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CONVOLUTION: Digital
Signal Processing

Introduction

As digital signal processing continues to emerge as a major

discipline in the field of electrical engineering, an even

greater demand has evolved to understand the basic theo-

retical concepts involved in the development of varied and

diverse signal processing systems. The most fundamental

concepts employed are (not necessarily listed in the order

of importance) the sampling theorem[1], Fourier transforms
[2] [3], convolution, covariance, etc.

The intent of this article will be to address the concept of

convolution and to present it in an introductory manner

hopefully easily understood by those entering the field of

digital signal processing.

It may be appropriate to note that this article is Part II (Part I

is titled ‘‘An Introduction to the Sampling Theorem’’) of a

series of articles to be written that deal with the fundamental

concepts of digital signal processing.

Let us proceed . . . .

Part II Convolution

Perhaps the easiest way to understand the concept of con-

volution would be an approach that initially clarifies a sub-

ject relating to the frequency spectrum of linear networks.

Determining the frequency spectrum or frequency transfer

function of a linear network provides one with the knowl-

edge of how a network will respond to or alter an input

signal. Conventional methods used to determine this entail

the use of spectrum analyzers which use either sweep gen-

erators or variable-frequency oscillators to impress upon a

network all possible frequencies of equal amplitude and

equal phase.

The response of a network to all frequencies can thus be

determined. Any amplitude and phase variations at the out-

put of a network are due to the network itself and as a result

define the frequency transfer function.

Another means of obtaining this same information would be

to apply an impulse function to the input of a network and

then analyze the network impulse-response for its spectual-

frequency content. Comparison of the network-frequency

transfer function obtained by the two techniques would yield

the same information.

This is found to be easily understood (without elaborate ex-

perimentation) if the implications of the impulse function are

initially clarified.

If the pulse of Figure 1a is examined, using the Fourier inte-

gral, its frequency spectrum is found to be

F(0) e #%

b%

f(t) f bj0t dt (1)

e #T/2

bT/2
A f bj0t dt (2)

F(0) e AT %
sin #0T

2 J#0T

2 J –
as shown in Figure 1b.

Decreasing the pulse width while increasing the pulse

height to allow the area under the pulse to remain constant,

Figure 1c, shows from eq(1) and eq(2) the bandwidth or

spectral-frequency content of the pulse to have increased,

Figure 1d.

Further altering the pulse to that ofFigure 1e provides for an

even broader bandwidth, Figure 1f . If the pulse is finally al-

tered to the limit, i.e., the pulsewidth being infinitely narrow

and its amplitude adjusted to still maintain an area of unity

under the pulse, it is found in 1g and 1h the unit impulse

produces a constant, or ‘‘flat’’ spectrum equal to 1 at all

frequencies. Note that if ATe1 (unit area), we get, by defini-

tion, the unit impulse function in time.

Since this time function contains equal frequency compo-

nents at all frequencies, applying it or a good approximation

of it to the input of a linear network would be the equivalent

of simultaneously impressing upon the system an array of

oscillators inclusive of all possible frequencies, all of equal

amplitude and phase. The frequencies could thus be deter-

mined from this one input time function. Again, variations in

amplitude and phase at the system output would be due to

the system itself.

Empirically speaking the frequency spectrum or the network

frequency transfer function can thus be determined by ap-

plying an impulse at the input and using, for example, a

spectrum analyzer at the network output. At this point, it is

important to emphasize that the above discussion holds

true for only linear networks or systems since the superposi-

tion principle (The response to a sum of excitations is equal

to the sum of the responses to the excitations acting sepa-

rately), and its analytical techniques break down in non-lin-

ear networks.

Since an impulse response provides information of a net-

work frequency spectrum or transfer function, it additionally

provides a means of determining the network response to

any other time function input. This will become evident in

the following development.

If the input to a network, Figure 2, having a transfer function

H(0) is an impulse function e(t) at te0, its Fourier transform

using eq(1) can be found to be F(0)e1.

The output of the network G(0) is therefore

G(0) e H(0) # F(0)

G(0) e H(0)

The inverse transform is

g(t) e h(t)

and h(T) is defined as the impulse response of the network

as a result of being excited by a unit impulse time function at

te0.

Extending this train of thought further, the response of a

network to any input excitation can be determined using the

same technique.

C1995 National Semiconductor Corporation RRD-B30M115/Printed in U. S. A.



TL/H/5621–1

FIGURE 1. Development of a unit impulse;

(a) (c) (e) (g) its time function

(b) (d) (f) (h) its frequency spectrum

Hence, finding the Fourier transform of the input excitation,

F(0), multiplying it by the transfer function transform H(0)

(or the transform of time domain network impulse response)

and inverse transforming to find the output g(t) as a function

of time.

