ensure data integrity at

the error rate specified for the interface, the write data pre-

sented by the DDC must be precompensated on the inner

tracks. The optimum amount of precompensation is drive

dependent, but usually is around 12 ns for both early and

late written bits. In the DP8466 precompensation will be in-

dicated on the EPRE and LPRE pins. Precompensation is

issued for the middle bit of a 5-bit field. In the DDC, early

and late precompensation will be enacted for all the combi-

nations as shown below. All other patterns will not require

precompensation. The center bit column is the present bit

being output. The left two bit column is the bits previously

shifted out, and the right two bit column is the two bits that

will be shifted out next. In the following table a ‘‘bit’’ is a

clock or data bit.

EPRE Patterns LPRE Patterns

00 1 10 00 1 10

00 0 11 00 1 11

01 1 00 10 0 00

01 1 01 10 0 01

11 1 00 10 1 10

11 1 01 10 1 11

READ DATA PATHÐREAD GATE

For the read data path the data separator is the critical

block. Its design was discussed in chapter 3. In addition how

the controller cycles the read gate will affect performance.

In case of conventional soft sectored drives the Read Gate

cycling by the DDC is different for different conditions. In the

case when the address mark is not detected after lock has

occurred (abort address mark functionÐinternal to the

chip), the DDC deasserts Read Gate 19 RCLKS after get-

ting a non-zero bit on the Read Data line, where it has been

receiving an all zeroes data. It will then reassert the Read

Gate 17.5 RCLKS later. In the situation where there is a

sync failure, Read Gate is deasserted 10 RCLKS after the

failed sync word, and reasserts it 17.5 RCLKS later. In case

of a Header failure or a CRC failure, Read Gate is deassert-

ed 2 RCLKS after the last check byte and is reasserted 25.5

RCLKS later. Figure 6.15(c) shows the Read Gate timing

details.

HANDLING THE READ GATE IN SOFT SECTORED

ST506 DRIVES

When reading soft-sectored drives, it is difficult to predict

when Read Gate will be asserted. Data patterns can appear

as preamble and the PLL will lock to these patterns. The

controller is able to determine that the field is not a pream-

ble by the address mark signal not being asserted because

no missing clock violation was detected and deasserts

Read Gate. However, Read Gate might be asserted over a

write splice, which may result in the Data Separator failing to

lock properly. It is usually up to the data separator design to

ensure proper lock. The DDC does not implement a read

gate on/off cycling algorithm. If the data separator can be

thrown out of lock, the data separator should incorporate

this algorithm. If not, this may lead to failure when accessing

a sector in certain soft sectored drives. This is only a prob-

lem for drives using the conventional soft sectored format

89



TL/F/8663–I2

FIGURE 6.16 (a). Precompensation Circuitry (MFM Encoding)

Note: Latch k essentially ensures that the mux is enabled before the early and late signals arrive.

The early, normal, and late compensated data are only relative to each other.

Precomp time is drive dependent, usually 12 ns.

TL/F/8663–I3

FIGURE 6.16 (b). Timing
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(preamble, address mark, sync for both the ID and DATA

segment), which is typical of lower performance, low capaci-

ty drives, operating at data rates of 5Mbits/sec and below,

like the STxxx family. Newer standards replace the A1 (Hex)

missing clock address mark currently used in soft sectored

drives with an address mark which is a gap of no transitions

at the beginning of the sector. Such a format is referred to

as ‘‘start with address mark’’ format. The SMD and ESDI

interfaces currently specify this type of operation and should

be typical of those drives operating at 10 Mbits/s or greater.

Operation of the DDC Read Gate in Soft Sectored

Drives

In a soft sectored drive, the DDC asserts Read Gate at an

arbitrary point over the track. This initiates a lock sequence

on the Data Separator and the DDC begins to monitor the

pattern entering its shift register. To avoid issuing garbage

to the controller while it is locking up, the data separator

usually will issue zeroes to the controller as it is looking for

the first bit of non-zero data signifying lock. If using the

8465, when SET PLL LOCK is asserted, the Data Separator

will begin to issue decoded data. In most applications, the

LOCK DETECT output is connected to the SET PLL LOCK

input, so that when the Data Separator has locked, it will

issue data. However, if the Data Separator were to fail to

lock and in some manner gets hung up where it will never

be able to detect a preamble pattern, the system will be

deadlocked since the DDC still is being given all zeroes

from the Data Separator. The read operation will be aborted

only after 2 revolutions. This type of failure can occur if

Read Gate is asserted over write splice areas. The problem

is really twofold, the Data separator is not issuing non-zero

data to the DDC so that it can deassert Read Gate (the DDC

thinks that the Data separator is still looking for the pream-

ble) and the DDC is not placing a timeout on a response

from the Data Separator.

Suggested External Logic to Timeout the Read Gate

If necessary a simple external circuit can perform the time

out function. When Read Gate is asserted a counter is start-

ed. After 3 to 4 bytes (allowing time for the Data Separator

to acquire lock), the SET PLL Lock on the Data Separator is

driven low. This enables data to be sent from the Data Sep-

arator to the DDC. The DDC monitors the data and if a ‘1’

propagates through the deserializer without matching the

first pattern programmed for the format, Read Gate is deas-

serted. The DDC deasserts Read Gate for approximately 19

bit times, Figure 6.17(a) , hence the Data separator should

be able to resynchronize to the 2f clock within this time.

Hence even in the worst case, the amount of preamble lost

by this scheme is 6–7 bytes, (1 byte for the DDC to deassert

Read Gate after receiving a ‘1’, pattern not matched, 2

bytes of Read Gate deasserted time and 3–4 bytes of time-

out, essentially the lock time of the Data Separator). The

suggested circuit is shown in Figure 6.17(b) . This circuitry

could also be implemented in a PAL.

Read/Write Data Timing

TL/F/8663–A5

FIGURE 6.15. ST506 Read/Write Data Timing
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Soft Sectored, (Abort Address Mark Function)

Read Gate Cycles Due to Sync Failure

Read Gate Cycle Due to Header or Failure

TL/F/8663–A7

FIGURE 6.17 (a). Read Gate Timing (Cycling)

Counter timer using dual 4 bit binary

counters cascaded. Count is stopped

by decoding bit 2QB which is reached

after 32 RCLKS, counter is reset when

RGATE is deasserted.

TL/F/8663–A8

FIGURE 6.17 (b). Read Gate Timeout Circuit

6.2.3 Interfacing the DDC to the ESDI
Standard (Serial Mode)
The Enhanced Small Device Interface (ESDI), is a low cost,

high performance interface suitable for the smaller memory

devices currently on the market. It supports higher data

transfer rate, 10–15 Mbits/s and provides for additional per-

formance features desirable in higher performance systems.

Two modes of implementation are possible: Serial mode of

operation, utilizing NRZ data transfer along with serial com-

mands and serial configuration/status reporting across the

command cable (J1). Step mode implementation utilizes the

same NRZ data transfer; however, the STEP and DIREC-

TION lines are used to cause actuator motion. This is similar

to the ST506 type of interface as far as interfacing is con-

cerned.

The ESDI interface consists of a 34-pin control cable and a

20-pin data cable. The control cable is attached in a daisy

chain configuration while the data cable must be attached in

a radial configuration. Hence all the control signals are as-

sociated with the drive selected. All the control lines are

digital in nature (open collector TTL) and either provide sig-

nals to the drive (input) or signals to the host (output). The

control signals and the serial commands are handled by the

Disk Signals Controller, which is some local intelligence, as

shown in Figure 6.18.

The ESDI interface can support both Hard and Soft sector

drives. The interfacing of the, DDC is slightly different for

hard versus soft sectored drives. Figure 6.18 shows the in-

terfacing of the DDC to a Hard sectored ESDI drive in the

serial mode. In this configuration the sector pulse from the

drive is used to identify the start of a sector. All lines associ-

ated with the transfer of data between the drive and the

host system are differential in nature and may not be multi-

plexed. These lines are provided at the J2/P2 connectors

on all drives. Four pairs of balanced signals are used for the

transfer of data and clock.

NRZ Write Data: This defines the data to be written on the

disk and is clocked by the WRITE CLOCK signal. This defi-
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nition is compatible with that of the DDC. The Write data

and Write Clock timings are shown in Figure 6.19.

NRZ Read Data: The data recovered by reading previously

written information is transmitted to the host system via the

differential pair of NRZ Read Data lines. This data is

clocked by the READ CLOCK signal. These lines must be

held at a zero level until PLL synch has been obtained and

data is valid. This is compatible with what the DDC expects.

One note of caution, when the PLL is locking on to the

preamble, the DDC is receiving 0’s and is looking for a non-

zero synch byte. If the PLL goes off to harmonic lock or

never locks and continuously outputs NRZ 0’s, the DDC will

assume it is forever looking at the preamble and will finally

abort the command after two index pulses, flagging a sector

not found error. It is up to the drive designer to prevent the

PLL from going into harmonic lock. The DP8465, DP8461

and DP8462 are designed to remove harmonic lock. Figure
6.19 shows the timing requirements for the read data.

Read/Reference Clock: Figure 6.19 depicts the necessary

sequence of events (with associated timing restrictions) for

proper read/write operation of the ESDI drive. The Refer-

ence Clock signal from the drive will determine the data

transfer rate. The transitions from Reference Clock to Read

Clock must be performed without glitches. Read Clock and

Read Data are valid within the number of PLL sync field

bytes specified by the drive configuration after read enable

and a PLL sync field is encountered. The interface Read/

Reference Clock line may contain no transitions for up to

two Reference Clock periods for transitions between refer-

ence and read clocks. The transition period will also be one-

half of a Reference Clock period minimum with no short-

ened pulse widths. This is compatible with the specifications

of the DDC, which has setup and hold times typically of the

order of 15 ns. Reference Clock is valid when Read Gate is

inactive while Read Clock is valid when Read Gate is active

& PLL sync has been established.

Write Clock: Write Clock is provided by the DDC and must

be at the bit data rate. This clock frequency is dictated by

the Read/Reference clock during write operations. The

DDC complies with the ESDI standard which requires the

Write Clock to be active when Write Gate is active. See

Figure 6.19 for timing.

READ AND WRITE TIMING

Write Gate

The active state of this signal enables write data to be writ-

ten on the disk. The low to high transition of this signal often

creates a write splice and then initiates the writing of the

data PLL sync field by the drive. The timing restrictions on

Write Gate in the ESDI specification are as follows:

1) When formatting, Write Gate should be deactivated for 2

bit times minimum between address area and the data area

to identify to the drive the beginning of the data PLL sync

field.

2) It should be asserted at least two and a half reference

clock periods after Write Clock.

3) The time lapse from deactivating Read Gate to activating

Write Gate should be a minimum of 5 reference/read clock

periods.

4) To account for data-encoding delays, Write Gate must be

held on for at least two byte times after the last bit of infor-

mation to be recorded.

5) It should be deactivated at least 1 ms before a head

change and may not be activated until 15 ms after a head

change.

TL/F/8663–A9

FIGURE 6.18. Data and Control Paths (ESDI-Serial Interface) Hard Sectored Drive
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Read Gate

The active state of this signal, or low level, enables data to

be read from the disk. This signal should become active

only during a PLO sync field and at least the number of

bytes defined by the drive prior to the ID or Data Sync bytes.

The timing restrictions on Read Gate for the ESDI specifica-

tion are as follows:

1) Read Gate must be false when passing over a write

splice area. It must be deactivated 1 bit time min. before a

Write Splice area and may be enabled 1 bit time min. after a

Write Splice area.

2) The time lapse before Read Gate can be activated after

deactivating the Write Gate is 10 ms.

The Read/Write Gate timings for format, write and read op-

erations are discussed below with reference to the DDC,

demonstrating its compatibility with the ESDI specifications.

Format Sector

In the case of the DDC, during a format operation, it will do a

continuous operation on the whole track. Thus after the in-

dex hole is sensed the DDC will assert WRITE GATE within

3.5 bit times. Write Gate will remain asserted until the index

hole is sensed again. When each sector pulse is sensed

(index for sector 0) the DDC will immediately start writing

the various fields. After the data postamble is written the

DDC will fill the rest of the sector with the gap until the next

sector pulse is sensed. Figure 6.20 shows the basic timing

and the ESDI recommended format.

Write Sector

In case of a compare header-write data operation, the DDC

will assert Read Gate within 3.5 Read Clocks from the rising

edge of the Index or sector pulse. Read Gate is de-asserted

2 Read Clock periods after the ID check field, (plus a small

propagation delay). Read Gate will remain de-asserted for

the entire postamble. Due to internal delays, Write Gate is

asserted 3 bit times into the data preamble field. Hence this

would meet the 5 bit time minimum spec. between the read

gate de-assertion and write gate assertion assuming at least

one ID postamble byte is programmed. At the end of the

write operation, Write Gate is removed 0 bit times after the

data postamble. Hence a 3 bit time ‘pad’ is created between

header postamble and data preamble updating data. This

pad will contain data preamble as written during format op-

eration. Refer to Figure 6.20 for basic timing. It should be

noted that a write splice of 8 bits is associated with the

assertion of Write Gate. Hence if a write header operation is

involved, then the read gate should not be asserted in the

splice area.

Read Sector

In case of a compare header-read data operation, the DDC

will assert Read Gate within 3.5 Read Clock cycles from the

rising edge of the Index or sector pulse. Read gate is de-as-

serted 2 Read Clock cycles after the ID check field. Read

Gate is re-asserted 11.5 bit times from the data preamble.

This is 8.5 bit times from the point where Write Gate is as-

TL/F/8663–B0

FIGURE 6.19. NRZ Read/Write Data Timings
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serted. This accommodates the 8 bit time write splice gen-

erated due to write driver turn on time as required in the

ESDI specification. Read Gate is de-asserted 2 bit times

into the data postamble. Of particular importance is that the

read operation avoid reading the write splice. As can be

seen from the write sector discussion, the write splice will

occur 3 bits into the preamble, and the read will occur after

11.5 bits. Thus Read Gate is disabled during the actual write

splice. When the read and write operations use the same

format parameters, Write Gate will cause a splice 8.5 bits

before Read Gate is asserted assuming insignificant delay

in the read path from the media. However this provides a

maximum of 8.5 bit times the write data out could be de-

layed by the write data encoder, in the drive, prior to being

written on the media.Figure 6.20 gives the basic timing. The

user may have to account for additional delays specific to

the drive.

Write Gate in ESDI with Index/Sector, AME

TL/F/8663–B1

FIGURE 6.20 (a). Read/Write Gate Timing for DDC

Read/Write Gate Timing at End of ID; Beginning of Data Field

Compare Header Ð Read Data Operation

Compare Header Ð Write Data Operation

TL/F/8663–B2

FIGURE 6.20 (b). Read/Write Gate Timing for DDC
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6.2.4 Special Consideration for ESDI
Drives
SOFT SECTORED

Interfacing the DDC, to a soft sectored ESDI drive is slightly

different. There are no sector pulses demarcating sectors.

An Address Mark pattern of no flux transitions is used to

identify the start of the sector. The ideal soft sectored for-

mat (as supported by the DDC) consists of the Preamble

field followed by the Address Mark (AM) and Sync fields.

However in the case of ESDI the soft sectored format speci-

fication supports an AM at the beginning of the sector fol-

lowed by the Preamble and Sync fields. This is a special

field of no flux transitions which is essentially used to mark

the start of the sector. Address Mark detection and genera-

tion is done using a handshake protocol between AME and

AMF on the drive cable. Since the AMF on the DDC is

geared to look for a missing clock violation in the address

mark pattern, it cannot be used in the ESDI handshake.

Also the DDC generates AME only during the format opera-

tion. Hence to achieve successful operation of the ESDI soft

sectored drive, the DDC formats the drive as a soft sectored

drive and while reading, the AMF signal from the drive is

used to generate a sector pulse, as the DDC is configured

to operate in the hard sectored mode. It also requires ma-

nipulation of the format parameters as shown inFigure 6.22.

Figure 6.21 shows the schematic of the interface at a block

level.

Let us first consider manipulation of the format parameters

to achieve proper operation.Figure 6.22 gives the sequence

of events. Consider the first three fields of the format. The

DDC views them as Preamble, AM and Sync,Figure 6.22(a) .
The DDC format is programmed as AM, Preamble and Sync

for the first three fields, Figure 6.22(b) . If the format opera-

tion is initiated with SAM (start on address mark) bit set in

the Disk Format register, the recording on the media is

shown in Figure 6.22(c) . The AME output on the DDC is

asserted during the Address Mark (field 1). During a Com-

pare header-read/write operation the first field of the format

parameter RAM in the DDC is programmed to be the Pre-

amble. The count for the second field is set to zero, so that

it is skipped, while the third field is progammed to be the

Sync field. When data is read, the field 1 of no transitions

(AM) results in AMF becoming active which generates the

sector pulse for the DDC, Figure 6.22(d) .

In the ESDI specification, AME (address mark enable) line,

when active with Write Gate causes an Address Mark to be

written on the media. When AME is active without Write

Gate or Read Gate, it causes a search for Address Marks.

On detection of the end of Address Mark, AMF (address

mark found) responds. The trailing edge of AME with Write

Gate true initiates the writing of the header PLO Sync field.

