
CAN Products from
National Semiconductor
Users Guide and
Application Note
ABSTRACT

The intent of this application note is to provide the design en-
gineer with a comprehensive guide to the implementation of
the systems employing CAN products from National Semi-
conductor. The integrated programmable CAN interface
block is available within the microcontrollers COP884BC and
COP888EB. Additionally National provides a software which
support a SLIO-CAN application based on the COP884BC.
Further detailed informations about the SLIO application are
summarized in another application note AN-1073, “SLIO-
CAN, a CAN-linked I/O based on COP884BC”.

This CAN interface is highly optimized for reduced die size
and, hence, for low cost implementations. As a result of this
optimization, the registers for CAN data communications
have been reduced to two data transmit and two data re-
ceive registers. This implies that message transfers two data
bytes are fully automatic when transmitted at bus speeds up
to 1 Mbit/second with a CPU clock frequency of 10 MHz. For
messages containing data longer than two bytes, receive/
transmit buffer software handlers permit bus speeds up to
125 kBit/second.

The features of the COPCAN interface are summarized be-
low:

FEATURES - COPCAN INTERFACE

• conform with the CAN specification 2.0. part B (pas-
sive)

— 8 byte data message transfer (up to 125 kbit/s)

— 2 byte data message transfer (up to 1 Mbit/s)

• various bus configurations

— differential bus mode

— single wire bus modes

• built in reference voltage of V CC/2

• Power Save operation

• wake up capability over the CAN bus

1.0 PHYSICAL BUS INTERFACE

1.1 Physical Can Bus Interface

The physical bus connection of the CAN interface is sup-
ported with an on chip circuit. On the transmitter side there
are two high current drive transistors. Each of those can be
individually enabled, by setting the bits TXEN0 or TXEN1.
Setting either bit will also enable the CAN interface. The re-
sulting bus level is defined as shown in Table 1.

TABLE 1. Bus Level Definition

Bus Level Pin Tx0 Pin Tx1

“dominant” Drive Low (GND) Drive High (VCC)

“recessive” TRI-STATE® TRI-STATE

On the receiver side there is a main receive comparator and
two smaller wake-up comparators. Both inputs of the receive
comparator can be routed to the internal voltage reference
(Vref) by setting the bits RXREF0 and RXREF1. With these
functions both, the differential and two single wire bus
modes are supported. Figure 1 shows the internal circuit for
the transmitter and receiver section. The two wake-up com-
parators are hardwired to Vref on one terminal and to the pins
RX0 and RX1 with the other terminal. Their outputs are com-
bined to form the wake-up signal on an internal port pin. The
respective wake-up enable bit for port L7 is fixed high and
the wake up edge bit on the pin is fixed to falling edges on
the COP884BC, hence the device will always wake-up with a
recessive to dominate transition of the bus. To prevent errors
caused by corrupted programs resetting bits this feature can
not be disabled by software. On the COP888EB the wake up
capability is programmable with the port M7 WKEN bit. With
this versatile bus interface the device can be connected di-
rectly to the CAN bus for low-speed applications
(<125 kbit/s) or using an external transceiver part for higher
CAN bus speeds.

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

National Semiconductor
Application Note-1074
Tobias Wenzel
Martin Embacher
June 1997

C
A
N
P
roducts

from
N
ationalS

em
iconductor

U
sers

G
uide

and
A
pplication

N
ote

A
N
-1074

© 1997 National Semiconductor Corporation AN100026 www.national.com



1.2 Bus Interface Examples

The following section provides examples for different physi-
cal bus interfaces which can be used with the COPCAN in-
terface. A software setup example is given for every appli-
cable mode. Please note that all the software examples read
the contents of the configuration register, modify it and then
write the modified contents back. This is to ensure there is
no intermediate bus mode selected.

1.2.1 ISO Low Speed Interface

The next section provides programming examples to set up
the different bus modes if the interface is used with an ISO
low speed interface as shown in Figure 3.

AN100026-1

FIGURE 1. On-Chip CAN RxInterface

AN100026-2

FIGURE 2. On-Chip CAN TX Circuit

www.national.com 2



AN100026-3

FIGURE 3. ISO Low Speed Interface (Switch Logic)

3 www.national.com



PROGRAMMING EXAMPLES OF THE ISO LOW SPEED INTERFACE

Example: Differential Mode TX0, TX1 and RX0, RX1—transmission on CAN_L and CAN_H

LD B, CBUS ; point to CAN bus control register
LD A, [B] ; get contents
AND A, #b'01000011 ; reset RXREF0, RXREF1
OR A, #b'00110000 ; set TXEN0, TXEN1
X A, [B] ; re-write in one instruction

Example: Single Ended Mode TX0 and RX0—transmission on CAN_L only

LD B, CBUS ; point to CAN bus control register
LD A, [B] ; get contents
AND A, #b'01000011 ; reset TXEN1, RXREF0
OR A, #b'00011000 ; set TXEN0, RXREF1
X A, [B] ; re-write in one instruction

Example: Single Ended Mode TX1 and RX1—transmission on CAN_H only

LD B, CBUS ; point to CAN bus control register
LD A, [B] ; get contents
AND A, #b'01000011 ; reset TXEN0, RXREF1
OR A, #b'00100100 ; set TXEN1, RXREF0
X A, [B] ; re-write in one instruction

1.2.2 Inverted ISO Low Speed Interface

If the CAN interface is used with the ISO low speed mode
and external drive transistors both single ended mode set-
ups have to be inverted as shown below in Figure 4.

www.national.com 4



AN100026-4

FIGURE 4. Inverted ISO Low Speed Interface

5 www.national.com



PROGRAMMING EXAMPLES OF THE INVERTED ISO LOW SPEED INTERFACE

Example: Differential Mode TX0, TX1 and RX0, RX1—transmission on CAN_L and CAN_H

LD B, CBUS ; point to CAN bus control register
LD A, [B] ; get contents
AND A, #b'01000011 ; reset RXREF0, RXREF1
OR A, #b'00110000 ; set TXEN0, TXEN1
X A, [B] ; re-write in one instruction

