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With rapid advancement in data acquistion technology (i.e.

analog-to-digital and digital-to-analog converters) and the

explosive introduction of micro-computers, selected com-

plex linear and nonlinear functions currently implemented

with analog circuitry are being alternately implemented with

sample data systems.

Though more costly than their analog counterpart, these

sampled data systems feature programmability. Additionally,

many of the algorithms employed are a result of develop-

ments made in the area of signal processing and are in

some cases capable of functions unrealizable by current

analog techniques.

With increased usage a proportional demand has evolved to

understand the theoretical basis required in interfacing

these sampled data-systems to the analog world.

This article attempts to address the demand by presenting

the concepts of aliasing and the sampling theorem in a

manner, hopefully, easily understood by those making their

first attempt at signal processing. Additionally discussed are

some of the unobvious hardware effects that one might en-

counter when applying the sampled theorem.

With this . . . let us begin.

I. An Intuitive Development

The sampling theorem by C.E. Shannon in 1949 places re-

strictions on the frequency content of the time function sig-

nal, f(t), and can be simply stated as follows:

In order to recover the signal function f(t) exactly, it is

necessary to sample f(t) at a rate greater than twice

its highest frequency component.

Practically speaking for example, to sample an analog sig-

nal having a maximum frequency of 2Kc requires sampling

at greater than 4Kc to preserve and recover the waveform

exactly.

The consequences of sampling a signal at a rate below its

highest frequency component results in a phenomenon

known as aliasing . This concept results in a frequency mis-

takenly taking on the identity of an entirely different frequen-

cy when recovered. In an attempt to clarify this, envision the

ideal sampler of Figure 1(a) , with a sample period of T

shown in (b), sampling the waveform f(t) as pictured in (c).

The sampled data points of f’(t) are shown in (d) and can be

defined as the sample set of the continuous function f(t).

Note in Figure 1(e) that another frequency component, a’(t),

can be found that has the same sample set of data points

as f’(t) in (d). Because of this it is difficult to determine which

frequency a’(t), is truly being observed. This effect is similar

to that observed in western movies when watching the
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FIGURE 1. When sampling, many signals may be found

to have the same set of data points. These are called

aliases of each other.

spoked wheels of a rapidly moving stagecoach rotate back-

wards at a slow rate. The effect is a result of each individual

frame of film resembling a discrete strobed sampling opera-

tion flashing at a rate slightly faster than that of the rotating

wheel. Each observed sample point or frame catches the

spoked wheel slightly displaced from its previous position

giving the effective appearance of a wheel rotating back-

wards. Again, aliasing is evidenced and in this example it

becomes difficult to determine which is the true rotational

frequency being observed.
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FIGURE 2. Shown in the shaded area is an ideal, low pass, anti-aliasing filter response.

Signals passed through the filter are bandlimited to frequencies no greater than the

cutoff frequency, fc. In accordance with the sampling theorem, to recover the

bandlimited signal exactly the sampling rate must be chosen to be greater than 2fc.

On the surface it is easily said that anti-aliasing designs can

be achieved by sampling at a rate greater than twice the

maximum frequency found within the signal to be sampled.

In the real world, however, most signals contain the entire

spectrum of frequency components; from the desired to

those present in white noise. To recover such information

accurately the system would require an unrealizably high

sample rate.

This difficulty can be easily overcome by preconditioning the

input signal, the means of which would be a band-limiting or

frequency filtering function performed prior to the sample

data input. The prefilter, typically called anti-aliasing filter

guarantees, for example in the low pass filter case, that the

sampled data system receives analog signals having a

spectral content no greater than those frequencies allowed

by the filter. As illustrated in Figure 2, it thus becomes a

simple matter to sample at greater than twice the maximum

frequency content of a given signal.

A parallel analog of band-limiting can be made to the world

of perception when considering the spectrum of white light.

It can be realized that the study of violet light wavelengths

generated from a white light source would be vastly simpli-

fied if initial band-limiting were performed through the use of

a prism or white light filter.

II. The Sampling Theorem

To solidify some of the intuitive thoughts presented in the

previous section, the sampling theorem will be presented

applying the rigor of mathematics supported by an illustra-

tive proof. This should hopefully leave the reader with a

comfortable understanding of the sampling theorem.