To incorporate the AME/AMF handshake, external logic is

required with the DDC. Since the DDC generates AME only

during a format operation, the circuit would have to gener-

ate AME to the drive during a read operation and incorpo-

rate the handshake with AMF from the drive. This AMF is

used as a sector pulse input to the DDC. This technique

then results in a sector pulse corresponding to each ad-

dress mark pattern demarcating each sector. However at

sector 0 this poses a problem. The index pulse is followed

by the post index gap and then the address mark field of

sector 0 which would generate a sector pulse. As per ESDI

requirements this circuit would have a delay and present the

index pulse over the sector 0 pulse and block out the sector

0 pulse to the DDC. The other constraints to be maintained

in order to comply with ESDI spec requirements are:

1) AME should be asserted min 100 ns after min write gate

is asserted and be deasserted 100 ns before write gate is

deasserted.

2) AME can be asserted again at least 10 ms after write gate

deassertion.

TL/F/8663–B3

FIGURE 6.21. Data and Control Paths (ESDI-Serial) Soft Sectored Drive
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FORMAT

FIELD1 FIELD2 FIELD3 Ð Ð Ð

SAM e 0
a f PREAMBLE AM SYNC Ð Ð Ð

MFM e 0
v v v

SAM e 1
b f AM PREAMBLE SYNC Ð Ð Ð

MFM e 0
(AME asserted)

c f GAP NO TRANS. PREAMBLE SYNC Ð Ð Ð

wFLD1x l wFLD2x l wFLD3x l
READ/WRITE OPERATION

d f GAP NO TRANS. PREAMBLE SYNC Ð Ð Ð

l wFLD1x l wFLD3x l
É SECTOR PULSE

In DDC e FLD1 FLD2 FLD3 Ð Ð Ð

PREAMBLE SKIPPED SYNC

CNT e 0

FIGURE 6.22. Manipulation of Format Parameters in DDC for ESDI Soft Sectored Operation

HARD SECTORED ESDI

For an ESDI drive which is hard sectored, the ESDI specifi-

cation calls for an Inter Sector Gap (ISG) which is to pre-

cede and follow the index/sector pulses. The gap is needed

to provide the drive with an area for the embedded servo (if

used), and gives the controller time to assert read gate.

While formatting the drive, the end of the ISG is indicated by

the removal of the address mark enable signal (AME). This

signal is needed by the drive to indicate the beginning of the

PLL field, necessary when the disk encodes the PLL field

with a non-standard pattern (as with 2,7 encoding with 3t

preambles). The DDC is capable of generating the AME sig-

nal with the necessary timing. The DDC needs to be in the

hard sectored mode, and have the Start with Address Mark

bit (SAM bit of the DISK FORMAT register) enabled. The

DDC ID Preamble field now becomes the ISG following the

index/sector pulse, and the ID Sync 1 field becomes the

PLL preamble field. While not formating, this feature is not

needed, and should be disabled.

When the header field of an ESDI drive is read (or com-

pared), the read gate to the drive needs to be delayed until

after the ISG. The DDC generates read gate only after re-

ceiving a sector or index pulse, so by delaying the sector

and index signals to the DDC the read gate will be delayed.

COMBINED SOLUTION

A solution to the above problems can be provided by 1 PAL

device and something to provide a delay (possibly another

PAL device) Figure 6.23(b) . The interface solutions can be

grouped into two main areas: Address marks and Index/

Sector.

The address mark control needs to provide the following:

(1) Direct connection of AME to the drive and AMF to DDC

sector input when formating a hard sectored drive.

(2) Delay the leading edge of the AME by the width of post

index ISG when formating a soft sectored drive.

(3) Provide AME/AMF handshaking when not writing the

disk, and properly change from reading to writing and

back with soft sectored drives.

The index/sector control needs to provide the following:

(1) Delay the index and sector pulses from a hard sectored

drive when not formating.

(2) Generate index and sector pulses to the DDC from AMF

and Index when using a soft sectored drive while not

formating.

The Address Mark Machine

The address mark machine consists of a pair of multiplexers

which feed the AME input to the disk drive and the AMF

input to the DDC. A state machine ensures the proper se-

quence of events, while a timer provides delay. The address

mark machine works in the following way:

When in the soft sectored mode and not formating, it will

assert AME to the drive. When AMF is detected, AME is

removed until AMF is no longer detected. This uses states 0

and 3 of the address mark state machine, as shown in the

diagrams, Figure 6.23(a) .

When write gate is detected, AME is removed, and write

gate to the drive is generated a short time later. When the

write operation is ended, write gate is removed from the

drive, and AME is enabled a short time later.

In all other modes of operation, the state machine is deacti-

vated and write gate is delayed to the drive by one bit clock

time (circuit convenience). The multiplexer continues to pro-

vide the drive and DDC with proper signals.
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The Index/Sector Machine

The index/sector machine consists of a pair of multiplexers

which feed the index and sector inputs of the DDC. While

formating, the multiplexers connect the index and sector

signals from the drive to the DDC.

When not formating a hard sectored drive, the state ma-

chine waits for either a sector or index pulse. When this is

detected, the machine waits for a delay and then generates

a sector or index pulse. A flip flop, borrowed from the ad-

dress mark machine, is used to record whether an index or

sector pulse should be generated (the address mark ma-

chine is disabled when in the hard sectored mode). The

delayed index or sector pulse is generated for another delay

period of time.

With a soft sectored drive, the state machine waits for either

an index or AMF signal. If index is detected, the machine will

wait until an AMF is detected. An index pulse will then be

sent to the DDC without a sector pulse. If a AMF pulse is

detected without index, the state machine will generate a

sector pulse.

6.2.5 Interfacing the DDC to the SMD

Interface Standard
The Storage Module Device (SMD) interface is a high per-

formance interface, extremely popular with 8× –14× drives.

It provides features similar to the ESDI interface, with some

differences. It supports higher data rates from 10 Mbits/s to

24 Mbits/s and utilizes NRZ data transfer along with parallel

command and status reporting across the command cable.

The SMD interface consists of a 60-pin control (A) cable

and a 26-pin data (B) cable. The control cable is attached in

a daisy chain configuration while the data cable must be

attached in a radial configuration. The control signals are

handled by a separate Disk Signals Controller block, which

is some local intelligence, as shown in Figure 6.24. Only the

interfacing of the data path signals are discussed as they

are of relevance to the DDC. The control signals could be

easily done by a local microprocessor. All lines associated

with the transfer of data between the drive and the host

system are differential in nature and may not be multiplexed.

These lines are provided on the B cable of all drives and are

briefly discussed below:

Write Data

This line carries NRZ data, to be written on the disk surface

and must be synchronized with Write Clock. This definition

is compatible with that of the DDC.

Write Clock

This is a retransmitted clock signal of the servo clock (IF

Write Clock) issued by the controller.

Servo Clock

This signal is used by the control unit in the drive to synchro-

nize Write Data with the Clock. Servo Clock may be avail-

able during unit ready status except during read operations,

or at all times.

Read Clock

This line transmits Read Clock. The Read Data is synchro-

nized with 1F Read Clock. This line may be valid only during

a read operation, or may be multiplexed with the Servo

Clock signal at other times.

Read Data

This line transmits the recovered data in the form of NRZ

data synchronized with 1F Read Clock.

Figure 6.25 shows the basic timing requirements for the

above signals for the Fujitsu M2311 micro disk drive hereaf-

ter referred to as MDD. In general ‘‘SMD’’ type drives have

similar timing requirements.

READ AND WRITE GATE

Read and Write Gate are the two signals which are used to

read/write data from/to the specified track/sector. In the

SMD interface, they are present on the Bus Out, (bit 1Ð

read gate, bit 0Ðwrite gate), when enabled by tag 3. Write

Gate enables the write operation and is validated only when

Unit Ready, On Cylinder and Seek End are true and Seek

Error, Fault, File Protect, Offset are false. If Write Gate is

turned on in cases other than the above conditions, fault

occurs and writing is inhibited. At this juncture it would be

appropriate to mention that there are certain drive depen-

dent constraints which must be taken care of while interfac-

ing to the SMD drives. These are drive dependent, and rep-

resentative values observed in most of the drives are given

below:

Write circuit turn-on delay: approximately 8 bit times.

Head select transient: A 5 ms delay minimum must be pro-

vided between head select and initiating read gate. Normal-

ly this is provided by selecting the appropriate length for the

gap after the data postamble and the gap after the index/

sector pulse.

Read-after-Write transients: A minimum delay of 10 ms must

be provided between the trailing edge of write gate and the

leading edge of read gate. This could also be done by ad-

justing the lengths of the gap after the data postamble and

the gap after the index/sector pulse.

Read/Write Encoding/Decoding delays: Through encoding

and decoding circuitry, a read data signal will be delayed by

approximately one byte against a write data.

Write-after Read transient: A minimum delay of 0.3 ms must

be provided between the trailing edge of read gate and the

leading edge of write gate. This is accomplished by having

at least one byte of header postamble.
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TL/F/8663–B4

FIGURE 6.23 (a). AME/AMF/Index/Sector Logic State Diagrams

TL/F/8663–B5

FIGURE 6.23 (b). ESDI AME/AMF Handshake Logic and State Diagram
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TL/F/8663–B6

FIGURE 6.24. Data and Control Paths Ð SMD (Hard Sectored Drive)

1F Write Clock, Write Data/Write Clock Timing

TW e TF/2
TL/F/8663–B7

TF e (Function of Transfer Rate) FIGURE 6.25 (a). Write Clock/Write Data Timing
Tdb e Continuous delay within 2 bits

Tds e 0 g10 ns

TW e TF/2 TL/F/8663–B8

FIGURE 6.25 (b). Read Clock/Read Data Timing
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Preamble length: The synchronization time required to allow

the PLL to synchronize is 11 bytes before the sync pattern

of address and data fields.

READ/WRITE TIMING

Representative read/write timing for format write, data read

and data write operations are shown in Figure 6.26. The

corresponding timings for the DDC are given in Figure 6.20.

FORMAT WRITE

During a format operation or write header operation, the

drive requires that the Write Gate be asserted by 600 ns

(max.), from the index/sector pulse and Write Gate must be

de-asserted at least 1 byte after the check byte field in the

header, refer Figure 6.26(b) . In the case of DDC, Write Gate

is asserted 3.5 bit times after the Index pulse in a format

operation or after the index/sector pulse in a write header

operation (hard sectored drive). Write Gate is de-asserted at

the end of header postamble field. Hence if the header

postamble is kept at least one byte long, the DDC should

satisfy the requirements of the drive. Figure 6.26(a) shows

the recommended format used by ‘‘SMD’’ drive manufactur-

ers like CDC, etc.

DATA WRITE

During a data write operation (essentially a compare head-

er-write data operation) read gate is asserted by the DDC

3.5 bit times from the rising edge of the index/sector pulse.

The recommended format for the MDD has a post index/

sector gap and requires the Read Gate to be asserted 6 ms

(approx. 8 bytes) from the index/sector pulse. This can be

done in a similar fashion as outlined for the ESDI spec. (re-

fer sectionÐHandling the Post Index/Sector Gap in the

ESDI format). Read Gate is de-asserted 2 bit times after the

ID check bits field, which satisfies the requirement of 8 bit

times maximum. Write Gate is then asserted 3 bit times after

the header postamble, which implies that the header post-

amble can be a maximum of 3 bytes long in order to main-

tain the requirement of 4 bytes max. by which Write Gate

must be asserted after the header check field. There is also

a condition that Write Gate must be asserted at least 300 ns

after Read Gate is de-asserted. This is satisfied by the DDC

as seen from Figure 6.20(b) , the minimum time of de-asser-

tion being 9 bit times assuming at least a 1 byte postamble.

Write Gate is de-asserted at the end of the data postamble,

hence, the data postamble must be at least 4 bytes long.

Figure 6.26(c) gives the timing requirements for a data write

operation.

DATA READ

During a read operation (essentially a compare header-read

data operation), DDC asserts the Read Gate 3.5 bit times

after the index/sector pulse. Hence the post index/sector

gap has to be handled in a similar fashion as discussed in

the Data Write section. Read Gate is de-asserted by the

DDC 2 bit times after the ID check bit field, which is well

within the MDD requirement of 8 bits max. If the continuing

operation is Read data, then Read Gate is re-asserted by

the DDC 11.5 bit times from the data preamble, Figure
6.20(b) , which certainly satisfies the requirement of a 1 byte

minimum before re-assertion of the Read Gate. Read Gate

is de-asserted by the DDC 2 bit times after the data check

bit field. Figure 6.26(d) gives the timing requirements of the

data read operation.

SPECIAL CONSIDERATIONS FOR SMD SOFT

SECTORED DRIVES

For a soft sectored ‘‘SMD’’ drive, the recommended format

is similar to the one in ESDI. The sector starts with the ad-

dress mark field (three bytes of no flux transitions). The

AME signal is available on the bit 5 of the bus with Tag 3

active while the AMF signal is available on bit 5 of the

Status bus with both Tag 4 and Tag 5 inactive. The AME/

AMF handshake is handled in a similar fashion as discussed

in section 6.2.4.

HANDLING THE SEPARATE CLOCKS FOR READ AND

WRITE OPERATIONS IN THE SMD DATA CABLE

The SMD interface has two reference clocks, one for write

(1F WCLK/SERVO CLOCK) and one for read (1F RCLK/

READ CLOCK). The DDC requires that the Read/reference

clock be provided on the same line (RCLK) and that the

switching between the reference clock and the PLL locked

frequency clock be such that there are no glitches on the

line going to the DDC. To accomplish this the two clock

signals, 1F Read Clock/READ CLOCK and 1F Write Clock/

Servo Clock need to be multiplexed during read and write

operations to switch the appropriate clock signal going to

the DDC. It should also be made sure that there are no

glitches or short pulses in the process of switching. Since

the PLL has a certain finite time for lock, the actual switch of

the clocks occurs after a finite lock time from Read Gate

assertion. Hence the Read Gate used to mux the two clocks

must be delayed by the lock time (worst case) before it is

sent to the switching logic. This is shown as the box ‘switch-

ing logic’ in Figure 6.24 and given in detail in Figure 6.27.

Besides these other timing requirements are compatible

with those of the DDC. This circuitry has also been realized

in a PAL.

6.2.6 Miscellaneous ESDI/SMD
Considerations
As with most standards, actual devices that follow the stan-

dards have their own idiosyncracies. ESDI and SMD stan-

dards are no exception. In addition some standards define

design constraints which do not necessarily exist with actual

devices. Some of these have been discussed earlier (for

example de-assertion of Write Gate between ID and Data

fields in ESDI). The following subsections describe some

additional SMD & ESDI considerations that may be neces-

sary depending on actual drive implementation.

HANDLING THE OPTION OF DE-ASSERTION OF WRITE

GATE BETWEEN THE ID AND THE DATA FIELDS, IN

THE ESDI FORMAT SPECIFICATION

The option of de-asserting Write Gate between the ID and

the Data field is not directly supported by the DDC. The

purpose of this may be indication to the encoder, of the start

of the data preamble field in case of RLL encoding, so that

the encoder can send actual data rather than the encoded

data for the preamble pattern. To support this, external logic

can be used. This logic would be gated from the trailing

edge of the DDC’s Serial Data Valid signal, count until the 2

byte pad, (header postamble) has been sent (at the end of

the ID segment), then force Write Gate low for the desired

time, and then re-enable it. This problem can also be effec-

tively circumvented by first doing a two pass format opera-

tion. This first pass does a format operation as above, then

a second pass-write data operation is done on all of the

sectors. If the Write Gate pulse is used to initiate a drive

generated preamble, then by performing a compare header-

write data operation the correct data preamble will then be

written, and the data field can then be properly read, refer

Figure 6.18 for timing with respect to the DDC.
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TL/F/8663–B9

(a) Format

TL/F/8663–C0

(b) Format Write Timing

TL/F/8663–C1

(c) Data Write Timing

TL/F/8663–C2

(d) Data Read Timing

FIGURE 6.26. Read/Write Timing (SMD)
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A note of caution to be observed for ESDI hard sectored

drives during format operation for RLL encoding. Since the

leading edge of the write gate may be used by the encoder

to trigger the generation of the preamble, this would be a

problem as Write Gate is asserted 3.5 bit times after the

index pulse and there would be no de-assertion of Write

Gate with each sector pulse. The two pass format operation

is a good software solution. In hardware the inverted sector

pulse could be ANDed with Write Gate to generate the Write

Gate to the encoder. Generally after a format write, then

read is necessary to determine defective sectors, and initi-

ate some sector substitutions.

HANDLING THE WRITE SPLICE FIELD BETWEEN THE

ID AND DATA SEGMENTS IN THE ESDI/SMD FORMAT

The ESDI/SMD format specification recommends a two

byte header postamble and a one byte write splice. The

DDC format parameters indirectly support a write splice

field between the ID and data segments. Consider normal

operation of the DDC. The format is programmed to have a

2 byte header postamble and a data preamble one byte

longer than the desired length. This byte is taken as the

write splice, (a floating byte). During a write operation this

floating byte is considered as part of the data preamble, so

write gate is asserted 3 bit times into the data preamble i.e.,

the ‘write splice’ and data would be written on the media

after taking into effect the write propagation delay. In case

of a read operaion this byte is taken to be part of the header

postamble. Hence as Read gate is asserted after the head-

er postamble, it would never be asserted in the write splice.

Normal operation could be achieved with the DDC without

physically having a write splice field between the ID and the

Data segment, rather creating one by adjusting other field

lengths.