Example: Single Ended Mode/TX1 and RX0 — transmission on CAN_L only

LD B, #CBUS ; point to CAN bus control register
LD A, [B] ; get contents
AND A, #b'01000011 ; reset TXEN0, RXREF0
OR A, #b'00101000 ; set TXEN01, RXREF1
X A, [B] ; re-write in one instruction

Example: Single Ended Mode/TX0 and RX1—transmission on CAN_H only

LD B, #CBUS ; point to CAN bus control register
LD A, [B] ; get contents
AND A, #b'01000011 ; reset TXEN1, RXREF1
OR A, #b'00010100 ; set TXEN0, RXREF0
X A, [B] ; re-write in one instruction

1.2.3 External Transceiver Chip

An external transceiver chip can be connected to the device
as shown in Figure 5. Although the bus runs in differential
mode the device is configured to run in single wire mode us-
ing TX0 and RX0. Care must be taken when using this type
of interface together with the wake-up feature. Commonly
the RX1 input of the CAN interface is connected to a Voltage
reference of the transceiver chip. This, however, may lead to
an unwanted setting of the L7 wake-up pending bit resulting
from the connection of Vref to both input terminals of one of

the wake-up comparators terminals (see Figure 1 for signal
routing). This results in the device failing to go to IDLE or to
HALT mode. For this reason the RX1 input must not be con-
nected to the Vref of the transceiver device - it should be ter-
minated to GND with a pull-down resistor. Additionally, dur-
ing high speed applications a pull up resistor must be
connected to TX0. In low speed applications this resistor is
not needed.

Using the configuration in Figure 5 the CBUS register must
be configured in Single Ended Mode for TX0 and RX0.

PROGRAMMING EXAMPLES OF THE EXTERNAL TRANSCEIVER CHIP

Example: Single ended Mode TX0 and RX0

LD B, CBUS ; point to CAN bus control register
LD A, [B] ; get contents
AND A, #b'01000011 ; reset TXEN1, RXREF0
OR A, #b'00011000 ; set TXEN0, RXREF1
X A, [B] ; re-write in one instruction

AN100026-5

FIGURE 5. External Transceiver Connection (ISO High Speed)

www.national.com 6



1.2.4 Bus Mode Switch Subroutine

For the ISO low speed interface as well as for the inverted
ISO low speed interface a simple program can be written to
allow switching bus modes in a subroutine. For the high
speed interface (with an external transceiver chip) only two
selections can be done as the external chip does not allow

single wire operation. This example uses the ISO low speed
interface, however adoptions to the other modes can be eas-
ily accomplished by modification. The desired bus mode is
passed to the subroutine by the accumulator with the follow-
ing values:

LD A,#0 ; dual wire RX0, RX1, TX0, TX1
LD A,#1 ; single wire RX0, TX0
LD A,#2 ; single wire RX1, TX1
LD A,#3 ; disable CAN interface

The program reads as follows.

.sect bus_mode, rom, inpage
LD B, #CBUS ; point to bus control register
AND A, #003 ; mask unused bits
ADD A, #low(b_tab); add jump table offset
JID ; jump

b_tab:
.db dual_wire
.db single_rx0
.db single_rx1
.db no_wire

dual_wire:
LD A, [B] ; get contents
AND A, #b’01000011 ; reset RXREF0, RXREF1
OR A, #b’00110000 ; set TXEN0, TXEN1
JP end_bus_mode

single_rx0:
LD A, [B] ; get contents
AND A, #b’01000011 ; reset TXEN1, RXREF0
OR A, #b’00011000 ; set TXEN0, RXREF1
JP end_bus_mode

single_rx1:
LD A, [B] ; get contents
AND A, #b’01000011 ; reset TXEN0, RXREF1
OR A, #b’00100100 ; set TXEN1, RXREF0
JP end_bus_mode

no_wire:
LD A, [B] ; get contents
AND A, #b’01000011 ; reset TXEN1, RXREF0

end_bus_mode:
X A, [B] ; write CBUS
RET

.endsect

1.3 Bit Time Logic Setup

The bit time settings can be configured with the memory
mapped register CSCAL, CTIM and with the clock frequency
CKI. Hereby the synchronization jump width will be pro-
grammed through the length of the phase segments as it is
described in Table 2.

TABLE 2. Synchronization Jump Width

PS2 PS1 PS0 Length of Phase
Segment 1/2

Synchronization
Jump Width

0 0 0 1 tcan 1 tcan

PS2 PS1 PS0 Length of Phase
Segment 1/2

Synchronization
Jump Width

0 0 1 2 tcan 2 tcan

0 1 0 3 tcan 3 tcan

0 1 1 4 tcan 4 tcan

1 0 0 5 tcan 4 tcan

1 0 1 6 tcan 4 tcan

1 1 0 7 tcan 4 tcan

1 1 1 8 tcan 4 tcan

The resulting bus clock frequency can be computed by the formula below:

7 www.national.com



1.3.1 Low Speed

CAN Low Speed is defined as a bus speed less than or equal to 125 kbit/s.

Example: calculation of 75 kbit/s (CK I = 5 MHz):

1.3.2 High Speed

CAN High speed is defined as a bus speed greater than 125 kbits and less than or equal to 1 Mbit/s.

Example: calculation of 500kbit/s:

2.0 CAN SOFTWARE DRIVER ROUTINES

2.1 Introduction

Due to the limitation imposed by having two receive and two
transmit registers within the CAN interface the following
receive/transmit driver routines are distinguished by:

• 2 byte message only routines up to 1 Mbit/s bus
speed

• generic 0 to 8 byte message routines up to 125 kbit/s
bus speed

Usually, due to the asynchronous nature of CAN message
reception, the receiver side interrupt routines are used. Two
different receive interrupt examples are described for the re-
ceive process. On the transmitter side two byte messages
do not need to be interrupt driven, because two byte trans-
mittals are fully automatic. Therefore only the generic trans-
mit routines use the transmit interrupt.

2.2 Transmit and Receive Object Definitions

The software routines described in the following section use
different object types for the transmit and receive sides. This
objects are able to handle the communication between the
driver and the main routine. They consist of the identifiers,
the data length code and the data bytes to be transmitted or
received. Basically two different object types have been de-
fined, one for messages of up to eight bytes and another for
those up to two data bytes.