By definition the convolution integral1

f(t) * h(t) e #t

0
f(u) h(t b u) du (3)

(where * denotes the convolution operation, h(t) denotes

the impulse response function described above and both f(t)

and h(t) are zero for tk0. Note that the meaning of the

variables t and u will be clarified, later in the article) makes

the same claim but in the realm of the time domain alone.

If this is true then the Fourier transform of the convolution

integral eq(3) should have the following equivalence b

F Ð #t

0
f(u) h(t b u) du ( e F(0) # H(0) (4)

As a proof using eq(1) let

F Ð f(t) * h(t) ( e #%

0
f bj0t Ð #t

0
f(u) h(t b u) du ( dt(5)

Defined by the shifted step function

u(t b u) e 1 for u s t (6a)

and

u(t b u) e 0 for u l t (6b)

Footnote:

1. It is important to note that the convolution integral is com-

mutative. This implies the reversability of the f(t) and h(t)

terms in the definition.

g(t) e #%

b%

f(u) h(t b u) du e Fb1[F(0) # H(0)]

#%

b%

f(t b u) h(u) du e Fb1[H(0) # F(0)]

2
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H(0)eHa(0) # Hb(0)

G(0)

F(0)
e H(0)

FIGURE 2. Block diagram of a network transfer function

the following identity can be made#t

0
f(u) h(t b u) du e #%

0
f(u) h(t b u) u(t b u) du (7)

Rewriting eq(5) as

F[f(t) * h(t)] e #%

0
fbj0t #%

0
f(u) h(t b u) u(t b u) dudt (8)

and letting x e t b u so that

fbj0t e fbj0(x a u) (9)

eq(8) finally becomes

F[f(t) * h(t)] e #%

0 #%

0
f(u) h(x) u(x) fbj0tfbj0x dudx

e #%

0
h(x) u(x) *fbj0x dx #%

0
f(u) fbj0u du

F[f(t)*h(t)]eH(0) # F(0) (10)

which is the equivalent of eq(4).

In essence the above proof describes one of the most im-

portant and powerful tools used in signal processing . . . .

the convolution theorm. In words,

Convolution Theorem:

The convolution theorem allows one to mathemati-

cally convolve in the time domain by simply multi-

plying in the frequency domain. That is, if f(t) has

the Fourier transform F(0) and x(t) has the Fourier

transform X(0), then the convolution f(t) * x(t) has

the Fourier transform F(0) # X(0).

For the time convolution

f(t) * x(t) wx F(0) # X(0) (11)

and the dual frequency convolution is

f(t) # x(t) wx F(0) * X(0) (12)

Convolutions are fundamental to time series sampled data

analysis. First of all, as described earlier all linear networks

can be completely characterized by their impulse response

functions and furthermore the response to any input is given

by its (the input function) convolution with the network im-

pulse response function. Digit filters being linear systems

accomplish the filtering task using convolutions. A network

or filter transfer function for example can be represented by

its inpulse response in the form of a Fourier series. A filtered

input excitation response can then be found by convolving

the input time function with the network Fourier series or

impulse response. With the aid of a high speed computer

the same result could be obtained by storing the FFT (Fast

Fourier Transform) of the network impulse response into

memory, performing an FFT on the sampled continuous in-

put excitation function, multiplying the two transforms and

finally computing the inverse FFT of the product.

Moving averages and smoothing operations can further be

characterized as lowpass filtering functions and can addi-

tionally be implemented using convolution. The above are

just a few of the many operations convolution performs and

the remainder of this discussion will focus on how convolu-

tion is realized.

To start with, an illustrative analysis will be performed as-

suming continuous functions followed by one performed in

discrete form similar to that realized in computer aided sam-

pled-data systems techniques.

As an example, if it were desired to determine the response

of a network to the excitation pulse f(t) shown in Figure 3a,

knowing the network impulse he(t), Figure 3b, the impulse

response of an RC network, would allow one to determine

the output g(t) using the convolution integral, eq(3).

The convolution of f(t) and he(t)

f(t)e10[u(t)b(u(tbTo)] (13)

he(t)efbat

could be obtained by first substituting the dummy variable

t bu for t in he(t) so that

he(tbu)efba(tbu) (15)

By definition g(t)ef(t) * he(t) thus becomes

#t

0
f(u)he(tbu)due#t

0
10[u(t)bu(tbTo)]fba(tbu) du (16)

TL/H/5621–3

f(t)e10[u(t)bu(t bTo)]

(a)

TL/H/5621–4

he(t)efbat

(b)

FIGURE 3. (a) rectangular pulse excitation

(b) impulse response of a single RC network
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(c)

FIGURE 3. (c) output or convolution of the network (b) excited by (a)

Since the piecewise nature of the excitation makes it conve-

nient to calculate the response in corresponding pieces the

output is found to be

0 k t s To

g(t) e f(t) he(t) e #t

0
10fba(t b u) du

e 10(1 b fbat) (17)

t t To

g(t) e f(t)*he(t) e #To

0
10fba(t b u) du

e 10fbat (fau
o b 1) (18)

The output response g(t) is plotted in Figure 3c and is clear-

ly what might be expected from a simple RC network excit-

ed by a rectangular pulse.