TL/F/8663–C3

FIGURE 6.27 (a). MUX and Deglitcher Circuitry to Switch between Read Clock and Reference Clock

Note 1: SW is low at start up, (L selects CLK 2, H selects CLK 1)

Note 2: POR e Power on reset (EN2x1, EN1x0)

Note 3: Worst case latency (SW to actual switching) e 1.5 periods of clock switching from a2 periods of clock switching.
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TL/F/8663–I4

FIGURE 6.27 (b). Timing Diagram for Switching Logic

HANDLING THE POST INDEX/SECTOR GAP FIELD IN

THE ESDI/SMD FORMAT SPECIFICATION

In the recommended format of the ESDI/SMD specification

there is a gap after the index/sector pulse, referred to as

the post index/sector gap. This is necessary mainly to ac-

commodate head transients, read-to-write transients, write-

to-read transients, etc. In the DDC, there is no format pa-

rameter to implement this field. Hence to implement this,

external logic is needed, whereby the index/sector pulse to

the DDC is delayed from the index/sector pulse from the

drive by the desired gap count using counters. This is done

for all format, read and write operations. The gap pattern for

the intersector gap is then written for this post index/sector

gap field also. Refer Figure 6.28.

READ GATE DELAY

As discussed earlier, the separation between assertion of

Read Gate and Write Gate at the beginning of the sector is

0.5 to b0.5 bit times. This may not accommodate the write

splice associated with the Write Gate due to write driver turn

on time etc., which is generally about 8 bit times from write

gate assertion. Hence with the existing timing Read Gate

may get asserted in the write splice area while reading the

header. This might be a problem during the Format opera-

tion, in the very first sector of the track, because Write Gate

is asserted after the Index pulse and remains asserted

through the track till the Index pulse is encountered again

after one revolution of the disk. Hence for the very first sec-

tor, Read Gate would have to be delayed to avoid the write

splice. It would not affect other sectors.

An important point to note here is that if a Write Header

operation is done on any sector, then the Read Gate may

have to be delayed for that sector also.

6.2.7 Intelligent Disk Interfaces
The overall objective of interfaces in this category, (like

SCSI, IPI), was to make it easier for computer systems to

talk to disk drives while ensuring minimum overhead for the

host system. The Controller would incorporate a drive level

interface on the disk side and a well defined interface to the

host bus. The controller board has a local microprocessor

which essentially controls the disk controller (data path),

disk control signals (control path) and communication with

the host system. Actually the DDC interfaces directly to the

local bus. The microprocessor essentially controls the

transfer of data using the DDC’s DMA capability, from the

local memory to the system memory, etc.Figure 6.29 shows

a block diagram of a high performance mass storage sys-

tem, incorporating a SCSI peripheral bus.
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TL/F/8663–A6

FIGURE 6.28. Logic to Implement Post Index/Sector Gap Field

TL/F/8663–C4

FIGURE 6.29. High Performance Mass Storage System
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6.3 CIRCUIT BOARD LAYOUT AND
SUPPLY ROUTING
There are several considerations to PC board design that

should be followed. These guidelines serve to minimize

problems that can occur with any high speed digital device.

Since the DDC can operate at speeds approaching 30 MHz

on the disk side, and up to 20 MHz on the system side,

typical high speed design techniques should be employed

to reduce noise, transmission line, and crosstalk effects.

These are described below.

6.3.1 General Layout Considerations
The DP8466 has two design areas of routing and loading on

its signal lines, namely: disk interface and bus interface sig-

nals. For the disk signals, Read Data, Read Clock, Write

Data, and Write Clock can be very high speed signals. It is

recommended that when interfacing these signals to the in-

terface line drivers/receivers, these lines be kept short as

possible. Also the data cable interface devices should be

located close to the data connector. It is especially impor-

tant to minimize noise, propagation delay skews and jitter

on these lines when in MFM mode because excessive

skew, noise and jitter can lead to increased error rates. A

generalized PCB chip layout is shown in Figure 6.30.

The bus signals generally should be treated the same as

any VLSI’s bus interface. The Address/Data bus provides

16 lines capable of 2 mA DC drive, and can drive variable

loads up to about 100–120 pF at 20 MHz (larger loads can

be driven although not at full speed). If more than 150 pF or

2 mA load needs to be driven, the data bus should be buff-

ered, as shown in Figure 6.31. The one ‘‘trick’’ is to always

connect the address de-multiplexing latches directly on the

DDC, this ensures maximum address latch strobe setup

time. The buffers can then drive the rest of the system. As

with any high speed bus good layout practices should be

followed to minimize crosstalk and reflections.

6.3.2 Decoupling, and VCC and Ground
Routing Guidelines
Due to the combined high speed and wide data bus of the

DDC it is important to follow good power supply layout prac-

tices. Any noise generated by toggling of outputs can cause

noise on VCC and this in turn can reflect noise back into

other inputs or outputs. The result is noise and glitches ap-

pearing on other inputs or outputs. This can be especially

true when the address/data bus is toggling many lines

simultaneously. In this case it is not unusual to have peak

current spikes up to 300 mA being generated when toggling

16 or more outputs.

VCC and ground noise problems can be easily minimized by

following some simple rules when laying out the PCB. In

general, multi-layer printed circuit layouts should include

VCC and ground planes. If a simple two-sided board, then

wide VCC and ground traces should be used, and an effort

to layout VCC and ground planes on the foil and component

sides should be made. Most importantly, the DDC should

have a decoupling capacitor placed as close to its VCC and

ground pins as possible, as shown in Figure 6.32. This ca-

pacitor should be a low series inductance type ceramic ca-

pacitor. Additionally, it may be desirable to add a 3–10 mF

tantalum capacitor in parallel with the ceramic to offer fur-

ther decoupling.

TL/F/8663–I8

FIGURE 6.30. Conceptual Component Placement to Ensure Short PCB Traces between Connector and DDC
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TL/F/8663–I5

FIGURE 6.31. Proper Buffering of DDC’s Address/Data Bus by Latching Address In

TL/F/8663–I6
C1e0.1 mF Ceramic

(a) Dual-In-Line Package

TL/F/8663–I7
C1e0.1 mF Ceramic

(b) Plastic Chip Carrier

FIGURE 6.32. Typical PC Board Layout for Decoupling the Power Supply

(X-Ray View of Foil Side from Component Side)
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Chapter 7 DDC Functional Operations

7.0 INTRODUCTION
In this chapter, all the main DDC functional operations such

as Disk Formatting, DMA Data transfers, Error detection

and Correction, and basic Disk Read/Write are discussed in

detail from software point of view. Also, the power-up, chip

initialization procedure, and interrupt servicing is described.

7.1 OPERATING MODES OF THE DDC
The DDC can be thought of as operating in one of the four

modes; Reset, Command Accept, Command Perform or Er-

ror. Figure 7.1 shows a flow chart for these modes.

TL/F/8663–C5

FIGURE 7.1. DDC Operating Modes

RESET MODE:

DDC is put in the reset mode after power-up or prior to

starting a new operation if the previous operation was abort-

ed. After the DDC has been reset and the DDC has been re-

enabled, it moves to the Command Accept mode.

COMMAND ACCEPT MODE:

The DDC is free and ready to receive a command. Various

command and pattern registers and counters may be load-

ed to perform a disk operation, such as format, read or write

etc.

COMMAND PERFORM MODE:

In this mode, the DDC executes the disk command that was

loaded into it in the Command Accept mode. It carries out

DMA operations. On a successful or unsuccessful comple-

tion of the operation, the DDC will generate an interrupt (if

the interrupts were enabled, EI bit in OC register), and en-

ters the Result/Error mode.

Note: If interrupts were not enabled, then the Status register should be

polled in order to find out the result.

RESULT/ERROR MODE:

In this mode, the Status and Error registers should be read

to find out the result of the operation or the type of error that

occurred. If the operation was completed successfully, the

DDC will go back to Command Accept mode. If an error

occurred during the execution of the command, the DDC will

abort the operation and the Error register will indicate the

type of error that occurred. To perform the operation again

or to correct the error, the DDC must be reset and loaded

for a particular operation, hence it goes back to the reset

mode.

7.2 INITIALIZATION
After the DDC is hooked up in the system, it can be powered

up and initialized to perform the desired disk operation. The

chip power-up reset, operation initialization, and register

programming are discussed in the following paragraphs. A

flow chart shown in Figure 7.2 describes a basic algorithm

for a power-up, reset and initialization procedure.

7.2.1 Power-up and Reset
After the chip power-up, the DDC must be held reset for a

duration of at least 4 BCLK and 32 RCLK periods (with

these clocks active) before it could be assigned a disk for-

mat or it could be set for any disk operation. The DDC can

be reset by asserting the RESET pin low or by setting the

internal RES bit in the OC register high. After the DDC has

been reset (for the time indicated above), The external RE-

SET pin must be deasserted and internal RES bit in OC

register must be cleared. When the system is powered, the

DDC should be reset immediately, even if it will not be used

right away. This is because its internal sequencers may be

randomly powered on into a state that could draw some

excessive ICC currents.

7.2.2 Disk Operation Initialization
After a reset, the DDC must be re-enabled by setting RED

bit high in the Drive Command (DC) register before other

registers are loaded for a particular operation. Once the

DDC is reenabled, it is ready to perform a disk operation

such as read, write, or format. Various parameter and com-

mand registers and counters can then be loaded depending

on the type of operation. In most of the operations, the Drive

Command (DC) register is loaded the last except when the

DDC is configured in a Non-Tracking DMA mode.

7.2.3 Register Programming
In order to perform an operation, related registers can be

loaded in any order keeping the following restrictions in

mind.

# The Drive Command (DC) register must be the last regis-

ter to be loaded for any DDC operation. There is one

exception to this. In non-tracking DMA mode, a remote

DMA operation may be initiated by loading the operation

command (OC) register after a disk command has been

started.

# If the on-chip DMA is being used, or if the Remote Data

Byte Count registers will be read back, the Local and

Remote Transfer registers must be loaded before the

Sector Byte Count and Remote Data Byte Count regis-

ters are loaded.

# The Number of Sector Operations (NSO) counter must

be loaded after an external RESET or internal RESET (in

OC register) are both inactive. Other registers can be

loaded while reset is active.
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# During the execution of an operation (format, read or

write), the pattern and count registers must not be read.

Reading these registers will interfere with the DDC’s op-

eration, and could cause some bizarre results. These

registers may be written to at anytime. When data is writ-

ten it takes effect immediately. Thus the only caution is

to not change a pattern or count register randomly as the

system may not know whether the change will apply to

the current sector or the next. The Interlock mode with

the Header Complete interrupt should be used to syn-

chronize register updates.

7.3 DISK FORMATTING
The DDC can be programmed to format a disk with any type

of sector format. A versatile and flexible sector format with

various formatting techniques are incorporated in the DDC.

Various formatting features, methods and the DDC sector

format options are discussed below.

7.3.1 Key Features
MFM/NRZ Data:

The DDC can be programmed to output MFM or NRZ data

while writing to the disk (bit MFM in the Disk Format regis-

ter). In case of MFM data, some external circuitry will be

required, as indicated in section 6.2.

Hard/Soft Sectored Drives:

The DDC can be interfaced to both hard and soft sectored

drives. This is done through HSS bit in Disk Format register.

See section 6.2 and 7.3.3 for implementation of various

hard and soft sector formats with the DDC.

7.3.2 Sector Format Options
The DDC offers a versatile sector format which can accom-

modate most of the currently used disk formats. The DDC

sector format options are shown in Figure 7.3 and the asso-

ciated registers to program various format fields are shown

in Figure 7.4 . Various ID and Data fields are described be-

low. Discussion on implementation of the popular disk for-

mats using the DDC is given in the next section.

ID And Data Preamble:

There are two fields provided for ID and Data Preambles,

which are required in hard and soft sector formats. The ID

Preamble field can also be used as an Address Mark (field

of no transitions) in case of formats with sector mark (ESDI

or SMD type formats). Up to 31 bytes each for ID and Data

preambles are allowed. These fields can be programmed

using ID and Data Preamble Pattern and Byte Count regis-

ters (addresses 31H and 21H for ID, and addresses 3DH

and 2DH for the Data).

Note: As shown various methods

are possible for power up and

it is up to the user as to which

is more suitable.

TL/F/8663–C6

FIGURE 7.2. Power-up and Initialization Algorithm
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ID And Data Synch Ý1:

This field will normally be used for writing an ID and Data

Address Mark in case of soft sector drives. For hard sector

drives this field may either be skipped or be used to extend

the ID Preamble or ID Synch Ý2 fields. Up to 31 bytes can

be written in this field for both ID and Data using ID Synch
Ý1 Pattern and Byte Count registers, addresses 32H and

22H for ID, and addresses 3EH and 2EH for data.

ID And Data Synch Ý2:

The ID and Data Synch Ý2 fields, used by the DDC for byte

alignment, can also have up to 31 bytes each for ID and

Data. These fields can be programmed using ID and Data

Synch Ý2 Pattern and Byte Count registers (addresses 33H

and 23H for ID and addresses 3FH and 2FH for data).

HEADER BYTES: Header bytes are used to specify the

header information of a particular sector such as sector

number, cylinder number, track number etc. At least 2 and

maximum 6 bytes can be written using 6 Header Byte Pat-

tern and associated control registers (addresses 14H, 15H,

16H, 17H, 18H, 19H and 24H, 25H, 26H, 27H, 28H, 29H

respectively). See description of Header Byte Control regis-

ter in Chapter 5.

ID and Data CRC/ECC:

The DDC can be programmed for a 2 bytes of internal CRC

or up to 6 bytes of internal ECC appendage using the Disk

Format register, for both ID and Data fields. The CRC ap-

pendage is internal to the DDC and no pattern or count

ID FIELD

ID PREAMBLE ID SYNCH Ý1 (AM) ID SYNCH Ý2 HEADER BYTES ID CRC/ECC ID EXT ECC ID POSTAMBLE

0–31 Bytes 0–31 Bytes 0–31 Bytes 2–6 Bytes 0, 2, 4 or 6 Bytes 0–31 Bytes 0–31 Bytes

DATA FIELD

DATA DATA DATA DATA DATA DATA DATA GAP 3

PREAMBLE SYNCH Ý1 (AM) SYNCH Ý2 FORMAT PATTERN CRC/ECC EXT ECC POSTAMBLE

0–31 Bytes 0–31 Bytes 0–31 Bytes 1–64K Bytes 0, 2, 4 or 6 Bytes 0–31 Bytes 0–31 Bytes 0–255 Bytes

FIGURE 7.3. Sector Format Options

Hex Pattern Control Hex

Pattern Register Addr Source Function Addr Control Register

ID Preamble 31 Internal Repeat 0-31 Bytes 21 ID Preamble Byte Count

ID Synch Ý1 (AM) 32 22 ID Synch Ý1 (AM) Byte Count

ID Synch Ý2 33 23 ID Synch Ý2 Byte Count

Header Byte 0 14 Define/Control 24 Header Byte 0 Control

Header Byte 1 15 25 Header Byte 1 Control

Header Byte 2 16 26 Header Byte 2 Control

Header Byte 3 17 27 Header Byte 3 Control

Header Byte 4 18 28 Header Byte 4 Control

Header Byte 5 19 29 Header Byte 5 Control

ID CRC/ECC * * 16-BIT CRC/
32-BIT
48-BIT

ECC 35 Disk Format (DF)
PPB0-5
PTB0-5

ID External ECC * External 0-31 Bytes 2B ID External ECC Counter

ID Postamble 3C Internal Repeat 0-31 Bytes 2C ID Postamble Byte Count

Data Preamble 3D 2D Data Preamble Byte Count

Data Synch Ý1 (AM) 3E 2E Data Synch Ý1 (AM) Byte Count

Data Synch Ý2 3F 2F Data Synch Ý2 Byte Count

Data Format 3B Field Size 38 Sector Byte Count 0

1-6k Bytes 39 Sector Byte Count 1

Data CRC/ECC * * 16-BIT/
32-BIT
48-BIT

ECC 35 Disk Format

Data External ECC * External 0-31 Bytes 2A Data External ECC Counter

Data Postamble 30 Internal Repeat 0-31 Bytes 20 Data Postamble Byte Count

Gap 3A Repeat 0-255 Bytes 34 Gap Byte Count

*These are not pattern registers.

**CRC polynomial is built into the DDC and does not require any registers. ECC requires PPB0-5 and PTB0-5 registers.

FIGURE 7.4. Pattern Registers/Counters for Sector Format Fields
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register is used besides the disk format register. In case of

an ECC appendage, the Polynomial Preset and Tap Byte

(0–5) registers (addresses 2H–DH) must be used. Also in

case of ID CRC/ECC appendage, if an internal CRC/ECC

appendage is not to be used then an external ECC must be

used. An external ECC is not necessary if an internal CRC/

ECC was not used for a Data CRC/ECC appendage.

ID and Data External ECC:

An external ECC may be appended to encapsulate and in-

ternal CRC or ECC, for diagnostic purposes, using an exter-

nal ECC circuitry. Up to 31 bytes can be appended using ID

and Data Ext. Byte Count registers (addresses 2BH and

2AH).

ID and Data Postamble:

Up to 31 bytes can be used for ID and Data postamble using

ID and Data Postamble Pattern and Byte Count registers,

addresses 3CH and 2CH (for ID) and addresses 30H and

20H (for data).

Data Format Pattern:

Data format is programmed by the Data Pattern register (ad-

dress 3B) and then can be repeated up to 64K times

through the Sector Byte Count registers (addresses 38H

and 39H). The number of times data format is repeated de-

pends on the sector size.