Theorem: If the Fourier transform F(0) of a signal function

f(t) is zero for all frequencies above l0l t 0c,

then f(t) can be uniquely determined from its

sampled values

fn e f(nT) (1)

These values are a sequence of equidistant sam-

ple points spaced
1

2fc
e

Tc

2
e T apart. f(t) is thus

given by

f(t) e &%
n e b%

f(nT)
sin 0c (t b nT)

0c (t b nT)
(2)

Proof: Using the inverse Fourier transform formula:

f(t) e

1

2q #%

b%

F(0)f j0t
d0 (3)

the band limited function, f(t), takes the form, Figure 3a,

f(t) e

1

2q #0c

b0c

F(0)f j0t
d0 (4)

fn e f#n
q

0cJ is then given as

fn e

1

2q #0c

b0c

F(0)f
j0

nq

0c d0 (5)

See Figure 3c and e.

Expressing F(0) as a Fourier series in the interval b0c s 0
s 0c we have

F(0) e &%
n e b%

Cnf
bj0

nq

0c (6)

2



Where,

Cn e

1

20c #0c

b0c

F(0)f
j0

nq

0c d0 (7)

Further manipulating eq. (7)

Cn e

2q

20c

1

2q #0c

b0c

F(0)f
j0

nq

0c d0 (8)

Cn can be written as

Cn e

q

0c
fn (9)

Substituting eq. (9) into eq. (6) gives the periodic Fourier

Transform

FP(0) e &%
n e b%

q

0c
fnf

bj0
nq

0c
(10)

of Figure 3f . Using Poisson’s sum formula1 F(0) can be

stated more clearly as

F(0) e &%
n e b%

F(0 b 2n0c) (11)

Interestingly for the interval b0c s 0 s 0c the periodic

function Fp(0) and Figure 3f . equals F(0) and Figure 3b.

respectively. Analogously if Fp(0) were multiplied by a rec-

tangular pulse defined,

H(0) e 1 b0c s 0 s 0 (12)

and

H(0) e 0 l0l t 0C (13)

then as pictured in Figures 4b, d , and f ,

F(0) e H(0) # FP(0) e H(0) &%
n e b%

q

0c
fnf

bj0
nq

0c (14)

Solving for f(t) the inverse Fourier transform eq (3) is applied

to eq (14)

f(t) e

1

2q #0c

b0c

F(0)f j0t d0 (3)

e

1

2q #0c

b0c %H(0) &%
n e b%

q

0c
fnf

bj0
nq

0c – f

j0t

d0

e &%
n e b%

fn
1

20c #0c

b0c

f
j0 # t b

nq

0 J d0

1Poisson’s sum formula

1

T &%
n e b%

F(0 b n0s) e &%
n eb%

f(nT)f

bj0nT

where T e

1

fs
and fs is the sampling frequency

TL/H/5620–3

FIGURE 3. Fourier transform of a sampled signal.
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FIGURE 4. Recovery of a signal f(t) from sampled data information.

giving

f(t) e &%
n e b%

fn

sin 0c # t b

nq

0c J
0c # t b

nq

0c J (15)

Eq (15) is equivalent to eq (2) as is illustrated in Figure 4e
and Figure 3a respectively.

As observed in Figures 3 and 4, each step of the sampling

theorem proof was also illustrated with its Fourier transform

pair. This was done to present alternate illustrative proofs.

Recalling the convolution2 theorem, the convolution of

F(0), Figure 3b, with a set of equidistant impulses, Figure
3d, yields the same periodic frequency function Fp(0), Fig-
ure 3f , as did the Fourier transform of fn, Figure 3e, the

product of f(t), Figure 3a, and its equidistant sample impul-

ses, Figure 3c.

In the same light the original time function f(t), Figure 4e,

could have been recovered from its sampled waveform by

convolving fn, Figure 4a, with h(t), Figure 4c, rather than

multiplying Fp(0), Figure 4b, by the rectangular function

H(0), Figure 4d, to get F(0), Figure 4f , and finally inverse

transforming to achieve f(t), Figure 4e, as done in the math-

ematic proof.

III. Some Observations and Definitions

If Figures 3f or 4b are re-examined it can be noted that the

original spectrum Fp(0), l0l s 0c, and its images Fp(0),

l0l t 0c, are non-overlapping. On the other hand Figure 5
illustrates spectral folding, overlapping or aliasing of the

spectrum images into the original signal spectrum. This ali-

asing effect is, in fact, a result of undersampling and further

causes the information of the original signal to be indistin-

guishable from its images (i.e.Figure 1e). FromFigure 6 one

can readily see that the signal is thus considered non-recov-

erable.