2.2.1 Message Objects of 2 Bytes and Less

Figure 6 describes the 2 bytes definition for the transmit/
receive sides.

www.national.com 8



Example: allocation of 2 byte message objects

.sect msg_buf, base
tx_obj: .dsb 4
; transmit object format:
; tx_obj[0] = trtr, tid[10:4]
; tx_obj[1] = tid[3.0], tdlc[3.0]
; tx_obj[2] = txd1 !
; tx_obj[3] = txd2 !
rx_obj0: .dsb 4
; rx_obj[0] = lock, rid[10:4]
; tx_obj[1] = rid[3:0], rdlc[3:0]
; tx_obj[2] = rxd1 !
; tx_obj[3] = rxd2 !
rx_obj1: .dsb 4

.endsect

2.2.2 Message Objects of 8 Bytes and Less

In addition to the allocation of 10 bytes for 8 data byte message objects a pointer (tx_ptr) is set to indicate the first byte of the
transmit message object. Returned values of tx_ptr give information concerning the success of transmission.

tx_ptr = 0xFF →bus is busy
tx_ptr = 0x00 →transmission done
tx_ptr = (other) →transmission still in progress

RAM location tx_data_start signifies the start of transmit data within the transmit object.

Example: allocation of Tx/Rx message objects

.sect msg_buf, ram
tx_ptr: .dsb 1 ; one pointer is required
tx_data_start: .dsb 1 ; one tx_start is required
; object format:
; obj[0] = rtr, id[10:4]
; obj[1] = id[3:0], dlc[3:0]
; obj[2:9] = data[1:8]
tx_obj0: .dsb 10 ; more object can be defined as needed
rx_obj0: .dsb 10
rx_obj1: .dsb 10
rx_ptr: .dsb 1
rx_status: .dsb 1

.endsect

.sect code_can_tx, rom
; this code transmit s a 0 to 8 byte or remote CAN message
; from a transmit buffer tx_obj[0:9]
; this code works in conjuction with the TX interrupt
; which is used to copy more data bytes or indicate
; a successfull transmission
;

AN100026-6

FIGURE 6. Message Objects of 2 Bytes and Less

9 www.national.com



; parameters:
; tx_ptr: pointer to transmit object
; tx_obj[0:9] data to transmit
;
; return value:
; tx_ptr = 0xff - bus busy
; tx_ptr = 0x00 - transmission done (interrupt driven)
; tx_ptr = (other value) - transmission in progress
;
; registers used:
; A, X, B

www.national.com 10



2.3 Can Receive Routines

2.3.1 Two or Less Bytes Interrupt Receive - High Speed

Example: CAN Receiver Interrupt Routine (high speed) for messages 0 to 2 bytes including RTR

AN100026-7

Note 1: Lock indicates whether the receive buffer is free and will be cleared during program progress.
Note 2: The user has to provide a receive buffer in RAM with an even number of bytes greater than or equal to the maximum DLC of message to be received.
Note 3: Error check is done in this routine error interrupt must not be enabled.

11 www.national.com



.sect code_can_rx, rom ; from interrupt
can_rx:

; this interrupt is triggerd by RBF, RRTR or RFV
; RRTR and RBF are cleared by reading or b’s pointing to RXD1
; RFV is cleared by reading RTSTAT to A
; or executing the equiv. of LD B, #RSTAT; LD A, #xx
ld b, #rx_obj0 ; (*) receive id h i ; * only with RIAF = 0
ifbit 7, [b] ; buffer free
jp receive_msg ; .. yes then receive
ld b, #rx_obj1 ; next buffer
ifbit 7, [b] ; buffer free
jp receive_msg ; .. then receive msg
jp can_rx_exit ; else exit

receive_msg:
rbit 7, [b]
ld a, rid ; (*) get received id
ifne a, [b] ; (*) check if accept
jp can_rx_exit ; (*) .. no then exit
x a, [b+]
ld a, ridl ; get received IDLC
x a, [b] ; save message
ifbit RRTR, RTSTAT ; received frame remote frame?
jp can_rx_rtr ; yes
jp save_data ; no

can_rx_rtr:
ld a,[b] ; remote frame is signed
or a,#0F ; through rdlc = F
x a,[b] ;
jp wai_rx ;

save_data:
ld a,[b+] ;dummy read →point rx_data register

ld a, RXD1 ;
x a, [b+]
ld a, RXD2
x a, [b]
ld b, #RTSTAT

wait_rx:
ifbit RFV, [b]
jp rx_done
ifbit RERR, TCNTL
jp rx_error
jp wait_rx

; this is the error routine error interrupt must not be enabled
rx_error:

ld b, #rx_obj1
ifbit 7, [b]
jp check_obj0
jp end_error

check_obj0:
ld b, #rx_obj0

end_error:
sbit 7, [b] ; free buffer
rbit RERR, TCNTL

rx_done:
can_rx_exit:

ld a, RXD1 ; dummy read to clear RBF, RTR
ld a, RTSTAT ; dummy read to clear RFV
jp int_end

.endsect

www.national.com 12



2.3.2 Generic Interrupt Receive

Example: CAN Receiver Interrupt Routine for messages 0 to 8 bytes including RTR

AN100026-8

Note 1: RXPND is a software flag controlled by the user.
Note 2: The user has to provide a receive buffer in RAM with an even number of bytes greater than or equal to the maximum DLC of message to be received.
Note 3: No error check is done in this routine as a receive error will automatically generate an interrupt (if enabled) right after the receive interrupt.

13 www.national.com



2.4 CAN Transmit Routines

2.4.1 Two or Less Bytes Transmit (High Speed)

Example: CAN Transmit Routine for messages 0 to 2
bytes and remote frames

This code transmits a 0 to 2 byte or remote CAN message
from a transmit buffer tx_obj[0:3]. The routine intentionally
does not check for remote or DLC (data length code) as the
COPCAN interface will automatically transmit no data bytes
in a remote frame and transmit not more than DLC data
bytes. If the CAN transmit is working, the routine will be fin-
ished without any actions.