Gap 3:

Up to 255 bytes can be written using Gap Pattern and Byte

Count registers (address 3AH and 34H). In soft sectored

drive operation, the Gap 3 bytes are written for each sector

(determined by Gap 3 Byte Count register) except the last

sector. For the last sector, gap bytes will be written until an

Index pulse is received. In case of hard sectored drives, the

Gap 3 Byte Count register is only used while formatting the

disk. In normal disk write operation, the DDC writes gap

bytes until a Sector pulse is received, ignoring the contents

of the Gap byte count register.

Considerations for Pattern and Count Register

Programming for Format Operations

# If any Byte Count register is loaded with zero, that field

will be excluded and no pattern for the corresponding

Pattern register needs to be loaded. Similarly if any of six

Header Byte Control registers is set with all bits equal to

zero, no pattern for that byte needs to be loaded.

# Maximum two consecutive fields can be excluded from a

sector format. This includes the six header bytes which

may be thought of as six fields.

# Format operations always start with an index pulse and

end with the next index pulse, thus making one track.

The DDC can only be programmed to format one track at

a time.

7.3.3 Implementing Some Popular Sector
Formats
There are three general sector formats which are commonly

used in various disk systems; soft sector format (Floppy,

ST506 type formats), hard sector format (hard or fixed for-

mats used in ESDI/SMD type drives), and format with sec-

tor mark (soft or variable formats used in ESDI/SMD type

drives). These three types are shown in Figure 7.5 and their

implementation using the DDC is discussed below.

SOFT SECTOR (FLOPPY/ST506 TYPE) FORMATS

The field shown inFigure 7.5 (a) is the most commonly used

sector format used in soft sectored drives such as Floppy

and ST506/412/419 type winchester drives. A double den-

sity floppy format recommended by the IBM and a Sea-

gate’s ST506/412/419 type format are shown in Figure 7.6
as examples. It can be seen from Figure 7.5 that the fields

used in these formats are in direct correspondance with the

ones supported by the DDC except the Post Index Gap in

floppy format or Gap 1 in ST506 format. The Post Index Gap

field is not supported by the DDC and may be eliminated as

part of the disk format. If it must be generated external hard-

ware may be added as discussed in section 6.2. The imple-

mentation of rest of the format is very straightforward and

can be achieved using the registers shown in Figure 7.4 .

Implementation of the ST506/412/419 type format is

shown in Figure 7.7 and Table 7.1.

TABLE 7.1. Implementation of ST506 Formats

ST506 DDC

Byte
Pattern Byte Count

Field Pattern
Count

Field Register Register

Address Address

Gap 1 4E 16 * * *
SYNC 00 13 ID Preamble 31H 21H

ID AM A1, FE 2 ID Synch Ý1 32H 22H

CYL Ý 2 Header Byte 14H–5H 24H–5H

HD Ý 1 Header Byte 7H 7H

SEC Ý 1 Header Byte 19H 29H

CRC * 2 ID CRC/ECC ** **
Gap 2 00 3 ID Postamble 3CH 2CH

Gap 2 00 13 Data Preamble 3DH 2DH

Data AM A1, F8 2 Data Synch Ý1 3EH 2EH

Data Ð Ð 256 Data Format 3BH 38H, 39H

CRC **** 2 Data CRC/ECC **** ****
Gap 3 00 3 Data Postamble 30H 20H

Gap 3 4E 15 Gap 3AH 34H

Gap 4 4E 352 Gap ** 3AH 34H

*Gap 1, Post Index Gap, is not supported by the DDC. See section 6.2 and the hard sector format section in this chapter.

**The CRC is internal to the DDC and Disk Format register is used to select it.

***The DDC only allows 256 bytes for the Gap field. During a format the gap for the last sector of the track will be written

until the pulse is received.
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TABLE 7.2. Implementation of ESDI Hard Sector Format

ESDI FORMAT DDC REGISTERS

Pattern
Byte Pattern Count

Field Count Field Register Register

(See Note²) Address Address

Inter-Sector Gap 00 ³ * * *

Address PLO Sync 00 ³ ID Preamble 31H 21H

(No Field) 0 ID Sync Ý1 32H 22H

Byte Sync Pattern Ð t 1 ID Sync Ý2 33H 23H

Cylinder xxxx 2 Header Ý1/2 14/15H 24/25H

Head xx 1 Header Ý3 16H 26H

Sector xx 1 Header Ý4 17H 27H

Flag/Status xx 1 Header Ý5 18H 28H

(No Field) 0 Header Ý6 19H 29H

Address Check Bytes ** ** ID CRC/ECC ** **

Address Pad 00 Ð ID Postamble 3CH 2CH

Write Splice 00 1 *** *** ***

Data PLO Sync 00 Ð Data Preamble 3DH 2DH

(No Field) 0 Data Sync Ý1 3EH 2FH

Byte Sync Pattern Ð t 1 Data Sync Ý2 3FH 2FH

Data xx Ð Data Pattern@ 3BH 38/39H

Data Check Bytes ** ** Data CRC/ECC ** **

Data Pad 00 t 2 Data Postamble 30H 20H

Format Tol. 00 Ð Gap 3AH 34H

Inter Sector Gap 00 ³ Gap * *

²Where dashed entries appear in these columns the ESDI standard does not specifically define these fields but leaves this

up to the user.

³Defined by the ESDI specification using a specific formula.

*The standard Inter Sector Gap field is not supported by the DDC. See Hard sector section in this chapter, and section

6.2 for details in generating this field. Chapter 6’s hardware actually uses the DDC’s gap field to generate the ISG field for

the next sector.

**The 16 bit CRC, 32 bit or 48 bit ECC is programmed internally see section 7.6 for details.

***The write splice field is not supported by the DDC. It should be included as part of the Data preamble field for format and

write operations, and part of the ID postamble for read operations.

@Used only to format the data field.

TL/F/8663–C7

(a) Soft Sector Format

TL/F/8663–C8

(b) Hard Sector Format

TL/F/8663–C9

(c) Format with Sector Mark

FIGURE 7.5. Generalized Common Sector Formats
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TL/F/8663–D0
(a) Double Density Floppy Format

TL/F/8663–D1
(b) ST506/412/419-type Sector Format Recommended by Seagate

FIGURE 7.6. Soft Sector Formats

HARD SECTOR FORMATS (Setting up Pattern and

Count registers for Read/Write and Formatting)

The second sector format shown inFigure 7.5 is the general

hard sector format. In this format the beginning of each sec-

tor is marked by a sector pulse. This format is typically used

in ESDI and SMD type drives. The format for these types of

drives is fairly straight forward, and Table 7.3 shows the

DDC registers, patterns and count lengths to perform and

ESDI format. Table 7.4 shows Control Data Corp. recom-

mended format for an SMD specification.

In both formats the Inter Sector Gap of ESDI and the Head

Scatter Gap, commonly referred to as the Post Index or

Post Sector Gap in SMD are not directly supported by the

DDC. Additional counters and logic as shown in Section 6.2

previously are needed if these are to be supported. This

solution would be appropriate for ESDI or SMD hard sec-

tored drives. The philosophy behind it being that the index/

sector pulse from the drive is presented to the DDC delayed

by the external logic by the length of the post index/sector

gap.

Another field in both SMD and ESDI that is not directly sup-

ported is the write splice field. This field is intended for turn-

ing off and on the read/write head without interfering with

the data preamble. This field is easily generated by including

it in the data preamble for formatting. Then during read op-

erations including it in the ID postamble, and for write opera-

tions including it in the Data preamble.

For ESDI drives during the format operation the standard

calls out for optionally deasserting Write Gate for two bit

times during the write splice. This option is useful if the drive

is performing some data encoding (such as 2–7). Pulsing

Write Gate for two bit times informs the encoder/decoder

on the drive to start the data preamble field. The DDC does

not directly support this deassertion of Write Gate, but

can format the drive easily anyway, by performing a two

pass format operation. For the first pass the DDC will be set

up to format the whole track, however only the ID fields will

actually be formatted due to the encoder. The second pass

should be a multi-sector write data operation, which will for-

mat the data fields.

FORMATS WITH SECTOR MARKS (Setting up Pattern

and Count registers for Read/Write and Formatting)

The third method of formatting a disk is with sector marks. A

simplified typical format is shown in Figure 7.5(c) . This for-

mat is most common with soft sectored ESDI, and a few

SMD drives. Basically this format uses a field of no flux

transitions and some special drive hardware to enable the

drive to generate a sector pulse-like signal called Address

Mark. The Address Mark signal thus signifies the start of a

new sector.

To implement this using the DDC, requires some manipula-

tion of the format parameter RAM in conjunction with the

use of the ESDI control PAL hardware described in section

6.2. Other external hardware designs may require altering

the format parameters, however, much of the discussion is

still applicable. While formatting, the ID preamble field of the

DDC is set with the pattern of the Post index gap. The count

length of this field is set to the length of the gap plus length

of address mark (usually 3 bytes). The ID synch Ý1 field

contains the pattern of the preamble while its length is in-

creased by one to accommodate the Address Mark pad

field. This ID Sync Ý2 contains the byte synch pattern.

The SAM bit in the Disk Format register is set. Hence when

formatting is initiated, the DDC generates AME and the start

of its preamble. This is taken by the PAL and external hard-

ware, and delayed by the length of the gap (which is being

written), to when the address mark (3 bytes of no tran-

sitions) is written. This is then followed normally by the pre-

amble and synch fields.
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TABLE 7.3. Implementation of SMD Hard Sector Format

SMD FORMAT DDC REGISTERS

Byte
Pattern Count

Field Pattern
Count

Field Register Register

Address Address

Head Scatter Bytes 00 16 * * *

Address PLO Sync 00 11 ID Preamble 31H 21H

(No Field) 0 ID Sync Ý1 32H 22H

Byte Sync Pattern Ð 1 ID Sync Ý2 33H 23H

Flag/Status Ð 1 Header Ý5 14H 24H

Cylinder Ð 2 Header Ý2/3 15/16H 25/26H

Head Ð 1 Header Ý3 17H 27H

Sector Ð 1 Header Ý4 18H 28H

(No Field) 0 Header Ý6 19H 29H

Address Check Bytes CRC/ECC 2–6 ID CRC/ECC ** **

(No Field) 0 ID Postamble 3CH 2CH

Write Splice 00 1 *** *** ***

Data PLO Sync 00 11 Data Preamble 3DH 2DH

(No Field) 0 Data Sync Ý1 3EH 2FH

Byte Sync Pattern Ð 1 Data Sync Ý2 3FH 2FH

Data xx Ð Data Pattern@ 3BH 38/39H

Data Check Bytes CRC/ECC 2–6 Data CRC/ECC ** **

EOR Pad Ð 1 Data Postamble 30H 20H

End of Sector Ð 10 Gap 3AH 34H

²Where dashed entries appear in these columns the SMD standard does not specifically define these fields but leaves this

up to the user.

³The Data Pattern is used during format operations only.

*The standard Inter Sector Gap (Head Scatter Bytes) field is not supported by the DDC. See Hard sector section in this

chapter, and section 6.2 for details in generating this field. The hardware in chapter 6 uses the DDC’s gap filed to generate

the Head Scatter Bytes for the next sector.

**The 16 bit CRC, 32 bit or 48 bit ECC is programmed internally see section 7.6 for details.

***The write splice field is not supported by the DDC. It should be included as part of the Data Preamble field for format and

write operations, and part of the ID postamble for read operations.
@Used only to format the data field.

When reading from the disk the DDC looks on the drive like

a hard sectored one. The Address Mark is detected, and the

drive asserts AMF which is decoded by the PAL into a sec-

tor pulse for the DDC. Hence the DDC format parameter

RAM should be changed to the ID preamble field containing

the pattern of the actual preamble and count length. The ID

synch Ý1 field count is set to zero so that this field is

skipped and the ID synch Ý2 contains the byte synch. (The

read gate is delayed by 8 bits to accommodate the 1 byte

write splice field). This ensures a successful read operation.

With the DDC working in this mode it would see an index

and a sector pulse from the sector 0 AMF separated by the

Post Index Gap length. The DDC takes the index to be the

sector 0 pulse also. The ESDI control PAL of chapter 6

takes care of delaying the index pulse over the sector 0

AMF pulse and suppresses the sector pulse to the DDC

from the sector 0 AMF.

If a Write Header operation is desired at any time then it

would be possible to do so only if a regular format operation

had been done earlier. The AMF from the drive generates a

sector pulse to the DDC to start writing the header. Also the

Read Gate assertion is delayed externally by a byte to ac-

commodate the Write Splice associated with Write Gate as-

sertion. The ESDI field names byte values and lengths

along with the DDC’s equivalent registers are shown in Ta-

ble 7.5.

The DDC does not directly support the ESDI write splice

field as before, however, this is easily remedied by including

this byte as part of the postamble during formats and write

operations as part of the data preamble during read opera-

tions. This ensures that reading of the write splice is avoided

which is the purpose of this field.

As in the hard sector format, ESDI has an optional deasser-

tion of the Write Gate in between the ID and Data fields. The

DDC does not support this option, but by performing a two

pass format as described above a complete format can be

accomplished.

MODIFICATIONS TO SECTOR FORMATS

While the previously discussed ‘‘standard’’ formats are a

useful starting point, they are generally not strictly adhered

to when actually formatting a disk. This is due usually to the

users desire to optimize the drive for various parameters.

These include optimizing data integrity, data separator per-
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TABLE 7.4. Implementation of ESDI Sector Mark Format

ESDI FORMAT DDC REGISTERS

Pattern
Byte Pattern Count

Field Count Field Register Register

(See Note²)
Address Address

Inter-Sector Gap 00 ³ * * *

Pad 00 1 ID Preamble 31H 21H

Address PLO Sync 00 Ð

Address Mark ²²² 3 ID Sync Ý1 32H 22H

Byte Sync Pattern Ð t 1 ID Sync Ý2 33H 23H

Cylinder xxxx 2 Header Ý1/2 14/15H 24/25H

Head xx 1 Header Ý3 16H 26H

Sector xx 1 Header Ý4 17H 27H

Flag/Status xx 1 Header Ý5 18H 28H

(No Field) 0 Header Ý6 19H 29H

Address Check Bytes ** ** ID CRC/ECC ** **

Address Pad 00 t 2 ID Postamble 3CH 2CH

Write Splice 00 1 *** *** ***

Data PLO Sync 00 Ð Data Preamble 3DH 2DH

(No Field) 0 Data Sync Ý1 3EH 2FH

Byte Sync Pattern Ð t 1 Data Sync Ý2 3FH 2FH

Data xx Ð Data Pattern@ 3BH 38/39H

Data Check Bytes ** ** Data CRC/ECC ** **

Format Tol. 00 ³ Gap * *

ISG 00 ³ Gap * *

²Where dashed entries appear in these columns the ESDI standard does not specifically define these fields but leaves this

up to the user.

³Defined by the ESDI specification using a specific formula.

²²²For the Address mark the pattern does not matter, as an area of no flux transitions is recorded.

@The Data Pattern register is used only for format operations.

*The standard Inter Sector Gap field is not supported by the DDC. See ESDI control PAL hardware solution in chapter 6.2

for details in generating this field.

**The 16 bit CRC, 32 bit or 48 bit ECC is programmed internally see section 7.6 for details.

***The write splice field is not supported by the DDC. It should be included as part of the data preamble field for format and

write operations, and part of the ID postamble for read operations.

formance, access speed, sector defect sparing algorithms,

and total storage capacity. Some of these considerations

are discussed below.

Error Detection/Correction And Data Field Length

Generally, ST506 type drive recommended formats utilize a

16 bit CRC, however, this generally does not offer the type

of data integrity that is needed in the data field. Thus gener-

ally ST506 type drives should utilize a 32 ECC for data. The

ID field usually can be a CRC check field since the header is

so short, and since recovery of the header address can be

achieved by reading the previous sector header.

In general the type of ECC field to choose for the data field

depends on the length of the data field, the defects on the

disk media itself and the tolerance the designer places on

his system for detecting errors, and the probability limits for

miscorrection.

The choice for the length of the data field is determined in

part by the type of ECC chosen (or vice versa), but also by

system performance criteria. For a given media, a longer

data field, and fewer sectors per track can maximize total

storage capacity, but it requires better ECC. In many cases

where the disk is to store many small files that leave many

partially filled sectors, a larger sector size will waste disk

space. However, if a few very large files are stored when

large data field maximize storage. Thus usually a good

tradeoff is to have sector sizes between 256 to 1024 bytes.

ID And Data Preamble

These field lengths are used to lock the data separator to

incoming data during a read operation. The lengths of these

fields determine the lock time requirements of the data sep-

arator. For individual ESDI and SMD drives, where the data

separator is on the drive, the preamble should follow the

manufacturers recommendations. For ST506 drives, and

drives with imbedded controllers, the data separator is part

of the controller and the preamble length should be set

based on the separators performance goals.
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TL/F/8663–D5

(a) An EDSI Hard Sector Format Recommended by Maxtor

TL/F/8663–D6

(b) An SMD Hard Sector Format Recommended by CDC

FIGURE 7.7 Hard Sector Formats

TL/F/8663–E0

(a) An ESDI Soft Sector Format Recommended by the Maxtor

TL/F/8663–E1

(b) An SMD Soft Sector Format Recommended by the CDC

FIGURE 7.8. Formats with Sector Mark
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7.3.4 Formatting Methods
The disk formatting can be carried out using one of the

three methods supported by the DDC; Internal Sequential,

FIFO Table and Interlock Mode. These three disk formatting

methods are explained in the following paragraphs and also

summarized in a flow chart in Figure 7.9.