The frequency lfcl ofFigure 3f and4b is exactly one half the

sampling frequency, fcefs/2, and is defined as the Nyquist

frequency (after Harry Nyquist of Bell Laboratories). It is

also often called the aliasing frequency or folding frequency

for the reasons discussed above. From this we can say that

in order to prevent aliasing in a sampled-data system the

sampling frequency should be chosen to be greater than

twice the highest frequency component fc of the signal be-

ing sampled.

By definition

fs t 2fc (16)

Note, however, that no mention has been made to sample

at precisely the Nyquist rate since in actual practice it is
2 The convolution theorem allows one to mathematically convolve in the

time domain by simply multiplying in the frequency domain. That is, if f(t) has

the Fourier transform F(0), and x(t) has the Fourier transform X(0), then the

convolution f(t)*x(t) has the Fourier transform F(0)#X(0).

f(t) * x(t) Ý F(0) # X(0)

f(t) # x(t) Ý F(0) * X(0)
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FIGURE 5. Spectral folding or aliasing caused by:

(a) under sampling

(b) exaggerated under sampling.

TL/H/5620–6

FIGURE 6. Aliased spectral envelope (a) and (b) of

Figures 5a and 5b respectively.

TL/H/5620–7

FIGURE 7. Generalized single channel sample data system.

impossible to sample at fs e 2fc unless one can guarantee

there are absolutely no signal components above fc. This

can only be achieved by filtering the signal prior to sampling

with a filter having infinite rolloff . . . a physical impossibility,

see Figure 2.

IV. The Sampling Theorem and Its Hardware

Implications

Though there are numerous sophisticated techniques of im-

plementation, it is appropriate to re-emphasize that the in-

tent of this article is to give the first time user a basic and

fundamental approach toward the design of a sampled-data

system. The method with which to achieve this goal will be

to introduce a few of the common perils encountered when

implementing such a system. We begin by considering the

generalized block diagram of Figure 7.

As shown inFigure 7, prior to any signal processing manipu-

lation the analog input signal must be preconditioned to pre-

vent aliasing and thereafter digitized to logic signals usable

by the logic function block. The antialiasing and digitizing

functions are performed by an input filter and analog-to-digi-

tal converter respectively. Once digitized the signal can then

be altered or processed and upon completion, reconstruct-

ed back to a continuous analog signal via a digital-to-analog

converter followed by a smoothing filter.

To this point no mention has been made concerning the

sample and hold circuit block depicted in Figure 7. In gener-

al the analog-to-digital converter can operate as a stand

alone unit. In many high speed operations however, the

converter speed is insufficient and thus requires the assist-

ance of a sample and hold circuit. This will be discussed in

detail further in the article.

A. The Antialiasing Input Filter

As indicated earlier in the text, the antialiasing filter should

band-limit the input signal’s spectrum to frequencies no

greater than the Nyquist frequency. In the real world howev-

er, filters are non-ideal and have typical attenuation or band-

limiting and phase characteristics as shown in Figure 8.3 It

must also be realized that true band-limiting of a specific

frequency spectrum is not possible. In the sample data sys-

tem band-limiting is achieved by attenuating those frequen-

cies greater than the Nyquist frequency to a level undetect-

able or invisible to the system analog-to-digital (A/D) con-

verter. This level would typically be less than the rms quanti-

zation4 noise level defined by the specific converter being

used.

3In order not to disrupt the flow of the discussion a list of filter terms has

been presented in Appendix A.

4For an explanation of quantization refer to section IV. B. of this article.
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As an example of how an antialiasing filter would be applied,

assume a sample data system having within it an 8-bit A/D

converter. Eight bits translates to 2ne28e256 levels of

resolution. If a 2.56 volt reference were used each quantiza-

tion level, q, would represent the equivalent of 2.56 volts/

256e10 millivolts. Realizing this the antialiasing filter would

be designed such that frequencies in the stopband were

attenuated to less than the rms quantization noise level of

q/203 and thus appearing invisible to the system. More spe-

cifically

b20 log10
V full scale

Vq/2S3

j b59 dB e AMIN

It can be seen, for example in the Butterworth filter case

(characterized as having a maximally flat pass-band) of Fig-
ure 9a that any order of filter may be used to achieve the
b59 dB attenuation level, however, the higher the order,

the faster the roll off rate and the closer the filter magnitude

response will approach the ideal.