Though simplistic in its nature, the analysis of the above

example quickly becomes unrealistically cumbersome when

complex excitation and impulse response functions are

used. Turning to a numerical evaluation of the convolution

integral may perhaps be the most desirable method of real-

ization. Prior to a numerical development however, an intui-

tive graphical illustration of convolution will be presented

which should make discrete numeric convolution easily un-

derstood.

The convolution integral Ð

#t

0
f(u) he(t b u) du

defines the graphical procedure. Using the same example

depicted in Figure 3 the excitation and impulse response

functions replaced with the dummy variable is defined as

past data or historical information to be used in a convolu-

tion process. Thus

f(u)e10[u(u)bu(ubTo)] (19)

and

he(u)efbau (20)

are shown inFigure 4a andb.Figure 4c, he(bu), represents

the impulse response folded over [mirror image of he(u)]
about the ordinate and Figure 4d, he(tbu), is simply the

function he(bu) time shifted by the quantity t.

Evaluation of the convolution integral is performed by multi-

plying f(u) by each incremental shift in he(tbu). It is under-

stood in Figure 4e that a negative value of bt produces no

output. For t l O however as the present time t varies, the

impulse response he(tbu) scans the excitation function f(u),

always producing a weighted sum of past inputs and weigh-

ing most heavily those values of f(u) closet to the present.

As seen in Figures 4e through4n, the response or output of

the network at anytime t is the integral of the functions or

calculated shaded area under the curves. In terms of the

superposition principle the filter response g(t) may be inter-

preted as being the weighted superposition of past input f(u)

values weighted or multiplied by he(tbu).

An extension of the continuous convolution to its numerical

discrete form is made and shown in Figure 5. Again the

excitation and impulse response of Figure 3 are used and

are further represented as two finite duration sequences f(n)

IMPULSE RESPONSE EXCITATION

TL/H/5621–6

FIGURE 4. a) he(u): network impulse response

b) f(u): excitation function
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FIGURE 4. cont’d c) he(bu): he(u) folded about the ordinate

d) he(tbu): he(r) folded and shifted

e) through n) the output response g(t) of the network whose

impulse response he(u) is excited by a function f(u).

Or the convolution, f(u)*he(t), of f(t) with he(t).

5
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FIGURE 5. Illustrative description of discrete convolution

and he(n) respectively, Figures 5a and b.

It is observed additionally that the duration of f(n) is Nae7

samples [f(n) is nonzero for the interval 0 s n s Na b1 and

the duration of he(n) is Nbe8 samples [he(n) is nonzero for

the interval 0 s n s Nb b1]. The sequence g(n), a discrete

convolution, can thus be defined as

g(n) e &n

x e 0

f(x) he(n b x) (21)

having a finite duration sequence of NaaNbb1 samples,

Figure 5h. The convolution using numerical integration (area

under the curve) can be defined as

g(n)T e T &n

x e 0

f(x) he(n b x) (22)

where T is the sampling interval used to obtain the sampled

data sequences.

If f(n) and he(n) were next considered to be periodic se-

quences and a convolution was desired using either shifting

techniques or performing an FFT on the excitation and im-

pulse response sequences and finally inverse FFT trans-

forming to achieve the output response, some care must be

taken when preparing the convolving sequences. From Fig-
ure 5h it is observed that the convolution is completed in a

NaaNbb1 point sequence. To acquire the nonoverlapping

or nondistorted periodic sequence of Figure 6c the convolu-

tion thus requires f(n) and he(n) to be NaaNbb1 point se-

quences. This is achieved by appending the appropriate

number of zero valued samples, also known as zero filling,

to f(n) and he(n) to make them both NaaNbb1 point se-

quences. The undistorted and correct convolution can now

be performed using the zero filled sequences Figure 6a and

6b to achieve 6c.

6
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FIGURE 6. Linear periodic discrete convolution of f(n) and he(n), f(n)*he(n).

A Final Note

This article attempted to simplify the not-so-obvious con-

cept of convolution by first developing the readers knowl-

edge and feel for the implications of the impulse function

and its effect upon linear networks. This was followed by a

short discussion of network transfer functions and their rela-

tive spectrum. Having set the stage, the convolution integral

and therorem were introduced and supported with an ana-

lytical and illustrative example. This example showed how

the response of a simple RC network excited by a rectangu-

lar pulse could be determined using the convolution integral.

Finally, two examples of discrete convolution were present-

ed. The first example dealt with finite duration sequences

and the second dealt with periodic sequences. Additionally,

precautions in the selection on n-point sequences was dis-

cussed in the second example to alleviate distorting or

spectually overlapping the excitation and impulse response

functions during the convolution process.

7
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