1. INTERNAL SEQUENTIAL METHOD

This method of disk formatting is adopted when sectors are

to be physically contiguous. The DDC can be set for a multi-

sector operation to format a whole track of sequential sec-

tors. The steps required to perform the Internal Sequential

method are explained in the following paragraphs. See Fig-
ure 7.9 .

The DDC in Command Accept Mode

Step 1. All the Pattern and Byte Count registers for various

sector format fields are loaded. All the Header byte’s Pat-

tern and Control registers (such as the one for cylinder num-

ber, head number etc.) are loaded except the one contain-

ing sector number information. The Pattern register for this

header byte need not be loaded with anything, but the Con-

trol register should be loaded with 3H (i.e. SSC e 1 and

HB e 1). With SSC e 1, the sector number for each sector

will be loaded into this Header Byte Pattern register, auto-

matically, from the Sector Counter.

Step 2. The Sector Counter is loaded with the first sector to

be formatted. The contents of Sector Counter are loaded

into the Header Byte Pattern register reserved for sector

number, written to the disk, and then incremented for the

next sector. The Number of Sector Operation (NSO) Coun-

ter is loaded with the number of sectors per track.

Step 3. The Disk Format register is loaded with FTF e 0,

desired internal CRC/ECC appendage and other informa-

tion (such as Hard/soft sector, NRZ/MFM data, etc.). The

ECC/CRC control register (address 0EH) should also be

loaded for desired options, such as inverting the serial data.

The ECC polynomial and tap registers should be pro-

grammed if ECC is chosen.

Step 4. The Operation Command register is loaded to en-

able interrupts. Finally the Drive Command register is load-

ed with the Format Track command (i.e. ACH). Refer to Ta-

ble 5.6 for various DDC commands.

The DDC in Command Perform Mode

Step 5. The DDC will start the operation when it receives an

index pulse indicating the start of a track and will end the

operation when it encounters another index pulse.

The DDC in Result/Error Mode

Step 6. An interrupt will be generated after a successful or

unsuccessful execution of Format Track command, if the

interrupts were enabled. The Status and (or) Error registers

will indicate the result or the type of error occurred. In case

of successful completion of formatting, the DDC could be

initialized to format the next track and steps 1 thru 5 will be

repeated. If an error has occurred, the interrupt should be

serviced properly and the DDC should be reset. Refer to

section 7.7 for interrupt servicing, and section 7.2.2 for re-

setting.

2. FIFO TABLE METHOD

This method is ideal if sector interleaving is required. The

sectors may be written to the disk in any order using this

method which offers the minimum amount of microproces-

sor involvement during the format operation. In this method

the header bytes are written on the disk from the memory

(via FIFO) instead of the Header Byte registers. This essen-

tially eliminates the need of the microprocessor to update

header bytes for each sector as could be done in the inter-

lock mode. All other format pattern and count registers are

loaded once by the microprocessor remain valid for the en-

tire operation. The header bytes for each sector (with or

without interleaving) are set up contiguously in sets as a

table in the memory and then read by the DDC, one set for

each sector, from the memory using the local DMA channel.

The steps required to perform the FIFO table method are

explained below. Also see Figure 7.9 .

Step 1. Sets of header bytes (one for each sector) for the

entire track are stored contiguously in a memory area ac-

cessible to the local DMA. Each header byte set must con-

tain an even number of bytes and start on an even byte

boundary. If the header byte set contains an odd number of

bytes, an extra dummy byte must be inserted at the end of

each set so that each header byte set will start on an even

byte boundry, for DMA considerations.

The DDC in Command Accept Mode

Step 2. Address of the first byte of the first header byte set

is loaded in the DMA Address Byte (0, 1) registers.

Step 3. Sector Counter (SC), Number of Sector Operations

(NSO) counter and Header Byte Count registers are loaded

with initial sector number, number of sectors to be operated

on, and number of header bytes (2–6 bytes), respectively.

Step 4. All other Format patterns and count registers (such

as Preamble, Postamble, ECC/CRC etc.) according to the

selected sector format are loaded with appropriate informa-

tion. See Figure 7.4 .

Step 5. The Desk Format (DF) register is loaded with the

FTF bit set. The DF register is also loaded with MFM/NRZ,

hard sector/soft sector, and ID, Data CRC/ECC appendage

etc.

Step 6. The Operation Command (OC) register is loaded to

enable interrupts. Finally, the Drive Command register is

loaded with Format track command (ACH). See Table 5.6

for the DDC commands.

The DDC in Command Perform Mode

Step 7. The DDC starts the operation when it receives the

index pulse and ends it on the occurrence of next index

pulse. As the header bytes are needed they are DMA’d from

memory. After a successful or unsuccessful completion of

the operation, the DDC will generate an interrupt.

The DDC in Result/Error Mode

Step 8. The Status and (or) Error registers are read to find

out the cause of interrupt. In case of a successful comple-

tion of the operation, steps 1 thru 7 may be repeated or the

DDC may be initialized for another disk operation. In case of

an error interrupt, the interrupt is serviced properly. See sec-

tion 7.2.2 and 7.7.

3. INTERLOCK METHOD

This method is the most versatile of the three disk format-

ting methods. But it requires fast microprocessor involve-

ment. This method may be used to format a whole track of

interleaved sectors or a single sector. Using this method to

reformat a single sector is ideal. Formatting single sectors is

useful for remapping bad sectors. This method can also be

used for creating tracks with varying sector field lengths.
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TL/F/8663–E6

FIGURE 7.9. Track Formatting Methods
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The Interlock type disk formatting uses the interlock mode

and header complete interrupt to enable the microprocessor

to directly update any format parameter bytes. In a write

header-write data operation, after the header bytes are writ-

ten to the disk, the DDC issues the header complete inter-

rupt. With interlock mode set and header complete interrupt

issued, the controlling microprocessor has the time (until

the preamble field of the next sector) to read status, load

the next sector’s header bytes, and write the interlock

(HBC) register. Writing to the interlock (HBC) register con-

firms that microprocessor has updated all the required pa-

rameters. This must be done following each header match

complete interrupt for every sector, including the last sector

of the operation. If this is not done, the DDC assumes that

the microprocessor did not properly update the parameter

registers in time for the next sector and therefore generates

an interrupt indicating the Late Interlock error when a subse-

quent command is loaded in the DC register. A ‘step by

step’ procedure of the Interlock type formatting is explained

below. Also see Figure 7.9 .

DDC in Command Accept Mode

Step 1. All the format registers (shown in Figure 7.4) are

loaded with respective pattern and count values. The head-

er byte control register for the sector number is loaded with

SSC e 1. This is done only for the first sector. Later on,

depending upon the interleave factor, the header byte re-

served byte for sector number may be loaded with a new

value and the associated control register with SSCe0.

Step 2. The Sector Counter is loaded with the sector num-

ber to start with and NSO (number or sector operations)

Counter with number of sectors to be formatted.

Step 3. In Disk Format register, FTF is set to zero and other

relevent bits such as HSS, MFM, IH’s and ID’s are also set

or reset.

Step 4. The DDC is set to be in Interlock Mode by setting

IR e 1 in the Operation Command register. Also header

complete and other interrupts are enabled by setting EHI e

1 and EI e 1 in the same register.

Step 5. Finally, the Drive Command register is loaded with

the Format Track command, ACH. See Table 5.6 for various

DDC commands.

DDC in Command Perform Mode

Step 6. The format operation starts when the DDC receives

an index pulse. An interrupt is expected at the completion of

the Write Header operation. When this interrupt is received

it is tested for Command Complete Error or Header Com-

plete Status Bits set. If it’s a Header Complete, then param-

eter, count and control registers are updated. The Interlock

register is written to. This is repeated until the Command

Complete or Error Interrupt occurs.

DDC in Result/Error Mode

Step 7. On the occurrence of an interrupt, the Status regis-

ter is read. If the interrupt was an operation complete inter-

rupt then steps 1 through 5 are repeated for the rest of the

sectors to be formatted without changing the contents of

the NSO counter. In case of an error, the interrupt is serv-

iced properly. See section 7.7 on interrupts.

7.4 READ AND WRITE OPERATIONS
Once the disk has been formatted, various disk read and

write operations can be performed. These commands are

listed in Table 7.5 and are discussed briefly in section 5.2.7.

Generally, the read operation is taken as reading data from

the disk and can therefore be performed by executing the

Read Sector (single or multi-sector) and Read Track com-

mands. Similarly, write operation is considered as writing

data to the disk and hence could be achieved by executing

the Write Sector (single or multi-sector) and Write Track

commands. Other read and write commands imply reading

or writing ID with or without data from (to) the disk. The DDC

programming procedure for all the read and write com-

mands basically is the same.

A general register programming procedure to perform read

and write operations is given below.

Figure 7.10 shows a generalized flow chart for performing a

read operation. To generalize both multi-sector and single

sector operations, the continue block would go to the next

sector operation if multi-sector, and would go to other mP

tasks if single sector. Refer also to Table 7.5 which shows

the command codes for the various operations.

Command Name Op Code

Read Single Sector RDSS 11010010 D2H

Read Sector ID RDID 01110010 72H

Read Multi-Sector RDMS 11010110 D6H

Logical

Read Track RDTK 11010100 D4H*
Read Track Blind RDTB 11000100 C4H*
Read ID Multi-Sector RDIM 01110100 74H

Read Track Data/ID RDDI 11110100 F4H*

Write Single Sector WRSS 10010010 92H

Write Multi-Sector WRMS 10010110 96H

Logical

Write Track WRTK 10000100 84H*

Format Track FMTK 10101100 ACH

Format Track No Gap FMNG 10100100 A4H

Find ID FNID 01010010 52H

Find ID Multi-Sector FNMS 01010110 54H

Recover Header RCID 01100010 62H

Re-Enable Controller RENB 00000001 01H

No Operation NOP 00000000 00H

*Note: For an entire track operation, the Number of Sector Operations

Counter should be set to the number of sectors per track.

Table 7.5. Common Configurations

of the Command Bits
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FIGURE 7.10. A Flow Chart for Microprocessor

Initiation and Servicing of a Read Operation
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TL/F/8663–E8

FIGURE 7.11. A Flow Chart for Microprocessor

Initiation and Servicing of a Write Operation
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SINGLE SECTOR READ AND WRITE OPERATIONS

This operation involves setting the Disk Command register

to perform a Compare Head/Read Data Operation. Only

one sector is transferred.

DDC in Command Accept Mode

Step 1. The Parameter and Count registers must be loaded

with the proper format information (if not already loaded

with the correct information). The Header byte pattern regis-

ters must be loaded with the exact header information for

the sector to be transferred.

Step 2. The Local DMA channel must be initialized. The

Local transfer register should be configured to the desired

DMA mode. The DMA address registers are loaded with the

data transfer address. If the Remote DMA is used in coordi-

nation with the local transfer, especially in tracking mode,

the Remote Transfer register should be initialized, as should

its address, and length information. Interrupts should be en-

abled, in order to enable determination of operation comple-

tion.

Step 3. Finally the Drive Command register is loaded with

the desired Read or Write Command. If a remote DMA oper-

ation is to be performed, the Operation Command register

should be loaded to start the remote DMA.

DDC in Command Perform Mode

Step 4. The DDC will perform the operation by looking for

the correct sector header, then acquiring the system bus,

and transferring the appropriate data.

DDC in Result/Error Mode

Step 5. At the end of the command an interrupt is generat-

ed. If the interrupt is the Operation Complete interrupt the

command terminated properly, and the mP can read this

from the Status and Error registers and can proceed to the

next command. If an error occurred the microprocessor

should service this by either retrying the operation, or cor-

recting the error condition.

MULTI SECTOR LOGICAL READ AND WRITE

OPERATIONS

Multi sector logical operations transfer sectors sequentially

based on their sector number, whether these sectors are

scattered around the disk or not. Multi sector operations use

the Number of Sector Operations Counter to determine the

number of sectors to transfer. Logical operations are most

typically done by using the Sector Counter.

DDC in Command Accept Mode

Step 1. The Parameter and Count registers must be loaded

with the proper format information (if not already loaded

with the correct information). The Header byte pattern regis-

ters must be loaded with the exact header information for

the sector to be transferred. The header byte that contains

the sector number must have the Sector Counter substitut-

ed for it. The Sector Counter is set to the number of the first

sector to be transferred. The Number of Sector Operations

Counter should be loaded with the number of sectors to be

transferred.

Step 2. The Local DMA channel must be initialized. The

Local transfer register should be configured to the desired

DMA mode. The DMA address registers are loaded with the

data transfer address. If the Remote DMA is used in coordi-

nation with the local transfer, especially in tracking mode,

the Remote Transfer register should be initialized, as should

its address, and length information. Interrupts should be en-

abled, in order to enable determination of operation comple-

tion.

Step 3. Finally the Drive Command register is loaded with

the desired Logical Read or Write Command. If a remote

DMA operation is to be performed, the Operation Command

register should be loaded to start the remote DMA.

DDC in Command Perform Mode

Step 4. The DDC will perform the operation locating the first

sector, acquiring the system bus, and transferring that sec-

tor’s data. The Number of Sector Operations Counter is

decremented, and the Sector Counter is incremented. Step

4 is repeated until the Number of Sector Operations Counter

reaches zero. The command may be terminated early if the

DDC could not find one of the correct sectors being sought.

DDC in Result/Error Mode

Step 5. At the end of the command when the NSO counter

equals zero, an interrupt is generated. If the interrupt is the

Operation Complete interrupt the command terminated

properly, and the mP can read this from the Status and Error

registers and can proceed to the next command. If an error

occurred the microprocessor should service this by either

retrying the operation, or correcting it.

MULTI SECTOR PHYSICAL READ AND WRITE

OPERATIONS

These operations are very similar to the logical read and

write commands, except that rather than looking for the sec-

tors in numerical order, they are read from the disk in the

exact order that they pass under the read/write head. Only

the differences between these and the logical commands

are described.

DDC in Command Accept Mode

The only difference in setting up for the command is that

since the basic command will ignore the header bytes for

comparison (Ignore Header-Read/Write Data) the Header

pattern registers do not need to be updated. If doing a track

operation, the command should start on an index pulse by

setting the SAIS bit, and the Number of Sector Operations

Counter should be loaded with the number of sectors on the

track.

DDC in Command Perform Mode

This is the same as previous operation.

DDC in Result/Error Mode

This is the same as the previous operation.

OTHER MULTI-SECTOR PHYSICAL OPERATIONSÐ

INTERLOCK MODE

The host microprocessor can perform many related but dif-

ferent operations on physically consecutive sectors, by us-

ing the Interlock mode. Several possible command se-

quences are briefly outlined:

1. Header Re-writingÐIf an ID is detected to have an error

in its header bytes a sequence of commands can be execut-

ed to re-write the header. The rewritten ID may attempt to

fix the error or mark the sector as bad. This involves doing

two commands in sequence:

a) First find the header of the sector located physically prior

to the Bad ID field.

b) Second, do a write header operation to re-write the ID

field.
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2. Recovery of DataÐThis is like one above except no

attempt is made to correct the ID field, just obtain the data

field information.

a) First find the header of the sector located physically prior

to the defective sector.

b) Second, do an ignore header operation to The data field

is to be recovered, so a read data operation should be exe-

cuted, and the data can be read to memory.

3. Sparing a defective sectorÐThis is a more complicated

version of 1 and 2 above, and is performed with the follow-

ing commands. Steps a and b and steps c and d should be

performed in the interlock mode, whereas between steps b

and c interlock mode may not be desirable since ECC cor-

rection may be necessary.

a) First find the header of the sector located physically prior

to the defective sector.

b) Second, do a write header operation to re-write the ID

field, indicating a bad sector. If the data field is to be recov-

ered the write header operation could be accompanied by a

read data operation, and the data can be read to memory.

c) Third the DDC does a compare header operation to find

the sector prior to the spare sector (if located on the same

track). (If the spare has a known header a Compare Header

is all that is necessary.)

d) Finally the spare sector ID is rewritten and the old sec-

tor’s data is written to the spare sector.

In general, Interlocked mode operation is required only

when unique operations on physically adjacent sectors is

necessary. General multi-sector operations not performed

on adjacent sectors can be cascaded without using the in-

terlock mode.

DDC in Command Accept Mode

Step 1. The Parameter and Count registers must be loaded

with the proper format information (if not already loaded

with the correct information). The Header byte pattern regis-

ters must be loaded with the exact header information for

the sector to be that will be operated on. Many Interlock

mode command sequences may not need the Number of

Sector Operations Counter loaded, but if needed it should

be loaded with the number of sectors to be transferred.

Step 2. The Local DMA channel must be initialized. The

Local transfer register should be configured to the desired

DMA mode. The DMA address registers are loaded with the

data transfer address. If the Remote DMA is used in coordi-

nation with the local transfer, especially in tracking mode,

the Remote Transfer register should be initialized, as should

its address, and length information. The header complete

and command complete interrupts should be enabled, in

order to enable determination of when to load the subse-

quent sector’s information and command. This is done by

setting the EI, EIH, IR bits in the Operation Command Reg-

ister.

Step 3. Finally the Drive Command register is loaded with

the desired first Command. If a remote DMA oeration is to

be performed, the Operation Command register should be

loaded to start the remote DMA.