Referring back toFigure 8 it is observed that those frequen-

cies greater than 0a are not recognized by the A/D convert-

er and thus the sampling frequency of the sample data sys-

tem would be defined as 0s t 20a. Additionally, the fre-

quencies present within the filtered input signal would be

those less than 0a. Note however, that the portion of the

signal frequencies least distorted are those between 0eO

and 0p and those within the transition band are distorted to

a substantial degree, though it was originally desired to limit

the signal to frequencies less than the cutoff 0p, because of

the non-ideal frequency response the true Nyquist frequen-

cy occurred at 0a. We see then that the sampled-data sys-

tem could at most be accurate for those frequencies within

the antialiasing filter passband.

From the above example, the design of an antialiasing filter

appears to be quite straight forward. Recall however, that all

waveforms are composed of the sums and differences of

various frequency components and as a result, if the re-

sponse of the filter passband were not flat for the desired

signal frequency spectrum, the recovered signal would be

an inaccurate summation of all frequency components al-

tered by their relative attenuations in the pass-band.

Additionally the antialiasing filter design should not neglect

the effects of delay. As illustrated in Figure 8 and 9b, delay

time corresponds to a specific phase shift at a particular

frequency. Similar to the flat pass-band consideration, if the

phase shift of the filter is not exactly proportional to the

frequency, the output of the filter will be a waveform in

which the summation of all frequency components has been

altered by shifts in their relative phase. Figure 9b further

indicates that contrary to the roll off rate, the higher the filter

order the more non-ideal the delay becomes (increased de-

lay) and the result is a distorted output signal.

A final and complex consideration to understand is the ef-

fects of sampling. When a signal is sampled the end effect

is the multiplication of the signal by a unit sampling pulse

train as recalled from Figure 3a, c and e. The resultant

waveform has a spectrum that is the convolution of the sig-

nal spectrum and the spectrum of the unit sample pulse

train, i.e. Figure 3b, d , and f . If the unit sample pulse has the

classical sin X/X spectrum5 of a rectangular pulse, see Fig-
ure 13, then the convolution of the pulse spectrum with the

signal spectrum would produce the non-ideal sampled sig-

nal spectrum shown in Figure 10a, b , and c.

It should be realized that because of the band-limiting or

filtering and delay response of the Sin X/X function com-

bined with the effects of the non-ideal antialiasing filter (i.e.

non-flat pass-band and phase shift) certain of the sum and

difference frequency components may fall within the de-

sired signal spectrum thereby creating aliasing errors, Fig-
ure 10c.

When designing antialiasing filters it will be found that the

closer the filter response approaches the ideal the more

complex the filter becomes. Along with this an increase in

delay and pass-band ripple combine to distort and alias the

input signal. In the final analysis the design will involve trade

offs made between filter complexity, sampling speed and

thus system bandwidth.

B. The Analog-to-Digital Converter

Following the antialiasing filter is the A/D converter which

performs the operations of quantizing and coding the input

signal in some finite amount of time. Figure 11 shows the

quantization process of converting a continuous analog in-

put signal into a set of discrete output levels. A quantization,

q, is thus defined as the smallest step used in the digital

5This will be explained more clearly in Section IV. of this article.

TL/H/5620–8

FIGURE 8. Typical filter magnitude and phase versus frequency response.
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a) Attenuation characteristics of a normalized Butterworth filter as a function of degree n.

TL/H/5620–10

b) Group delay performances of normalized Butterworth lowpass filters as a function of degree n.

FIGURE 9
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FIGURE 10. (c) equals the convolution of (a) with (b).

representation of fq(n) where f(n) is the sample set of an

input signal f(t) and is expressed by a finite number of bits

giving the sequence fq(n). Digitally speaking q is the value of

the least significant code bit. The difference signal f(n)

shown in Figure 11 is called quantization noise or error and

can be defined as f(n) e f(n) b fq(n). This error is an irredu-

cible one and is a function of the quantizing process. Its

error amplitude is dependent on the number of quantization

levels or quantizer resolution and as shown, the maximum

quantization error is lq/2l.
Generally f(n) is treated as a random error when described

in terms of its probability density function, that is, all values

of f(n) between q/2 and bq/2 are equally probable, then

for the average value f(n)avge0 and for the rms value

f(n)rmseq/203.

As a side note it is appropriate at this point to emphasize

that all analog signals have some form of noise corruption.