.sect code_can_tx, rom
can_tx:

rc ; (*) reset error flag
ifbit TXPND, RTSTAT ; check if transmit busy
jp tx_busy ; .. yes then exit
ld b, #tx_obj ; point to tx_obj[0]
ld x, #TID ; point to TID
ld a, [b+] ; get tx_obj[0]; point to tx_obj[1]
x a, [x-] ; .. and save
ld a, [b+] ; get tx_obj[1]; point to tx_obj[2]
x a, [x-] ; .. and save
ld a, [b+] ; point to tx_obj[3]
ld a, [b-] ; get tx_obj[3]; point to tx_obj[2]
x a, [x-] ; save to TXD1
ld a, [b] ; get tx_obj[3]
x a, [x] ; save to TXD2

tx_done:
sbit txss, tcntl ;set pending transmission
;automatic reset of txss after transmission
ret ; exit without error

tx_busy:
sc ; (*) indicate tx_busy
ret ; (*) exit with error
; retsk ; optional use retsk instead

; 1st and last 2 lines to skip next
.endsect

2.4.2 Generic Interrupt Transmit (Low Speed)

This code transmits a 0 to 8 byte or remote CAN message from a transmit buffer tx_obj[0:9] this code works in conjunction with
the TX interrupt which is used to copy more data bytes or indicate a successful transmission.

AN100026-9

Note: Errors are signed with the carry flag (or any other flag!) and have to
handle separately.

www.national.com 14



AN100026-10

Note: No error check is done in this routine as a transmit error will automatically generate an interrupt (if enabled) right.

15 www.national.com



.sect code_can_tx, rom
;
; parameters:
; tx_ptr: pointer to transmit object
; tx_obj[0:9] data to transmit
;
; return value:
; tx_ptr = 0xff - bus busy
; tx_ptr = 0x00 - transmission done (interrupt driven)
; tx_ptr = (other value) - transmission in progress
;
; registers used:
; A, X, B
can_tx:

ifbit TXPND, RTSTAT ; check if transmit busy
jp tx_busy ; .. yes then exit
ld a, tx_ptr ; get tx pointer
x a, b ; save to b
ld x, #TID ; point to TID
ld a, [b+] ; get tx_obj[0]; point to tx_obj[1]
x a, [x-] ; .. and save
ld a, [b+] ; get tx_obj[1]; point to tx_obj[2]
x a, [x-] ; .. and save
ld a, b ; get data start value
x a, tx_data_start ; save
ld a, [b+] ; point to tx_obj[3]
ld a, [b-] ; get tx_obj[3]; point to tx_obj[2]
x a, [x-] ; save to TXD1
ld a, [b+] ; get tx_obj[3]
x a, [x] ; save to TXD2
ld a, b ; get pointer value
inc a
x a, tx_ptr ; save to pointer
ld b, #TCNTL
sbit TIE, [b] ; enable transmit interrupt
sbit CEIE, [b] ; enable CAN error interrupt
sbit TXSS, [b] ; start transmission
ret ; exit

tx_busy:
ld tx_ptr, #0ff ; indicate bus busy
ret ; exit

; interrupt driven CAN transmit routine
; assumes A, X and B register can be used
can_txint:

ld b, #RTSTAT ; temporary (!) point to RTSTAT
ifbit TXPND, [b] ; transmission done
jp tx_bytes ; .. no then continue

end_txint: ; .. yes then exit
ld b, #TXD2 ; point to TXD2
ld TXD2, #0 ; dummy write to clear TBE
ld tx_ptr, #0 ; indicate transmission done
rbit TIE, TCNTL ; disable interrupt
jp int_end ; global RETI

tx_bytes:
ld a, tx_ptr ; get current pointer
x a, x ; put to x
ld b, #TXD1
ld a, [x+] ; get next odd data byte
x a, [b+] ; save to TXD1
ld a, [x+] ; get next even data byte
x a, [b] ; save to TXD2
ld a, x ; get current pointer
x a, tx_ptr ; save pointer
jp int_end ; global RETI

; CAN transmit error routine
; assumes CAN error routine:
;

www.national.com 16



tx_error:
ld a, tx_data_start ; get data start
x a, x ; copy to x
ld b, #TXD1 ; point to TXD1
ld a, [x+] ; get 1st data byte
x a, [b+] ; save in TXD1
ld a, [x+] ; get next data byte
x a, [b] ; save in TXD2
ld a, x ; get tx pointer
x a, tx_ptr ; save
rbit TERR, TCNTL ; clear pending
jp int_end ; global RETI

.endsect
;===========================================================================
.sect code_can_error, rom
; interrupt driven CAN error routine. this code checks
; for standard errors and goes to the respective interrupt
; routine
; an error is assumed “standard” for a transmitter if the
; transmit error bit is set (TERR = 1) and the
; transmit interrupt is enabled (TIE = 1) and the
; transmission is in progress (TXSS = 1)
;
; an error is assumed to be “standard” for a receiver if the
; receive error bit is set (RERR = 1) and the
; receive interrupt is enabled (RIE = 1)
;
can_error:

ld b, #TCNTL
ifbit TERR, [b]
jp tx_error ; .. then tx error
ifbit RERR, [b]
jp rx_error ; .. then rx error

; else there is no standard error
; but the device could be bus-off

rx_error: ; temp
rbit TERR, [b] ; reset TERR pending
rbit RERR, [b] ; reset RERR pending
jp int_end ; golbal RETI

.endsect

2.5 Acceptance Filter

Because CAN is a message orientated system, the identifi-
ers in the CAN frame stand for the type of the message.
Without acceptance, filtering all types of messages are pro-
cessed by all nodes connected on the CAN bus. Therefore
every CAN node must determine whether to process a mes-
sage or not. In order to reduce the software expense, the

CAN interface supports a hardware acceptance filtering of
the upper identifiers ID4 to ID10. The CAN interface provides
the capability to mask these identifiers through hardware.
Masking enabled, if the RIAF bit (CBUS register) is set to
zero. If enabled, the RID register is compared with the re-
ceived identifiers, ID4 to ID10, as shown in Figure 7.

AN100026-11

FIGURE 7. Acceptance Filter Block Diagram

17 www.national.com



The lower 4 identifiers ID0 to ID3 can not be masked by the acceptance filter. This means that, should the acceptance filter be
enabled, 16 different messages will always be accepted.