DDC in Command Perform Mode

Step 4. The DDC will perform the operation locating the first

sector, acquiring the system bus, and transferring that sec-

tor’s data. As soon as the first sector’s header has been

located, then the DDC issues a header complete interrupt,

and the host must update all desired registers, and finally

loading the Drive Command register with the new informa-

tion. (Note: if the interlocked operation was a multi-sector

(NSO not equal 0) operation then the Drive command is not

updated, since the operation is a continuation of the multi-

sector operation.) Finally the Interlock Register is written to,

and step 4 is repeated until the microprocessor is done writ-

ing commands. During the last operation, the Interlock reg-

ister must be written to avoid a late interlock error.

The command may be terminated early if the DDC could not

find one of the correct sectors being sought, or the Interlock

register is not written to prior to the beginning of the next

sector.

DDC in Result/Error Mode

Step 5. At the end of each header field an interrupt is is-

sued. The operation has completed when the Header Inter-

rupt and Operation Complete is received after the last com-

mand. If the command terminated properly, and the mP can

read this from the Status and Error registers and can pro-

ceed to the next command. If an error occurred the micro-

processor should service this by either retrying the opera-

tion, or correcting the problem.

GENERAL CHAINING OF DISK COMMANDS

Various commands can be executed one right after the oth-

er, like the interlock mode described above, except without

the Interlock timing constraints. This is done by enabling the

Header Complete Interrupt executing a disk command, and

when the interrupt is received by the CPU, it checks to make

sure it is the Header Complete interrupt, and that the Next

Disk Command bit is set. If it is set the CPU can then exe-

cute a new operation, while the old operation is completing.

In this way fast access to the data on the disk track can be

achieved.

7.5 DMA OPERATIONS
In this section, the DDC’s data transfer operations using on-

chip or external DMA will be discussed in depth. Discussion

of DMA as part of the above disk operations has been omit-

ted in favor of a separate discussion. It is important for the

designer to keep in mind that while the type of DMA opera-

tion won’t affect the individual commands, it can be a very

important factor in overall system through-put, and bus utili-

zation. In general, once a disk sector buffering scheme and

method of transferring data to/from the system has been

designed, the DMA mode selection is obvious, and usually

remains fixed. The DDC-system interface connections for

different system applications are discussed in chapter 6.

7.5.1 Data Transfer Features
All DMA operations are supported by the following four fea-

tures. These features are valid for all types of DMA modes

described in section 7.5.2 including the Slave mode (exter-

nal DMA).

123



PROGRAMMABLE BURST LENGTHS

The data transfer from/to the DDC to/from the system is

fully programmable. In single bus systems, the data from/to

the FIFO to/from the memory, can either be transferred in

32-byte bursts or in smaller bursts of 2, 8, 16 or 24 bytes (or

1, 4, 8 or 12 words). In dual bus systems, data can be trans-

ferred either up to 64 Kbytes in a single operation or in

smaller operations. The programmable burst lengths feature

accommodates the variations in bus latency time usually

present in all systems (see Chapter 6).

The DDC is programmed for the desired data transfer mode

through LTEB, LBL1, and LBL2 bits in the Local Transfer

Register and the RTEB, RBL1, RBL2 bits in the Remote

Transfer Register. For Remote transfers, the DMA Byte

Count registers are also used.

8-BIT OR 16-BIT WIDE TRANSFERS

Data can be transferred either byte wide or word wide. This

is achieved through LWDT and RWDT bits in the Local and

Remote Transfer Registers, respectively. The DMA address

counters are incremented by one for byte wide and by two

for word wide transfers.

SLOW READ/WRITE

For slow memory or other devices, the normal DMA memo-

ry read/write cycle of four periods can be extended to five

cycles for all DMA modes (including external DMA), using

bit LSRW and bit RSRW in the Local and Remote Transfer

Registers respectively. The read/write cycles can also be

extended to an infinite length by using the External Status

input (pin 17) of the DDC in conjunction with EEW bit in the

Remote Transfer Register.

REVERSE BYTE ORDER

This option is only valid for 16-bit wide transfers using the

Local DMA channel. It enables the two bytes being trans-

ferred to be mapped with the high order byte to AD0–7 and

the low order byte to AD8–15, or vice-versa. This could be

achieved through RBO bit in the Local Transfer Register.

(Note: This option is still functional in 8 bit mode, however it performs no

useful function. When reading, the first byte DMA’d was the second byte

read, the second DMA’d byte the first read, the third DMA’d byte the fourth,

the fourth DMA’d byte the third, and so on. Similar order occurs for a write.)

7.5.2 DMA Modes
Various data transfers are carried out by configuring the

DDC in one of the three main DMA modes: single channel,

dual channel or external DMA. Some of this has been dis-

cussed in Chapter 6.

SINGLE CHANNEL (LOCAL DMA) MODE

In the local DMA mode, only three DMA registers/counters

are used; the Local Transfer Register, DMA Address Byte 0

and 1. The Sector Byte Count 0 and 1 registers determines

the sector size. A local transfer operation can be carried out

following the steps below:

DDC in Command Accept Mode

Step 1. The DMA Address Bytes (0 and 1) Counters are

initialized with local (or main) memory address to/from

where the data is to be transferred from/to the FIFO.

Step 2. The Local Transfer Register is set for enabling the

local DMA channel (bit SLD), 8- or 16-bit transfer (bit

LDWT), reverse-byte order (optional in 16-bit data transfer

mode, using bit RB0). Slow Read/Write cycles (bit LSRW),

Long Address (bit LA), and the burst length (bits LTEB,

LBL1, LBL2).

Step 3. The Operation Command Register is loaded for en-

abling interrupts, if desired (bit EI).

Step 4. Finally, the Drive Command (DC) Register is loaded

with the desired DDC command. See Table 7.5. The DDC

enters the command perform mode immediately after the

DC register is loaded. (This step is the same as Step 3 in

previous read/write operations discussions.)

DDC in Command Perform Mode

Step 5. The DDC should be granted bus control on the oc-

currence of an LRQ. The DDC will generate an interrupt

after the completion of the operation or on the occurrence

of an error. (Same as previous read/write operations

Step 4.)

DDC In Result/Error Mode

Step 6. On the occurrence of an interrupt, the Status Regis-

ter is read. In case of an operation complete (the NDC bit),

steps 1 through 6 may be repeated, or the DDC may be

initialized for a new operation. If an error was occurred, ap-

propriate actions should be taken, as discussed in section

7.7.

DUAL CHANNEL TRACKING (LOCAL AND REMOTE)

MODE

In the dual DMA mode, all the DMA registers are used (see

Chapter 5). The DDC can further be set for either a Tracking

Dual DMA or a NON-Tracking Dual DMA mode.

In Tracking mode, data is transferred from the on-chip FIFO

to the system I/O port through the local buffer memory, and

vice versa. The entire DMA operation is controlled by the

DDC and external arbitration logic that synchronizes the

DDC’s remote operation with the external DMA for the sys-

tem, after initialized by the microprocessor. Basically, local

and remote transfers are dependent on each other and the

DDC keeps track of both transfers in order to avoid any

possible data overlapping in the local buffer memory.

This mode effectively turns the buffer memory into a large

FIFO. This is accomplished through the use of DMA Sector

Counter (DSC), which keeps track of the difference between

sectors read/written from/to the disk and sectors trans-

ferred to/from the host system. Each time the source trans-

fers a sector or data into buffer memory (length is deter-

mined by the Sector Byte Count Register pair), the DSC

register is incremented. It is decremented each time the

destination has transferred a sector of data. Whenever the

DSC register contents become zero, destination transfers

are inhibited. Note that in a Disk Read operation, local DMA

(or the FIFO) is the source and remote DMA (or system I/O

port) is the destination. Similarly, in a Disk Write operation,

the remote DMA (or the system I/O port) is the source and

local DMA (or the FIFO) is the destination. A detailed step-

by-step disk read/write operation, in the tracking dual DMA

mode, is given below and the flow chart is given in Figure
7.12.

DDC in Command Accept Mode

Step 1. The DMA Address Bytes (0, 1, 2, 3) registers are

loaded with the same local and remote start address in the

local buffer memory.

Step 2. Bits SLD and SRD in the Local and Remote Trans-

fer Registers are set to enable both local and remote DMA

channels. The DDC is configured for Tracking Mode by set-

ting the TM bit in the Remote Transfer Register. Other op-

tions such as 8-/16-bit transfer, slow read/write cycles, and
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burst lengths for both FIFO and local buffer memory are

selected through LWDT, LSRW, LTEB, LBL1 and LBL2 bits

in the Local Transfer Register and RWDT, RSRW or EEW,

RTEB, RBL1 and RBL2 bits in the Remote Transfer Regis-

ter. Bit LA in the Local Transfer Register must be reset for

16-bit address mode.

Step 3. The Number of Sector Operations (NSO) counter

and Sector Counter (SC) are loaded for multi-sector opera-

tion. Only SC should be loaded for a single sector operation.

Step 4. Interrupts are enabled using EI bit in the Operation

Command (OC) Register.

Step 5. Finally, the desired Read/Write command (see Ta-

ble 7.6). (This is the same as Step 3 in the previous Read/

Write command descriptions.)

DDC in Command Perform Mode

Step 6. The DDC will start performing the desired operation

after the DC register is loaded. An LRQ, RRQ or Interrupt

should be expected. The DDC should be given the bus con-

trol when LRQ or RRQ occurs. (Same as Step 4 in previous

Read/Write command descriptions.)

DDC in Result/Error Mode

Step 7. If an interrupt is generated, it should be serviced

properly (see section 7.7 for interrupt servicing). If the oper-

ation was completed successfully, steps 1 through 6 may be

repeated for a new operation. (Same as Step 5 in previous

Read/Write command descriptions.)

DUAL DMA NON-TRACKING (LOCAL AND REMOTE)

MODE

In the non-tracking dual channel DMA mode, the Local and

Remote transfers are independent of each other. The con-

trolling microprocessor has to keep track of both transfers

to avoid any possible data overlapping in the local buffer

memory. The DMA Address (bytes 0–3) Registers are set

up independently for Local and Remote transfers. All the

necessary steps needed to perform a data transfer between

the FIFO and system I/O port with the DDC in this mode are

explained below and also shown in a flow chart in Figure
7.16.

DDC in Command Accept Mode

Step 1. The DMA Address (byte 0–3) are set up for the

desired Local and Remote addresses. Any address within

64k memory space could be loaded.

Step 2. The DDC is configured in the non-tracking mode,

first by enabling Local and Remote DMA channels through

SLD and SRD bits in the Local and Remote transfer Regis-

ters. The LA bit is also set to zero for 16-bit address for both

DMA channels. Other DMA options such as 8-/16-bit data

transfer slow read/write, reverse byte ordering, and burst

length, are selected through LWDT and RWDT; LSRW,

RSRW and EEW; RBO; and LTEB, LBL1, LBL2, RTEB,

RBL1, and RBL2 bits in the Local and Remote Transfer

Registers.

TL/F/8663–E9

FIGURE 7.12. Dual DMA Tracking Mode mP Programming Flow Chart
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TL/F/8663–F0

FIGURE 7.13. Dual DMA Non-tracking Mode mP Programming Flow Chart

Step 3. The Number of Sector Operation (NSO) Counter

and Sector Counter (SC) are loaded for multi-sector opera-

tion. Only SC is loaded for a single sector operation.

Step 4. Write Operation: Before having the DDC to per-

form a write operation, data is transferred from the system

I/O port to the buffer memory by enabling the Remote chan-

nel through SRI bit in the Operation Command Register.

Interrupts are also enabled using the EI bit.

Read Operation: The Drive Command (DC) Register is

loaded with the desired Read command (refer to Table 5.6).

If a multisector operation is selected, the SAIS bit may be

set to zero for the operation to start at the Index pulse.

DDC Performs the Remote Transfer

Write Operation: The DDC will transfer the remote data to

local memory and will issue an operation complete interrupt.

Remote transfer operations could be repeated to fill the lo-

cal memory before performing a disk operation. The DDC

now should be initialized for the actual disk write operation.

Read Operation: The DDC will complete the disk read just

like a normal operation. See Step 7. Now the data may be

transferred to the system I/O or any remote locations.

Step 5. Finally, the Operation Command Register is loaded

to enable data transfer from the local buffer memory to the

system I/O, with SRO bit set. The interrupts may also be

enabled with the EI bit, if required.

The DDC will start the operation when the OC Register is

loaded. The RRQ must be acknowledged.

Step 6. The Drive Command register is loaded with the de-

sired write command. If a multi-sector operation is desired,

the SAIS bit may be reset for the operation to start at the

Index pulse. (This is the same as Step 3 for Read/Write

operations discussed previously.)

DDC in Command Perform Mode

Step 7. The DDC will start performing the desired write op-

eration immediately and will issue a local request, LRQ.

Upon receiving an LACK, it completes the write operation.

(This is the same as Step 4 for previously discussed Read/

Write operations.)

DDC in Result/Error Mode

Step 8. The DDC will issue an interrupt which should be

serviced properly (refer section 7.7 for interrupt servicing).

In case of an operation complete interrupt, steps 1 through

5 may be repeated for a new operation.

IMPORTANT NOTES

1. By setting both SRI and SRO simultaneously, any non-

tracking DMA operation will stop. The current remote ad-

dress and remote data byte count will be retained, and the

local DMA will be unaffected. Loading the original OC in-

struction (input or output) will restart the original instruction

from the last remote DMA address.
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2. In either Tracking or Non-tracking mode, if either channel

is loaded with an odd byte transfer count, the DDC will

transfer the next higher even byte. For example, if 511 was

loaded in Remote Data Byte Count Registers, 512 bytes

would be transferred, with the valid data only in the first 511

bytes.

3. In the Tracking mode the DDC keeps track of the data in

the buffer memory. The Remote Transfer follows the Local

transfer by a sector length and the DDC makes sure that the

correct data is transferred to the system memory. However

in the Non-tracking mode the remote channel is indepen-

dent of the disk operation and hence the remote channel

can follow the local channel as closely as possible. The

microprocessor is responsible of preventing overlap of data.

4. Even though normally the remote channel would be used

for transfers from system to buffer memory (and vice versa)

and the local channel for transfers from the buffer memory

to the FIFO (and vice versa), the remote channel could also

be used for some other purpose that is independent of the

DDC’s other operations.

EXTERNAL DMA

In external DMA mode, the data transfer between the on-

chip FIFO and external memory (local buffer or system) is

controlled by the external DMA. The DDC is programmed to

perform a disk read/write operation without the internal

DMA. Whenever the FIFO needs any data transfer, the DDC

asserts LRQ. At this point, external DMA takes control and

completes that particular data transfer. The following steps

illustrate the necessary actions to perform a disk read/write

operation using external DMA i.e. DDC in the slave mode.

DDC in Command Accept Mode

Step 1. The registers are initialized.

Step 2. Interrupts are enabled using EI bit in the Operation

Command Register.

Step 3. Finally, the Drive Command Register is loaded for

the desired Read/Write operation.

DDC in Command Perform Mode

Step 4. The DDC will start performing the operation and

LRQ will be asserted when the FIFO requires the data trans-

fer. The LRQ must be acknowledged by the external DMA in

order to complete the operation.

DDC in Result/Error Mode

Step 5. If an interrupt is issued, it must be serviced, (refer

section 7.7). In case of an operation complete interrupt,

steps 1 through 3 may be repeated for a new operation.

7.6 ERROR DETECTION AND
CORRECTION
The Disk Data Controller, DDC has comprehensive and ver-

satile error detecting and correcting capabilities. It features

a fully programmable ECC;

X Programmable Preset Pattern

X Programmable Polynomial Taps

X Programmable Correction Spans

X Programmable Assignment of CRC/ECC on Header or

Data

There are essentially two internal codes available; a fixed

Cyclic Redundancy Checking (CRC) code for detecting er-

rors only, which uses a CRC-CCITT polynomial that pro-

vides 16 generated check bits for appending to the Header

fields and/or Data fields. The other type is the ECC code

which may be a Fire code or a Computer generated code

with 32 or 48 generated check bits that may be appended to

the Header field and Data field. National Semiconductor

recommends a computer generated polynomial called the

Glover 140A0443 code with a correction span of 5-bits for

MFM encoded drives. The designation represents the hexa-

decimal equivalent of the forward polynomial and it requires

a preset of all 1’s. The code has two polynomials; the for-

ward one for checkbit generation and checking and the re-

verse one for error location. The error detection span is 32-

bits while the correction span is 5-bits. The number of bytes

in the sector determines the integrity of the code. The maxi-

mum sector length the code can handle is 1024 bytes of

data and 4 bytes of ECC, which is within the limits of most

disk formats. The completely programmable feature of the

DDC with respect to ECC offers a lot of flexibility to the user.

In case a user prefers to use his own high integrity code, the

DDC can be configured to interface easily with external ECC

circuitry and the DDC can be programmed to operate in the

external ECC mode, as discussed in chapter 4. There are

essentially three kinds of operations associated with the

ECC circuitry: 1) checkbit generation, 2) checkbit verifica-

tion, and 3) error location.

7.6.1 Error Detection
Internal Checkbit VerificationÐWrite

This operation occurs when the controller is performing a

write operation. The ECC shift register is downloaded with

the preset value stored in the Preset Register. The code

length is selected independently for Header and Data ap-

pendage. Bits being shifted out of the SERDES (serializer/

deserializer) to the disk, are also shifted into the ECC Shift

Register. When the last bit of the Header or Data field has

been transmitted out of the DDC, the generated check bits

in the ECC shift register are directly shifted out and onto the

disk, starting with the MSB and ending with bit 0. After the

ECC bits have been appended, the DDC switches to the

next field.