If for example an input signal has a finite signal-to-noise

ratio of 40dB it would be superfluous to select an A/D con-

verter with a high number of bits. It may be realized that the

use of a large number of bits does not give the digitized

signal a higher signal-to-noise ratio than that of the original

analog input signal. As a supportive argument one may say

that though the quantization steps q are very small with re-

spect to the peak input signal the lower order bits of the

A/D converter merely provide a more accurate representa-

tion of the noise inherent in the analog input signal.

Returning to our discussion, we define the conversion time

as the time taken by the A/D converter to convert the ana-

log input signal to its equivalent quantization or digital code.

The conversion speed required in any particular application

depends upon the time variation of the signal to be convert-

ed and the amount of resolution or bits, n, required. Though

the antialiasing filter helps to control the input signal time

rate of change by band-limiting its frequency spectrum, a

finite amount of time is still required to make a measure-

ment or conversion. This time is generally called the aper-

ture time and as illustrated in Figure 12 produces amplitude

measurement uncertainty errors. The maximum rate of

change detectable by an A/D converter can simply be stat-

ed as

dv

dt À
maximum resolvable
rate of change

e

V full scale

2nTconversion time
(17)

If for example V full scale e 10.24 volts, T conversion time
e 10 ms, and n e 10 or 1024 bits of resolution then the

maximum rate of change resolvable by the A/D converter

would be 1 volt/sec. If the input signal has a faster rate of

change than 1 volt/sec, 1 LSB changes cannot be resolved

within the sampling period.

In many instances a sample-and-hold circuit may be used to

reduce the amplitude uncertainty error by measuring the in-

put signal with a smaller aperture time than the conversion

time aperture of the A/D converter. In this case the

8



TL/H/5620–12

FIGURE 11. Quantization error.

TL/H/5620–13

DV: AMPLITUDE UNCERTAINTY ERROR

ta: APERTURE TIME

Dta: APERTURE TIME UNCERTAINTY

FIGURE 12. Amplitude uncertainty as a function of

(a) a nonvarying aperture and

(b) aperture time uncertainty.

maximum rate of change resolvable by the sample-and-hold

would be

dv

dt À
maximum resolvable
rate of change

e

V full scale

t aperture
(18)

Note also that the actual calculated rate of change may be

limited by the slew rate specification fo the sample-and-hold

in the track mode. Additionally it is very important to clarify

that this does not imply violating the sampling theorem in

lieu of the increased ability to more accurately sample sig-

nals having a fast time rate of change.

An ideal sample-and-hold effectively takes a sample in zero

time and with perfect accuracy holds the value of the sam-

ple indefinitely. This type of sampler is also known as a zero

order hold circuit and its effect on a sample data system

warrants some discussion.

It is appropriate to recall the earlier discussion that the

spectrum of a sampled signal is one in which the resultant

spectrum is the product obtain by convolving the input sig-

nal spectrum with the sin X/X spectrum of the sampling

waveform.Figure 13 illustrates the frequency spectrum plot-

ted from the Fourier transform

F(0) e AT

sin
0T

2

0T

2

(19)

of a rectangular pulse. The sin X/X form occurs frequently in

modern communication theory and is commonly called the

sampling function.

The magnitude and phase of a typical zero order hold sam-

pler spectrum

H(0) e A Ðu sin 0u

0u
a j

1

0
(cos 0b1) ( (20)
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TL/H/5620–14

FIGURE 13. The Fourier transform of the rectangular

pulse (a) is shown in (b).

is shown inFigure 14 andFigure 15 illustrates the spectra of

various sampler pulse-widths. The purpose of presenting

this illustrative information is to give insight at to what ef-

fects cause the aliasing described inFigure 10. FromFigure
15 it is realized that the main lobe of the sin X/X function

varies inversely proportional with the sampler pulse-width.

In other words a wide pulse-width, or in this case the aper-

ture window, acts as a low pass filtering function and

TL/H/5620–15

FIGURE 14. Sampling Pulse (a), its Magnitude (b) and

Phase Response (c).

limits the amount of information resolvable by the sample

data system. On the other hand a narrow sampler pulse-

width or aperture window has a broader main lobe or band-

width and thus when convolved with the analog input signal

produces the least amount of distortion. Understandably

then the effect of the sampler’s spectral phase and main

lobe width must be considered when developing a sampling

system so that no unexpected aliasing occurs from its con-

volution with the input signal spectrum.

TL/H/5620–16

FIGURE 15. Pulse width and how it effects the sin X/X

envelop spectrum (normalized amplitudes).