Example: acceptance of the identifiers 730 h to 73F h

can_rx:
acc_filter:

ld B,#CBUS
sbit 6,[B]
ld RID,#073

;If the RIAF bit is set to one, all messages on the bus will be processed

Example: acceptance of the identifiers 700 h to 73F h

can_rx:
acc_filter:

ld A, RID
and A, #b ′01111100
ifne A, #b ′01111100
jp end_can

3.0 USAGE OF THE SLIO

3.1 SLIO Registers

In the SLIO module concept the SLIO memory contains sev-
eral parameter defined registers (see Table 3), which can be
configured by messages sent over the CAN bus or by an ex-

ternal EEPROM during the initialization phase. The configu-
ration of the Multi-I/O Function Block, the power save condi-
tions and the bus mode can be set and altered by the
parameters in the Register Block. The Identifiers and the
CAN prescaler are configured via the Identifier port.

TABLE 3. SLIO Register Block

Register
Marker
(hex)

Name Function
Message

type
config
over
CAN

config
over

EEPROM

0x00 1N1 read status P0 to P7 r read
only

no

0x01 PE config P0 to P7 positive edge r/w yes yes

0x02 NE config P0 to P7 negative edge r/w yes yes

0x03 OD1 write data to P0 to P7 r/w yes yes

0x04 DD1 config P0 to P7 data direction r/w yes yes

0x05 IN2 read status P8 to P13 r read
only

no

0x06 OD2 write data to P8 to P13 r/w yes yes

0x07 DD2 config P8 to P13 data direction r/w yes yes

0x08 to
0x0E

ADC read specified analog input r read
only

no

0x0F IN1 reset status register marker point to IN1 r read
only

no

0x10 to
0x13

DAC1/DAC2 config analog output r/w yes yes

0x1C ACT analog output control r/w yes yes

0x1E CCT comparator control r/w yes yes

0x1F CTR configuration register r/w yes yes

3.2 CAN Message Format

CAN messages to and from SLIO are limited to two byte
messages. The first databyte is reserved for the register
marker and system information. The register marker can be
considered as a pointer of the specialized SLIO register,
which should be changed through the data of the second
databyte. The upper 3 bits of the first databyte include infor-
mation about the bus mode of the SLIO and give information
about the CAN Error status of the SLIO. The content of the
two data bytes and from the control field is shown in Table 4.

TABLE 4. SLIO Frame Format

DLC = 2 ST BM RM data

1 0 4 3 2 1 0

ST CAN Error Status of the SLIO

0 = error active

1 = the device became error passive since the last
frame transmitted by the SLIO.

BM[1:0] Current Bus mode

www.national.com 18



0 = dual wire

1 = single wire RX0

2 = single wire RX1

3 = not allowed

RM[4:0] Register marker bits

Example: Status message

Status messages are created from SLIO without any de-
mand messages from CAN. These messages are transmit-
ted after the following actions:

1. initialization is finished

2. external event on the pins P0 to P7 (if they are enabled
by PE or NE register)

3. awakening from NAP/SLEEP mode

This message contains the status of the pins P0 to P7. The
content of Figure 8 describes a status message.

3.3 CAN System Master Communication

Communication between the SLIO and the CAN System
Master is achieved through query and response in addition
to those messages which are initiated from the SLIO as a re-
sult of interrupts and wake-up conditions. There are two dif-
ferent message types, read only and read/write.

3.3.1 Read Message Transfer

Read Only messages demand the status of digital and ana-
log pins (see Table 4 SLIO register block). Figure 9 shows
the data transfer of read only messages between CAN Sys-
tem Master and the SLIO device.

AN100026-12

FIGURE 8. Status Message

AN100026-13

The following steps are executed:

1. SLIO receives a read message from System Master with correct Receive Identifier and with the correct Read register marker.

2. The SLIO reads the port pins or the analog input pin and write the reading data in the specified SLIO Register.

3. After the reading process the SLIO creates a message with its transmit ID and the reading data.

FIGURE 9. CAN Communication with Read Messages

19 www.national.com



Example: Read Pin P0 to P7

This example describes reading the digital status of pin P0 to
P7 over CAN by the following configuration. The SLIO is
configured in Single Wire Rx0/TX0 Bus mode and the error
state of the SLIO is Error Active. The Identifiers are config-
ured in Pin Mode as follows:

ID0 = GND; ID1 = GND; ID2 = GND; ID3 =GND

ID configuration: Transmit ID = 0400 H (from the SLIO)

Receive ID = 0401 H (to the SLIO)

The data of the SLIO pins are 0xC0. In Table 5 the data
transfer between CAN System Master and the SLIO is moni-
tored.

TABLE 5. Read Transfer Example

Name ID databyte1 databyte2

receive message 0401 H 00 H don’t care

transmit message 0400 H 20 H C0 H

3.3.2 Read/Write Message Transfer

Read/write transfer updates the configuration data within the
SLIO register block by writing data into the specified register
as indicated by the register marker in the first data byte. The
response is a read from the specified data register subse-
quent to the update process. The data transfer is shown
schematically in Figure 10.

Example: Configuration of Data Direction P0 to P7

The data direction of the SLIO pins P0 to P7 should be
changed via CAN. It will be assumed that the configuration of
the Identifier and Bus mode is the same as in the Read Only
example.

The data direction of the pins should be changed as follows:

P0 to P3 as input

P4 to P7 as output

In Table 6 the read/write data transfer between CAN System
Master and SLIO is monitored.

TABLE 6. Read/Write Data Transfer Example

Name ID databyte1 databyte2

receive message 0401 H 00 H F0 H

transmit message 0400 H 20 H F0 H

3.4 CAN System Master in CAN - SLIO Network

In the CAN network at least one node is assigned as the
CAN System Master. The system master handles the com-
munication with the connected SLIO nodes. Each of these
nodes must have two sequential IDs, an even one for trans-
mit and an odd one for receive. In addition, when using
EEPROM mode, a global receive ID may be defined.

An example of one CAN-message address space is shown
in the example Figure 11.