Internal Checkbit VerificationÐRead

This function will occur concurrently with a read data opera-

tion from the disk. The ECC Shift Register is first preset

from the Preset Registers. The incoming Header or Data

field is serially fed into the same ECC Shift Register that is

used to generate checkbits. When all the Header or Data

field bits and all the generated checkbits have entered the

ECC Shift Register, the status of the bits in it is checked for

an all zeroes condition. If it is true then the field contains no

errors, else if any of the ECC Shift Register’s bits are high,

the field contains an error. In the case of a Header field

error, the Header Fault bit (SO), in the Status Register is set,

while in case of a Data field error, the Data Field Error bit

(E1), of the Error Register is set.
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System Alternatives on Error Detection

Once an error has been detected by the ECC logic, the Re-

enable (REN) bit must be reset via the Drive Command

Register, before proceeding. If a Header field error is detect-

ed, the DDC will react differently depending on the Header

operation involved. The various options are discussed under

the Drive Command Register description. If an error is de-

tected in the Data field, a re-read is initiated (by the system),

to overrule a soft error. If the data is still not corrected after

several re-reads, it implies the detection of a hard error. By

re-reading the sector in question and comparing the syn-

dromes to previous retries, a certain level of confidence can

be reached, that the error is media induced and ECC correc-

tion can be attempted. The syndrome bytes in the ECC Shift

Register will contain the bit error information, although the

bytes in error have been transferred to memory.

7.6.2 Error Correction
The DDC has a maximum correction span of 15 bits, i.e. it

can correct up to 15 contiguous bits in error, or a span of

errors 15 bits or less. Of course correction can only be at-

tempted if internal ECC checkbits were appended to the

data field when written to the disk. The first step in the cor-

rection process is to load the Data Count Register with the

data count, (sector byte count) plus the number of bytes of

checkbits, i.e. sector byte count registers must be initialized

to sector length plus 4 or 6 for 32 bit mode or 48 bit mode

ECC respectively. Then the correction cycle is initiated by

setting the Start Correction Cycle bit of the Operation Com-

mand Register. This should be done before any further

Drive Command operation is issued to the DDC. This pre-

vents the destruction of the stored syndromes in the ECC

Shift Register. Also while the correction cycle is in progress,

TL/F/8663–F1

FIGURE 7.14(a). Hardware Configuration of ECC Shift Register

DATA BYTES

FROM

BUFFER MEMORY
CORRECTED

v DATA BYTES

SYNDROME RETURNED TO

Byte 27 BYTES BUFFER MEMORY

1st Data Byte with Errorx Byte 28 xZx ECC SR Out 1 x Byte 28

2st Data Byte with Errorx Byte 29 xZx ECC SR Out 4 x Byte 29

3rd Data Byte with Errorx Byte 30 xZx ECC SR Out 5 x Byte 30

Byte 31

v
FIGURE 7.14(b). 32-Bit ECC Correction Process

DATA BYTES

FROM

BUFFER MEMORY
CORRECTED

v DATA BYTES

SYNDROME RETURNED TO

Byte 13 BYTES BUFFER MEMORY

1st Data Byte with Errorx Byte 14 xZx ECC SR Out 1 x Byte 14

2st Data Byte with Errorx Byte 15 xZx ECC SR Out 2 x Byte 15

3rd Data Byte with Errorx Byte 16 xZx ECC SR Out 3 x Byte 16

Byte 17

v
FIGURE 7.14(c). 48-Bit ECC Correction Process
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MP Operations after Error Located in DDC

TL/F/8663–F2

FIGURE 7.15. Location of Bytes in Error (in Memory) for the Correction Process

the DDC ignores any drive command loaded into the Drive

Command Register. On initiation of the Correction Cycle,

the Correction Cycle Active flag, (bit 6 of the Status regis-

ter), will go high.

The ECC Shift Register contains encoded information with

regards to both the location of the bytes in error and the

error pattern. The ECC Shift Register’s contents are trans-

posed which sets up a reverse shift without actually revers-

ing the direction of shift in the shift register. The advantage

of reverse shifting is that a non-correctable error is deter-

mined much quicker than if forward shifting is used. It also

guarantees the completion of the correction cycle within the

time it takes to read one sector of the disk. The ECC logic

begins shifting, looking for a zero detect, i.e. detection of all

zeroes in the upper (32-C) or (48-C) bits of the ECC Shift

Register, where C is the correction span selected. After 8

shifts, the Data Count Register begins decrementing, with

one down count for every 8 shifts of the ECC Shift Register.

When the zero detect condition occurs, the control logic will

stop decrementing the Data Count Register and its state

indicates the byte that is in error. If the Data Byte Counter

decrements to zero before the selected most significant bits

of the ECC Shift Register are all zeroes, the error is non-cor-

rectable. In case of this condition or the zero detect condi-

tion of the ECC Shift Register, an interrupt is issued to indi-

cate to the host microprocessor that the correction cycle

has finished, indicated by the CCA flag (bit 6 of the Status

Register being reset).

During the correction cycle other operations like completion

of remote DMA etc., may issue an interrupt which should be

serviced to enable recognition of the interrupt on comple-

tion of the correction cycle. The Error Register bit CF is

examined, which if set signifies a non correctable error. If

the bit is not set, then the error is correctable and must be

either in the data field or the checkbits of the ECC field or

overlapping both fields.

At the instant when the ‘zero detect’ condition occurs in the

ECC Shift Register, the status of the Data Count Register

indicates the byte in error. For exampleÐif the data count

register shows 515, then the 515th byte of the data field is in

error. If there were only 512 bytes in the data field, then 515

means that the 3rd byte of the checkbit field is in error. The

syndrome bytes in the ECC Shift register should be aligned

so that the Most Significant Bit of the syndrome field align

with the Most Significant Bit of the byte 515. However, if the

syndrome spans a field of two bytes, then it will align with

byte 515 and 516. When the data byte in error is located,

the ECC logic makes sure that the syndrome bits are

aligned properly on a bit by bit basis with that byte in error.

Therefore, it will continue to shift until this has happened. To

facilitate the speed restraints of the process, the syndrome
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will get shifted one full byte beyond where one would expect

to see it in the ECC Shift Register. The syndrome bits will be

located starting at the second byte of the ECC Shift Regis-

ter. Figure 7.14 (a) shows the orientation of the ECC Shift

Register for various sizes of polynomials selected.

Errors are corrected by XOR’ing syndrome bytes (ECC SR

0–5) with the bytes in the data record in memory that con-

tain the error. The address of the first byte of the data field,

in error is computed as follows: [current value of DMA ad-

dress bytes 0 and 1] b [sector byte count] a [data byte

count] b 1. For performing a correction with 32 bit ECC,

ECC SR1, ECC SR4, and ECC SR5 contain the syndrome

pattern in that sequence. ECC SR2 and ECC SR3 are not

used in 32-bit mode and will contain 0’s if read. ECC SR0

will contain all 0’s if the error is correctable, and may con-

tain some set bits if not. The bytes in error (in the memory)

are located as shown in Figure 7.15 while the correction

process is shown inFigure 7.14 (b) and (c) . To perform a 48

bit correction ECC SR1, ECC SR2 and ECC SR3 should be

read sequentially for the syndrome bits. ECC SR0, ECC SR4

and ECC SR5 are not used and will contain 0’s for a correct-

able error. Figure 7.16 shows an example of the correction

process. Figure 7.17 gives a flow chart of the correction

cycle operations.

EXAMPLE OF A 32-BIT CORRECTION

Shown in Figure 7.18 is a record with several bits read in

error from the disk. Bits D4, D11, D13 and D14, now located

in memory were read incorrectly and need to be corrected.

As can be seen, the correction pattern provided in ECC SR1

and ECC SR2 can be used to correct bits D4, D11, D13 and

D14. The CPU reads the Data Byte Count and computes the

address of the first data byte in error, read from the disk.

This byte is XOR’ed with ECC SR1 and is written back to

memory. The second byte read form the disk is XOR’ed with

ECC SR4 and then written back. ECC SR5 need not be

used since it contains all 0’s.

7.6.3 Programming the ECC
There are two sets of six registers used to program the

ECC. One set of six is used to program the polynomial taps,

while the other set is used to establish a preset pattern. Bits

contained in the ECC Control Register are used to control

the correction span. The Data Format Register contains bits

for choosing the desired type of appendage: either 32 or 48

bit programmable ECC polynomials, or the 16 bit CCITT

CRC polynomial.

PROGRAMMING POLYNOMIAL TAPS

To program a polynomial into the shift register, each tap

position used in the code must be set to 0, and all unused

taps should be set to 1. The bit assignment for these regis-

ters in 48 and 32-bit modes is shown in the tables, Figure
7.21 (a). It is important to note that for 32-bit codes, PTB2

and PTB3 must be set to all 1’s. Failure to do so will result in

improper operation. Also x48 for 48-bit and x32 for 32-bit

ECC are implied and so is x0, even though this bit is acces-

sible.

PROGRAMMING PRESET PATTERN

PPB0–PPB5 must be initialized to program the preset pat-

tern that the shift registers will be preset to. As in the poly-

nomial taps, x48, x32, and x0 are implied. The assignment of

the bits for 48 and 32-bit modes is shown in Figure 7.21 (b) .
The value programmed into each register will be the preset

pattern for the eight bits of the corresponding shift register.

For typical operation, these will be programmed to all 1’s.

All unused presets should be set to 0. In 32-bit mode, PPB2

and PPB3 must be set to all 0’s. Failure to do so will result in

improper operation.

An Example of ECC in Action

TL/F/8663–F3

FIGURE 7.16. How Error Correction Works
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This cycle can only be

initiated after a Read

Data Operation has

been completed

TL/F/8663–F4

FIGURE 7.17. Flow Chart of the Correction Cycle Operation

ECC CONTROL REGISTER

The ECC Control Register controls a number of functions.

The correction span can be programmed using four bits of

this register. Errors longer than the correction span are

treated as non-correctable. The allowable correction span is

3–15 bits. If a span outside this range is loaded, then the

DDC defaults to a span of three bits. There is a bit (HEN) to

indicate whether Header address mark and/or synch fields

are encapsulated in the CRC/ECC calculation. There is also

a bit (DEN) for indicating whether data address mark and/or

synch fields are encapsulated in the CRC/ECC calculation.

Facility for inverting data entering and leaving the ECC Shift

Register is also provided. For selecting the internal 16-bit

CRC polynomial, the appropriate bits in the Disk Format reg-

ister are set, the ECC Control Register is programmed as

desired.
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Syndrome Pattern

Register
Bit Number

7 6 5 4 3 2 1 0

ECC SR1 0 0 0 1 0 0 0 0

ECC SR4 0 1 1 0 1 0 0 0

ECC SR5 0 0 0 0 0 0 0 0

Buffer Memory

Corresponding Buffer

Data Bit Pattern

D7 D6 D5 * D3 D2 D1 D0

D15 * * D12 * D10 D9 D8

D23 D22 D21 D20 D19 D18 D17 D16

* e location of bits in error

Figure 7.18 Example of Correction Syndrome Bits relating to Data Bit Patterns

Tap Assignment 32-Bit Mode

REGÝ ADDR
Bit Number

DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

PTB0 08 X7 X6 X5 X4 X3 X2 X1 X0

PTB1 09 X15 X14 X13 X12 X11 X10 X9 X8

PTB2 0A 1 1 1 1 1 1 1 1

PTB3 0B 1 1 1 1 1 1 1 1

PTB4 0C X23 X22 X21 X20 X19 X18 X17 X16

PTB5 0D X31 X30 X29 X28 X27 X26 X25 X24

Preset Bit Assignment 32-Bit Mode

REGÝ ADDR
Bit Number

DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

PPB0 02 X7 X6 X5 X4 X3 X2 X1 X0

PPB1 03 X15 X14 X13 X12 X11 X10 X9 X8

PPB2 04 0 0 0 0 0 0 0 0

PPB3 05 0 0 0 0 0 0 0 0

PPB4 06 X23 X22 X21 X20 X19 X18 X17 X16

PPB5 07 X31 X30 X29 X28 X27 X26 X25 X24

Tap Assignment 48-Bit Mode

REGÝ ADDR
Bit Number

DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

PTB0 08 X7 X6 X5 X4 X3 X2 X1 X0

PTB1 09 X15 X14 X13 X12 X11 X10 X9 X8

PTB2 0A X23 X22 X21 X20 X19 X18 X17 X16

PTB3 0B X31 X30 X29 X28 X27 X26 X25 X24

PTB4 0C X39 X38 X37 X36 X35 X34 X33 X32

PTB5 0D X47 X46 X45 X44 X43 X42 X41 X40

Preset Bit Assignment 48-Bit Mode

REGÝ ADDR
Bit Number

DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

PPB0 02 X7 X6 X5 X4 X3 X2 X1 X0

PPB1 03 X15 X14 X13 X12 X11 X10 X9 X8

PPB2 04 X23 X22 X21 X20 X19 X18 X17 X16

PPB3 05 X31 X30 X29 X28 X27 X26 X25 X24

PPB4 06 X39 X38 X37 X36 X35 X34 X33 X32

PPB5 07 X47 X46 X45 X44 X43 X42 X41 X40

FIGURE 7-19. Programming the Presets of Taps; the Tap and Preset Register Configurations

TL/F/8663–F5

a) Write Data Operation

TL/F/8663–F6

b) Check Data Operation

FIGURE 7.20. Operation Complete Interrupt Timing
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TL/F/8663–F7

c) Read Data, in Single or Dual Channel (Non-tracking) Move

TL/F/8663–F8

d) Read Data, in Dual Channel (Tracking) or in an External DMA Mode

FIGURE 7.20. Operation Complete Interrupt (Continued)

Example of programming the ECC registers

Objective: To program the 32-bit polynomial of the form;

(This is National Semiconductor’s recommended

polynomial)

x32 a x28 a x26 a x19 a x17 a x10 a x6 a x2 a x0

with a preset of all 1’s, a correction span of 5-bits with no

header/data encapsulation. The registers would be pro-

grammed as given below. Note that as defined earlier, PTB2

and PTB3 must be all 1’s and PPB2 and PPB3 must be all

0’s.

Polynomial Taps Registers

REGÝ 7 6 5 4 3 2 1 0

PTB0 1 0 1 1 1 0 1 0

PTB1 1 1 1 1 1 0 1 1

PTB2 1 1 1 1 1 1 1 1

PTB3 1 1 1 1 1 1 1 1

PTB4 1 1 1 1 0 1 0 1

PTB5 1 1 1 0 1 0 1 1

Polynomial Preset Registers

REGÝ 7 6 5 4 3 2 1 0

PPB0 1 1 1 1 1 1 1 1

PPB1 1 1 1 1 1 1 1 1

PPB2 0 0 0 0 0 0 0 0

PPB3 0 0 0 0 0 0 0 0

PPB4 1 1 1 1 1 1 1 1

PPB5 1 1 1 1 1 1 1 1

ECC Control Register

BITÝ D7 D6 D5 D4 D3 D2 D1 D0

1 0 0 1 0 1 0 1

7.6.4 Internal ECC Diagnostics
The DDC has a diagnostic capability for validating the inter-

nal ECC function. By loading the Data Byte Count Register

with the number of bytes in the sector plus the number of

bytes of ECC appendage for the Data field. The internal

CRC/ECC appendage for the Data field is set to zero so

that no CRC/ECC will append the data field. Next the micro-

processor sets up a data pattern in memory of all zeroes for

the nominal sector length, except for bit positions where

simulated errors are desired. Also, the microprocessor ap-

pends to this data the ECC appendage for an all zeroes

data field by setting the Drive Command Register to perform

a Compare Header-Write Data operation. In this way the

DDC executes a diagnostic write function. In this mode, the

data field from memory is written as in a normal write opera-

tion to the data field of the selected sector. Then the 32-bits

or 48-bits of ECC check are also issued, where these check

bits are falsely generated as if from an all zeroes data field.

The selected sector now contains an all zeroes data field

with simulated error bits followed by an ECC appendage

representing checkbits generated from an all zeroes data

field. The Data Byte Count is now re-loaded with the normal

sector length and the correct ECC appendage length select-

ed. A subsequent Read Data operation should produce an

error indication. A correction cycle can then be implemented

and the syndromes can be examined along with the Data

Byte Counter contents. The microprocessor can then com-

pare these syndromes with the positions of the simulated

error bits previously written in the data field. This offers the

user a diagnostics capability that simulates errors easily,

merely by writing the data field with all zeroes except where

the simulated error locations are desired.
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7.6.5 Encapsulation of Internal ECC
with External ECC
The external ECC field may be used to encapsulate the in-

ternal ECC/CRC field as a confirmation of error detection.

The advantages of this scheme are that both external and

internal ECC must agree on 1) the existence of the error, 2)

location of the error, and 3) the error pattern. If an error is

detected either internally or externally, the DDC will operate

as if an internal error were detected.

7.7 INTERRUPTS
The DDC will interrupt the microprocessor only if the Inter-

rupt Enable bit (EI) in the Operation Command register is set

high. If it is not set, the INTERRUPT output is always forced

high.

7.7.1 Types of Interrupt
The interrupts generated by the DDC can be divided into

four categories:

1) Operation Complete Interrupt

2) Header Complete Interrupt

3) Error Interrupt

4) Correction Cycle Complete Interrupt

Each of the above mentioned types is explained in the fol-

lowing.