C. The Digital-to-Analog Converter and

Smoothing Filter

After a signal has been digitally conditioned by the signal

processing unit of Figure 7, a D/A converter is used to con-

vert the sampled binary information back in to an analog

signal. The conversion is called a zero order hold type

where each output sample level is a function of its binary

weight value and is held until the next sample arrives, see

Figure 16. As a result of the D/A converter step function

response it is apparent that a large amount of undesirable

high frequency energy is present. To eliminate this the D/A

converter is usually followed by a smoothing filter, having a

cutoff frequency no greater than half the sampling frequen-

cy. As its name suggests the filter output produces a

smoothed version of the D/A converter output which in fact

is a convolved function. More simply said, the spectrum of

the resulting signal is the product of a step function sin X/X

spectrum and the band-limited analog filter spectrum. Anal-

ogous to the input sampling problem, the smoothed output

may have aliasing effects resulting from the phase and at-

tenuation relations of the signal recovery system (defined as

the D/A converter and smoothing filter combination).

10



As a final note, the attenuation due to the D/A converter sin

X/X spectrum shape may in some cases be compensated

for in the signal processing unit by pre-processing using a

digital filter with an inverse response X/sin X prior to D/A

conversion. This allows an overall flat magnitude signal re-

sponse to be smoothed by the final filter.

TL/H/5620–17

FIGURE 16. (a) Processed signal data points

(b) output of D/A converter

(c) output of smoothing filter.

V. A Final Note

This article began by presenting an intuitive development of

the sampling theorem supported by a mathematical and il-

lustrative proof. Following the theoretical development were

a few of the unobvious and troublesome results that devel-

op when trying to put the sampling theorem into practice.

The purpose of presenting these thought provoking perils

was to perhaps give the beginning designer some insight or

guidelines for consideration when developing a sample data

system’s interface.
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APPENDIX A
Basic Filter Concepts

A filter is a network used for separating signal waves on the

basis of their frequency and is usually composed of passive,

reactive and active elements such as resistors, capacitors,

inductors, and amplifiers, or combinations thereof.

There are basically five types of filters used to pass or reject

such signals and they are defined as follows:

1. A low-pass filter passes a band of frequencies called the

passband, ranging from zero frequency or DC to a certain

cutoff frequency, 0c*, and in addition has a maximum

attenuation or ripple level of AMAX within the passband.

See Figure 1.

*Recall that the radian frequency 0e2qf.

TL/H/5620–18

FIGURE 1. Common Low Pass Filter Response

Frequencies beyond the 0c may have an attenuation

greater than AMAX but beyond a specific frequency 0s
defined as the stopband frequency, a minimum attenua-

tion of AMIN must prevail. The band of frequencies higher

than 0s and maintaining attenuation greater than or equal

to AMIN is called the stopband. The transition region or

transition band is that band of frequencies between 0c
and 0s.

2. A high-pass filter allows frequencies above the passband

frequency, 0c, to pass and rejects frequencies below this

point. AMAX must be maintained in the passband and fre-

quencies equal to and below the stopband frequency, 0s,

must have a minimum attenuation of AMIN. See Figure 2.

TL/H/5620–19

FIGURE 2. Common High Pass Filter Response
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m 3. A bandpass filter performs the function of passing a spe-

cific band of frequencies while rejecting those frequen-

cies above and below 0c2 and lower, 0c1 cutoff frequen-

cy limits. See Figure 3.

TL/H/5620–20

Figure 3. Common Band-pass Filter Response

As in the previous two cases the passband is required to

sustain an attenuation of AMAX, and the stopband of fre-

quencies above and below 0s2 and 0s2 respectively,

must have a minimum attenuation of AMIN.

TL/H/5620–21

Figure 4. Common Band-Reject Filter Response

4. A band-reject filter or notch filter allows all but a specific

band of frequencies to pass. As shown in Figure 4, those

frequencies between 0s1 and 0s2 are filtered out and

those frequencies above and below 0c2 and 0c1 respec-

tively are passed. The attenuation requirements of the

stopband AMIN and passband AMAX must still hold.

5. An all-pass or phase shift filter allows all frequencies to

pass without any appreciable attenuation. It further intro-

duces a predictable phase shift to all frequencies passed,

though not restricting the entire range of frequencies to a

specific phase shift (i.e., a phase shift may be imposed

upon a selected band of frequencies and appear invisible

to all others).
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