AN100026-14

The following steps are executed:

1. The SLIO receives a read/write message from System Master with correct Receive Identifier, with the correct Read register
marker and the new data placed in the second databyte.

2. The SLIO changes the configuration of the internal condition or, optionally, of the I/O pin configuration.

3. After this process the SLIO creates a response message with its transmit ID and the new status of the specified SLIO register.
This informs the System Master that the message data transfer was executed correctly.

FIGURE 10. CAN Communication with Read/Write Messages

www.national.com 20



3.5 SLIO System

Figure 12 shows the schematics of a CAN SLIO node. The
pins P0 to P13 can be connected with Sensors or Actuators
over the I/O Feature Connector. The Power Supply circuit
with LM2925 generates first, VCC = 5V and second, the ex-
ternal RESET. VIN can be obtained from an external source
of 6V < VIN < 26V or from the CAN wiring system. Because
of the external crystal oscillator on the pins CKI and CKO,
the SLIO does not need synchronization messages from the
System Master. This device has Master capabilities, which
means that it can synchronize itself to the CAN bus.

The two signal wires of CAN, BUS_H and BUS_L, are con-
nected with the integrated CAN interface of the SLIO over
the Physical Bus interface. The bus timing programmability
of the SLIO CAN interface is limited with the exception of the
CAN prescaler and CKI. Refer to section one for circuit de-
scription of the interfaces.

During the initialization phase the SLIO application reads the
identifiers from the identifier circuit over the pins ID0 to ID3.
There are two different capabilities to read the identifier. Two
means of determining the identifier exist; direct pull up/down
of the ID pins or via EEPROM.

AN100026-15

FIGURE 11. Example - CAN System Master Address Space

21 www.national.com



3.6 Initialization

3.6.1 General Description

There are two different modes of reading the CAN identifier.
In Pin mode four, the 11 available identifier bits may be read
from ID0–3, the remainder of the bits are predetermined,
thus 16 different SLIO nodes may be connected to one CAN
network system. To avoid this restriction, an

EEPROM(NMC93C06) mode may be used on the ID port al-
lowing programming of 11 of the identifier bits. This means
that the ID port is internally connected to the MICROWIRE
interface. Furthermore, the use of an EEPROM allows the
programming of the Register Block and avoids the necessity
of having the system master transmit the setup configuration
when the node is brought on line.

AN100026-16

FIGURE 12. SLIO CAN Node

www.national.com 22



A mixture between EEPROM mode and pin mode was
implemented as Pin_E2 mode. In this Pin_E2 mode, the
identifier are read in pin mode and the configuration of the
SLIO registers can be read from the external EEPROM. In
this case, the information to go in Pin_E2 mode is given from
EEPROM in Figure 13. At the end of the initialization phase
the SLIO will transmit a status message. After this message
the SLIO is ready to communicate with the CAN bus.

3.6.2 Initialization Example in Pin Mode

In this section an example to initialize the SLIO in Pin Mode
is shown. Initialization means on the one hand to program
the CAN Identifier and on the other hand the configuration of
the SLIO Registers.

Example: CAN Identifier Programming - Pin Mode

In Pin Mode, the CAN Identifier is programmed through pull
up/pull down resistors on the Identifier Port pins ID0 to ID3.
This means that 4 CAN Identifiers can be programmed and
so 16 different SLIO Nodes can be connected on the CAN
bus. Figure 14 shows a connection example.

The result of this programming is shown in Table 7, columns
ID3, ID2, ID1 and ID0.

AN100026-17

FIGURE 13. Read CAN Identifier Port

AN100026-18

FIGURE 14. Identifier Configuration in Pin Mode

23 www.national.com



TABLE 7. SLIO CAN Identifiers in Pin Mode

ID - Name ID9 ID8 ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0 DIR

transmit ID (0x414 h) 1 0 0 0 0 0 1 0 1 0 0

receive ID (0x415 h) 1 0 0 0 0 0 1 0 1 0 1

In Pin Mode, the SLIO Registers are fixed to default values.
They cannot be configured during initialization phase. The
bus rate is fixed to CKI/40 and the bus mode is automatic.
That means that the device cycles through all bus modes if
no message is received for 8*Bt.

In Table 8 the default SLIO Register values are shown.

TABLE 8. Configuration of the SLIO Registers in Pin Mode

Name Function configured after
Initialization (hex)

IN1 read status P0 to P7 cannot be configured

PE config P0 to P7 positive edge 0x00

NE config P0 to P7 negative edge 0x00

OD1 write data to P0 to P7 0xFF

DD1 config P0 to P7 data direction 0x00

IN2 read status P8 to P13 cannot be configured

OD2 write data to P8 to P13 0xFF

DD2 config P8 to P13 data direction 0x00

ADC read specified analog input cannot be configured

DAC1 config analog output 0x00

DAC2 config analog output 0X00

ACT analog output control 0x00

CCT comparator control 0x00

CTR configuration register 0x00

3.6.3 Initialization Example in EEPROM Mode

In EEPROM mode, all bits of the CAN standard identifier are
programmable and each of the SLIO register, as well as the
CAN prescaler register, may be configured separately. Prior
to reading the EEPROM the CS(ID0) pin must be held low to
prevent interference with any other microwire users available
to the node. If an EEPROM is connected to the SLIO for pur-
poses of programming the identifier and registers, the first lo-
cation must read an AA hex value. If the value is other than
AA hex, the device assumes the EEPROM is for purposes
other than of programming the SLIO. When AA is detected in
EEPROM location E2-MASK, the data contained in the
EEPROM is transferred to the internal registers of the SLIO.

www.national.com 24



Example: CAN Identifier Programming EEPROM Mode

In Figure 15 the connection between EEPROM NMC93C06 and the Identifier port is shown.

The programming of the identifier ID0 to ID6 will be done by
the EEPROM register RXIDL. DIR (Bit0) of this register can
not be configured, it is don’t care. The data direction will be

configured automatically. ID7 to ID9 are configured with the
EEPROM register RXIDH. A configuration example of the
identifier through RXIDH/RXIDL are shown in Table 9.