OPERATION COMPLETE INTERRUPT

The DDC will interrupt the microprocessor when it com-

pletes any one of the legal header-data disk operations list-

ed in Table 5.13. The interrupt will also indicate that the

DDC is ready to execute a new command. Some interrupt

generation situations are explained below.

1) An interrupt will occur when the remote transfer is com-

pleted during a disk read operation in Tracking mode.

2) An interrupt will occur when the local transfer is complet-

ed during a disk read operation in Non-tracking mode.

3) In Non-tracking mode, if remote DMA channel is enabled,

an interrupt will occur after the remote transfer is completed

independent of the disk operation or the local transfer.

4) If the operation was a multi-sector operation, an interrupt

will only occur on the completion of the last operation.

The Operation Complete interrupt generation for various

Header and Data operation is shown in Figure 7.20. In disk

write operations, the operation complete interrupt is gener-

ated when last byte of data postamble is being output by the

DDC. In Header-Check data operation, operation complete

interrupt occurs when first byte of data postamble enters

the DDC. In disk read operations when the DDC is using

only its local DMA channel (single channel DMA and non-

tracking DMA modes), the operation complete interrupt is

generated when the last byte (or word) is transferred to the

memory. Basically it is coincident with the last WRT strobe.

When the DDC is in dual channel DMA mode, the operation

complete interrupt is issued during the last RDT strobe i.e.

when last byte (or word) is transferred from local memory to

system I/O. Similarly, when an external DMA is used, the

operation complete interrupt is generated during the last

RDT strobe i.e. when last byte (or word) is transferred from

the DDC to external memory.

HEADER COMPLETE INTERRUPT

In all legal DDC operations listed in Table 5.13, an interrupt

will be generated after a header operation only if the Enable

Header Complete Interrupt bit (EHI) in the operation com-

mand register is set high. In case of multi-sector operation,

this interrupt will be generated after each header of a sector

has been operated on. The header complete interrupt fea-

ture is commonly used when the DDC is in Interlock Mode

(Refer to section 5.2.5). On interrupt, the ID and Data fields

for the next sector can be changed, if desired, before the

next sector operation starts.

The header complete interrupt is coincident with the Next

Disk Command bit (NDC) being set in the Status register.

Thus, the controlling microprocessor can be notified to load

the DDC with the next disk command. In other words, the

DDC could be run continuously for any length of time by

loading a new disk command whenever next disk command

flag is set. The generation of header complete interrupt is

shown in Figure 7.21. In Compare, Read and Ignore Header

TL/F/8663–F9

a) Compare, Read or Ignore Header Operations

TL/F/8663–G0

b) Write Header Operation

FIGURE 7.21. Header Complete Interrupt Generation
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operations, the interrupt is generated when first byte of ID

Postamble is being read by the DDC whereas in Write Head-

er operation, interrupt is generated when first byte of ID

Postamble is being written to the disk by the DDC.

ERROR INTERRUPT

An interrupt will be generated if any bit in the Error register

is set, which in turn sets the Error Detected bit (ED) in the

Status register. Refer to description of Error and Status reg-

isters in section 5.1.1. Also an error interrupt will be issued.

CORRECTION CYCLE COMPLETE INTERRUPT

An interrupt will occur at the end of an internal correction

cycle independent of the result of the correction cycle. If the

error was not correctable, another interrupt will not be gen-

erated, only the Correction Failed flag (CF) in Error register

will be set.

7.7.2 Interrupt Servicing
As explained earlier, the DDC issues an interrupt on, an

operation complete, the header operation complete, the oc-

currence of an error and the completion of a correction cy-

cle. Whenever an interrupt is generated, the Status and Er-

ror register should be read in order to find out which one of

the four situations has happened. In the status register, flag

NDC indicates the completion of an operation, flag HMC

indicates the completion of a header operation, and flag ED

indicates the occurrence of an error. Only when the ED flag

is set, the Error register is read to find out the type of error

that caused an interrupt. Also, the CF flag in the Error regis-

ter indicates result of the correction cycle. The interrupt

servicing for various interrupts is described below. Figure
7.22 shows a flow chart for servicing interrupts.

Operation Complete Interrupt: In case of operation com-

plete interrupt, the NDC flag in the Status register gets set

indicating that the DDC is ready for next command. The

DDC is brought to the Command Accept mode and the de-

sired command is loaded with all other related registers ini-

tialized. Refer to sections 7.1 through 7.6.

Header Complete Interrupt: The HMC flag in the Status

register, gets set in case of header complete interrupt. This

basically indicates that the header operation (ignore, com-

pare, read or write) has completed. The information in the

DDC’s registers can be changed before the start of next

header operation i.e. during the time when the data opera-

tion for the current sector is in progress. If the DDC is in

Interlock mode, the HBC/interlock register is also written to

during this time. See sections 5.2.5 and 7.2 (interlock format

method).

Error Interrupt: In case of an Error interrupt, the ED flag in

the Status register gets set. The Error register should be

read next, to find out the error that caused the interrupt. For

the description of various error flags, refer to Error register

description in chapter 5. The HFASM function is explained

in detail in section 7.8. Also see description of Header Byte

control register in chapter 5. The DFE (data field error) is

caused by an ECC/CRC error in the data field. Generally,

retrying the operation takes care of this error. If this error

does repeat on retries, a correction cycle should be per-

formed. See section 7.6. The SNF (sector not found) error

could also be resolved by retrying the operation. If it does

repeat on retries, then the head should be repositioned. The

SO (sector over run) occurs while reading or writing more

data than what has been allotted on the disk and could be

taken care of by checking system software. The NDS (no

data synch) occurs because of a mismatch in address mark

or synch fields and could be resolved by retries or system

check-up. The FDL (FIFO data lost) could occur due to

speed incompatibility between system and the disk drive

and could be resolved by retrying or checking the system.

The CF (correction cycle failed) can be taken care of by

retrying the correction cycle again, if still not resolved, then

that means the error is not correctable. See section 7.7 on

ECC/CRC. The LI (late interlock) could also be resolved by

retrying. See section 5.2.5 for details on interlock operation.

Correction Cycle Complete: The Error register is read. If

CF flag indicates that the correction cycle failed then it can

be performed again. After retry if it still fails, then the error is

not correctable. See section 7.6 for details on correction

cycle.

7.7.3 Interrupt Clearing
The INT pin will be forced inactive high any time the status

register is read. If an interrupt condition arises during a

status read, an interrupt will be generated as soon as the

status read is finished. INT pin will also be deactivated by

setting the internal Reset bit (RES) or asserting the external

RESET pin. Clearing the RED bit in Drive Command register

will not deactivate an interrupt.

7.8 ADDITIONAL OPERATIONS

7.8.1 Data Recovery Using the Interlock
Feature
The potential use of the interlock feature is in recovering

data from a sector with an unreadable header or ID field. It

is assumed that the number of the sector physically preced-

ing the bad sector on the disk is known. A single-sector

operation will be performed on these sectors, and the Drive

Command Register will be changed in between them. The

following steps will recover the data.

Step 1. The header bytes of the physical sector preceding

the desired sector are loaded into the relevant header byte

pattern registers.

Step 2. The OC Register must be loaded with the EI, EHI, IR

bits set. This enables the Header Complete interrupt as well

as the interlock feature.

Step 3. The DC register is loaded for a single-sector, com-

pare header/check data operation.

Step 4. After the header complete interrupt, the DC register

must be loaded with an Ignore Header/Read data opera-

tion, and the Interlock Register (HBC) written to. If the con-

trolling microprocessor fails to write to the HBC register be-

fore the end of the data field of the first sector, a Late Inter-

lock error (LI bit in the Error Register) will be flagged, and

the operation will be terminated with an interrupt.

Step 5. When the HMC interrupt occurs on the second sec-

tor, the Interlock (HBC) Register must be written to again to

avoid a LI error.

Step 6. The operation will terminate normally when the data

from the badly labeled sector has been read.

Figure 7.23 shows the data recovery algorithm.
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FIGURE 7.22 Interrupt Servicing
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7.8.2 The Header Failed Although Sector
Matched (HFASM) Function
The Header Failed Although Sector Matched, HFASM func-

tion can be used to perform some disk maintenance and

diagnostic functions. The HFASM function (pronounced

H-fazzzm) has been described very basically in section

5.1.1 and 5.1.3. In this section, an attempt is made to pro-

vide a more detailed description and some example uses.

The HFASM function is essentially an Error that can be en-

abled by setting the EHF bit in any one or more Header

Control Registers. When this bit for any header byte is en-

abled, and a Compare Header Operation is performed, the

HFASM Error will be generated if certain conditions are met.

The Error is generated if a header byte pattern register

matches with its disk header byte, and that header byte had

its EHF bit, and any other byte in the header fails to match.

If multiple header bytes have been enabled only one need

to match, while any other header byte does not match in

order to generate an HFASM error. The other header bytes

may or may not have their EHF bit set. Thus, this error can

tell the system when a particular type of header has been

found, even though the exact header did not match.

The HFASM error is generated only when execute a com-

mand that has a Compare header operation. Write Header,

Read Header and Ignore Header operations will not gener-

ate an HFASM error. If a Compare Header Operation, and a

Check Data Operation form the command is executed and

an HFASM error is generated, no data is transferred to the

system, but the DDC will load the Header into the FIFO. If a

multi-sector operation was in progress the HFASM Error be-

ing set will terminate the operation. If the HASM Error is set,

but the sector has a CRC error as well, the DDC will termi-

nate the command with both bits set.

This command can be used for various tasks. For example,

if the sector’s sector number byte has the EHF bit set for all

read and write operations, no HFASM error should occur. If

one does occur then the system knows that the correct sec-

tor number was found, and the reason the correct sector

was not found was because of a seek error (head on wrong

track); the header was marked bad (and the DDC is looking

only for good headers); the wrong head was selected; or

some other header parameter was incorrect.

Another example suppose that the header byte that is des-

ignated as the sector’s sector number has its EHF bit set, as

before. The system wants to find sector one, but does not

know the other header information. If a Compare Header-

Check Data Command is executed, an HFASM error the

FIFO will be loaded with the actual header that has a sector

number of one. The system can then determine what the

status/flag information is (is it a bad sector or a good one

etc?) or which cylinder the head is on.

A third possibility, would be to find specific sectors that

might have their flag header bytes indicating a bad sector.

The EHF bit of the header byte designated for the flag

should have its EHF bit set. In this case if a Compare head-

er-Check data is performed using the interlock mode and

starting on the sector, all the bad sectors can be identified.

In general the HFASM function is a subtle but powerful tool

to enable some diagnostics, and provides to a limited de-

gree the ability for a user definable error condition.

TL/F/8663–G2

FIGURE 7.23. Data Recovery Using

Interlock Feature
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APPENDIX: DISK DATA CONTROLLER COMMAND FLOW CHARTS

The design guide has covered the general ways that the

DDC can execute the various operations. However, it is im-

possible to account for all possible design situations in the

guide. To attempt to provide information which the designer

can utilize to determine how the controller might behave in

various situations, the figures in this section outline the com-

mand flow for the disk operations. All header and data oper-

ations are covered, and DMA operations are excluded ex-

cept to the extent that information must be loaded/unload-

ed from the FIFO to ensure no overflow or underflow oc-

curs. Other than this DMA operation occurs independently

(and concurrently) to the actual disk operations.

The command flow that the DDC executes is divided into

header and data operations. In addition to this there are

several operations that are performed concurrently, these

are shown in the flow charts as special sections and are

labelled as concurrent operations.Figures A.1 toA.13 cover

the header operation and Figures A.14 to A.18 cover the

data operations. These are described below.

A.1 START OF COMMAND
After a reset, the DDC is in the standby mode waiting for a

command. In this mode the DDC is waiting for a command,

and once a command is loaded the controller starts its oper-

ation. The first major task is to start the DMA transfer to the

FIFO if a write data operation is desired. This will start a

concurrent task for the DMA controller that will be executed

throughout the write data operation. Note that this is shown

inFigure A.2 as a separate dotted outlined block. Otherwise

the rest of Figure A.1 sets up for the header operation, in-

cluding when to start this operation.

A.2 WRITE HEADER OPERATION
In Figure A.3 a Write Header operation is assumed. The first

test is whether the data output is to be MFM or NRZ. If

MFM, the precompensation may be enabled if NRZ, Figure
A.4 is executed. The first steps taken by the DDC are to

write the preamble, address mark bytes, and the sync bytes

if desired. Also, if the CRC/ECC is to encapsulate both

header and sync fields than it is turned on, otherwise it will

be turned on later.

Figure A.4, A.5, and A.6 complete the write header opera-

tion. First the CRC/ECC is enabled, then the header bytes

are written. There are various options on how to do this and

they are shown in this figure. Finally the CRC/ECC fields are

written to the disk. This includes the internal one, and/or an

external field if desired. The last task is to write the header

postamble field.

At entry point D, a standard end to the header operation is

shown. This is used by other header operations. Here the

header match bit is set and if interrupts are enabled, the

Header completion interrupt is issued. If the operation is a

multi-sector operation, then the Number of Sector Opera-

tions counter and the Start Sector register are updated. If

the last operation then the DDC is ready for the next com-

mand and will start the data operation.

A.3 NON-WRITE HEADER OPERATION
For a read or ignore header operation, the entry point in

Figure A.7 is H. First the operation waits to start based on

the internally programmed mode and the receipt of an index

or sector pulse. Then Read Gate is asserted, and the DDC

searches for the sync or address mark fields. Once all the

sync and address mark fields match, the DDC can perform

the Header operation. Figure A.5 . If encapsulation of the

CRC/ECC was enabled then CRC/ECC calculation will be-

gin at the address mark field.

If not already active, the CRC/ECC is activated, and the

DDC starts operating on the header information. If the data

operation is a check data or the header operation is a read

header (the later is shown in Figure A.11), then the header

bytes are loaded into the FIFO. If the operation is a com-

pare header, the header bytes are compared to the regis-

ters or start sector register. Next the CRC/ECC is checked.

If it is in error then the header fault flag is set, however the

operation is not aborted. If there is a CRC/ECC error or the

header did not match, the DDC then looks for the next sec-

tor. If the correct header is found then, the DDC will deas-

sert read gate to avoid the write splice, and will proceed to

execute a data operation.

A.4 WRITE DATA OPERATION
For a write data operation, the write gate is asserted, and an

algorithm similar to the write header operation is executed.

MFM or NRZ data output is configured, and the start with

address mark mode is checked. Address mark, preamble

and sync fields are written Figure A.14. If needed the CRC/

ECC generator is enabled when the Address Mark is written.

Just prior to writing data, the CRC/ECC will be enabled, if it

is not already. Then data is written to the disk from the FIFO

or the Format pattern register. Once the data is written, the

CRC/ECC is written, followed by the data postamble. If the

operation is not a format operation then write gate is deas-

serted, and interrupts may be generated. If the operation is

a format operation, the post sector gap is written, as shown

in Figure A.16.

The operation then is completed and the DDC will check to

see if the command was a multisector one or if a new com-

mand has been entered. If so then a new command is start-

ed immediately, and this is shown by jumping to entry point

V in Figure A.1 .

A.5 NON-WRITE DATA OPERATION
The flow chart for a read data or check data operation is

shown in Figure A.17. After the header postamble, read

gate is asserted. The DDC first configures when the CRC/

ECC calculation should begin. It then begins checking the

address mark and sync fields. If an error occurs the opera-

tion is aborted. Otherwise if the operation is a read data, the

data is sent to the FIFO, and the CRC/ECC is checked.

If the operation is a check data command, the data field is

not transferred or checked, and the DDC just counts this

field and checks the CRC/ECC. At exit point U on Figure
A.18 the end of the data operation jumps to Figure A.16,

where the interrupts may be generated if enabled and the

DDC checks for another command.
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FIGURE A.1. Flow Chart for Start of a Command
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(a) Concurrent Operation 1

TL/F/8663–G5

(b) Concurrent Operation 3

FIGURE A.2. Concurrent Operations for the Start of a Command
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FIGURE A.3. Flow Chart for First Half of Write Header Operation
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FIGURE A.4. Flow Chart for First Half of Write Header NRZ Operation
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FIGURE A.5. Flow Chart for Second Part of a Write Header Operation
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FIGURE A.6. Flow Chart for Third Part of a Write Header Operation and Ending Sequence for Other Header Operations
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FIGURE A.7. Flow Chart for First Part of Non-Write Header Operation and Retry Header
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FIGURE A.8. Flow Chart for Second Part of Non-Write Header Operation
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FIGURE A.9. Flow Chart for Third Part of Non-Write Header Operation (Except Compare Header)
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FIGURE A.10. Flow Chart for Fourth Part of Non-Write Header Operation (Except Compare Header)
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FIGURE A.11. Flow Chart for Compare Header Operation
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FIGURE A.12. Flow Chart for Compare Header Concurrent Operation
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FIGURE A.13. First Part of Data Operation Flow Chart, MFM Mode (Up to Data Sync Field)
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FIGURE A.14. First Part of Data Operation Flowchart, NRZ Mode (Up to Data Sync Field)
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FIGURE A.15. Second Part of Data Operation (for Write Data Operation)
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FIGURE A.16. Flow Chart for Third Part of Write Data Operation
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FIGURE A.17. First Part of Data Operation Flow Chart for Non-Write Operation
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FIGURE A.18. Second Part of Data Operation Flowchart for Non-Write Operation
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APPENDIX

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.
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