TABLE 9. Receive/Transmit Identifier Programming with EEPROM

CID10 CID9 CID8 CID7 CID6 CID5 CID4 CID3 CID2 CID1 CID0

ID9 ID8 ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0 DIR

1 1 1 0 0 0 0 1 0 1 -

RXIDH RXIDL

The result of programming receive and transmit Identifiers,
which are programmed by RXIDH and RXIDL, are shown
below:

Transmit ID →0x70A Receive ID →0x70B

The programming of the global identifier ID0 to ID6 will be
done by the EEPROM register RXIDGL. DIR (Bit0) of this

register is set to 1 (receive data direction) automatically. ID7
to ID9 are configured with the EEPROM register RXIDGH. A
configuration example is shown in Table 10.

TABLE 10. Global Identifier Programming

CID10 CID9 CID8 CID7 CID6 CID5 CID4 CID3 CID2 CID1 CID0

ID9 ID8 ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0 DIR

1 1 1 0 0 0 0 0 0 0 -

RXIDGH RXIDGL

The result of programming global receive Identifiers, which
are programmed by RXIDGH and RXIDGL, are shown be-
low:

Global Receive ID →0x701Transmit ID →0x70A

In Table 11 a configuration example of the external EEPROM
register settings are shown.

AN100026-19

FIGURE 15. EEPROM Connection

25 www.national.com



TABLE 11. Example of Configuration of SLIO Registers
in EEPROM Mode

E2-address EEPROM Registers SLIO Registers

0x00

E2-MASK
0xAA

PIN-E2-MASK
0x00

0x01
0x02

RXIDH/RXIDL
RXIDGH/RXIDGL

0x03

PEDGE
0xF0

PE
0xF0

NEDGE
0x0B

NE
0x0B

0x04

ODATA1
0x01

OD1
0x01

ODATA2
0x00

OD2
0x00

0x05

DATADIR1
0x00

DD1
0x00

DATADIR2
0x00

DD2
0x00

0x06

DACH
0x01

DAC2
0x01

DACL
0xB0

DAC1
0xB0

E2-address EEPROM Registers SLIO Registers

0x07

ACR
0x03

ACT
0x03

CCR
0xE0

CCT
0xE0

0x08

DCR
0x08

CTR
0x08

CAN_PSC
0x03

CAN Prescaler
0x03

3.6.4 Initialization Example in Pin_E2 Mode

If the E2 register PIN_E2 MASK is programmed with 0x55,
the Pin_E2 mode is enabled. This allows the reading of the
SLIO default values from the EEPROM and the Identifiers
ID1 to ID3 in Pin mode. The pin ID0/CS can not be used for
Identifier programming, because this pin needs a pull down
resistor for the reading process of the EEPROM. Therefore,
in Pin_E2 mode, only eight different Identifier can be config-
ured.

Example: Initialization in Pin_E2 mode

In Figure 16 the connection between EEPROM NMC93C06,
pull up/pull down resistors and Identifier port are shown.

AN100026-20

FIGURE 16. Pin_E2 Configuration

www.national.com 26



The result of this programming is shown in Table 12. Hereby
the identifier ID0 has always low level. Therefore in Pin_E2

mode only ID1 to ID3 can be configured over pull up/down
resistors. ID4 to ID9 can be configured over EEPROM.

TABLE 12. SLIO CAN Identifiers in Pin_E2 mode

ID - Name ID9 ID8 ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0 DIR

transmit ID (0x408 h) 0 1 1 0 0 0 0 1 0 0 0

receive OD (0x409 h) 0 1 1 0 0 0 0 1 0 0 1

configurable over EEPROM configurable over
resistors

fix to
0

3.6.5 CAN Bus Rate Configuration

In EEPROM Mode and in Pin_E2 Mode the bus rate of the
SLIO can be configured by EEPROM register CAN_PSC
and CKI. In pin mode the bus rate is fixed to CKI/40. Further-
more the segments of one bit time are predefined as de-

scribed in Figure 17. This means, that the sample point is
fixed to 60% up to 500 kbit/s bus rate and to 80% using
1 Mbit/s. Hereby the synchronization jump width is config-
ured to 4 time quanta up to 500 kbit/s and 2 time quanta us-
ing 1 Mbit/s.

Example: bus time configuration - EEPROM Mode/
Pin_E2 Mode

If EEPROM Mode/Pin_E2 Mode is used, the bus rate can be
configured with the CAN_PSC register during initialization
phase.(see NM93C06 memory map-datasheet). Configura-
tion formula: bus rate = CKI/(10 * (CAN_PSC+1)) In Table
13, some examples of initialization are shown.

TABLE 13. Examples Bus Rate (CKI = 10 MHz)

CAN_PSC (dez) Bus Rate (kbit/s)

01 500

03 250

04 200

07 125

09 100

19 50

3.7 Usage of Analog Input

The analog input is not intended to be a high performance
A/D-conversion, but provides the capability of reading up to
16 different voltage levels with any of seven I/O pins. Figure
18 shows an example by reading different voltage levels of a
resistor array. This is done by measuring the charge or dis-
charge time of an external capacitor. The internal construc-
tion of an I/O pin (see Figure 18) will support the analog in-
put. At first, the level of the Schmitt Trigger Input is
measured. Depending on the result, low or high, the internal
driver, which is controlled by the charge/discharge logic,
charges or discharges the external capacitor.

Schmitt Trigger level = low→charge capacity

Schmitt Trigger level = high→discharge capacity

The charge/discharge control is then disabled and the time
to get the original digital (after Schmitt Trigger) state is mea-
sured by a counter register. This counter values consider dif-
ferent input voltages.

AN100026-21

A) synchronization segment
B) propagation segment

FIGURE 17. Bit Timing up to 500 kbit/s

27 www.national.com



Example: Read 16 different voltages on pin P0 using
R/C

The restriction of this A/D conversion is shown in Figure 19,
because the charge or discharge time of the capacitor is de-
pendent on the current and this current is not linear. Espe-
cially voltages near the Schmitt Trigger level the 8-bit

counter value is overflowed and no measurement is pos-
sible. This measurement is dependent upon the CPU speed,
hence the R/C values may have to be adjusted to accommo-
date a change in CKI value from 10 MHz. The external com-
ponents, which are connected to the pin P0, are shown in
Figure 20.

AN100026-22

FIGURE 18. Analog Input

AN100026-23

FIGURE 19. Input Voltage Depending on Counter Value

AN100026-24

FIGURE 20. Example of Analog Input Components

www.national.com 28



Before the analog input Register marker can be executed,
the pin has to be configured as High-Z input. This means that
DD1 and OD1 have to be configured to low for the pin P0.
The following CAN frame examples assume that the SLIO is

configured to SINGLE WIRE RX0 bus mode, the error condi-
tion is error active and the receive ID = 0021. The data
frames for the P0 configuration are shown in Table 14 The
pin configuration frames have to be transfered one time only.

TABLE 14. Read/Write Data Transfer Example

Direction Name ID first databyte second databyte
→ conf SINGLE WIRE RX0 0021 H 1F H 08 H

← answer from SLIO 0020 H 3F H 08 H

→ OD1 to 11110000 0021 H 03 H F0 H

← answer from SLIO 0020 H 23 H F0 H

→ DD1 to 11110000 0021 H 04 H F0 H

← answer from SLIO 0020 H 24 H F0 H

→ analog input from P0 0021 H 08 H XX H

← answer from SLIO 0020 H 28 H 13 H (0.0V)

The values of the 16 different values are shown in Table 15.

TABLE 15. Reading of 16 Different Analog Voltages

Voltage Input
(V)

counter value
(hex)

counter range
(+ 4 counter steps)

range number

0.0 13 0F to 17 0

1.3 23 1F to 27 1

1.5 2D 29 to 31 2

1.8 3D 39 to 41 3

1.9 46 42 to 4A 4

2.0 53 (±8) 4B to 5B 5

2.1 6C (±8) 64 to 74 6

2.5 7F (±8) 77 to 87 7

2.9 90 (±8) 88 to 98 8

3.0 9D 99 to A1 9

3.1 AB A7 to AF A

3.3 B7 B3 to BB B

3.5 C1 BD to C5 C

3.8 CB C7 to CF D

4.2 D4 C1 to D8 E

5.0 DF DB to E3 F

29 www.national.com



The different ranges of the example in Table 15 are shown in Figure 21.

3.8 Usage of D/A Output

A user programmable PWM signal is provided on pin P9.
This signal may be configured to either a 10-bit or 8-bit reso-
lution. This PWM signal is CKI dependent. For example, by
using CKI =10 MHz, one PWM cycle is 255 µs (8-Bit) or 1023
µs (10-Bit). In order to calculate the cycle time of the PWM
using the following formula.

By using an external low pass filter, analog voltages can be
generated. An example of the RC is shown in Figure 22. The
analog output will be configured with the SLIO registers
DAC1, DAC2 and ACT.

AN100026-25

FIGURE 21. Graph of the Different Ranges

AN100026-26

FIGURE 22. Example of Analog Output Components

www.national.com 30



To generate PWM signals on P9 the following steps have to
be executed:

• configure P9 as output (over E2 or over CAN)

• configure High/Low Time of the PWM signal with the reg-
isters DAC2 and DAC1 (over E2 or over CAN)

• configure 8-Bit or 10-Bit PWM signal with the DAR Bit of
the register ACT (over E2 or over CAN)

• enable PWM output with DACEN of ACT (over E2 or over
CAN)

10-Bit PWM Configuration

The configuration of the SLIO registers DAC2/DAC1 via
CAN is shown in Table 16.

TABLE 16. 10-Bit D/A Output Examples

Register Marker second
databyte
(hex)

10-Bit Format D/A

Bit4 Bit3 Bit2 Bit1 Bit0 DAC2 DAC1

1 0 0 0 0 B0 00 B0

1 0 0 0 1 B0 01 B0

1 0 0 1 1 B0 03 B0

1 0 0 1 1 B0 03 B0

Example: 10 Bit PWM over CAN

Table 17 summarizes all messages which are necessary to
configure pin P9 (as a ten bit PWM output). It is assumed
that the SLIO is configured in Single wire RX0 bus mode and
the error mode is error active. The CKI is configured with
10 MHz. In Figure 23 the PWM output resulting from the con-
figuration of Table 17 is shown.

TABLE 17. Data Transfer Example for 10-Bit D/A

Direction Name ID first databyte second databyte
→ conf SINGLE WIRE RX0 0401 H 1F H 08 H

← answer from SLIO 0400 H 3F H 08 H

→ OD2 to 00000000 0401 H 06 H 00 H

← answer from SLIO 0400 H 26 H 00 H

→ DD2 to 00000010 0401 H 07 H 02 H

← answer from SLIO 0400 H 27 H 02 H

→ DAC2/DAC1 to 02 B0 H 0401 H 12 H B0 H

← answer from SLIO 0400 H 32 H B0 H

→ ACT to 00000011 0401 H 1C H 03 H

← answer from SLIO 0400 H 3C H 03 H

AN100026-27

FIGURE 23. 10-Bit PWM Output

31 www.national.com



8-Bit PWM Configuration

The 8-Bit configuration of the SLIO registers DAC1 via CAN
is shown in the Table 18. In this case Bit0/Bit1 of the register
marker are don’t care. That means that all register marker
bits, which are reserved for DAC, can be used for 8-Bit PWM
configuration.

TABLE 18. 8-Bit D/A Output Examples

Register Marker
second
databyte
(hex)

8-Bit
Format D/A

Bit4 Bit3 Bit2 Bit1 Bit0 DAC1

1 0 0 x x B0 B0

Example: 8-Bit PWM configuration

In Table 19 all CAN messages are summarized, which are
necessary to configure pin P9 as 8-Bit PWM output. Hereby
it is assumed that the SLIO is configured in Single wire RX0
bus mode and the error mode is error active. Moreover the
CKI is configured with 10 MHz.

TABLE 19. Data Transfer Example for 8-Bit D/A

Direction Name ID first databyte second databyte
→ conf SINGLE WIRE RX0 0401 H 1F H 08 H

← answer from SLIO 0400 H 3F H 08 H

→ OD2 to 00000000 0401 H 06 H 00 H

← answer from SLIO 0400 H 26 H 00 H

→ DD2 to 00000010 0401 H 07 H 02 H

← answer from SLIO 0400 H 27 H 02 H

→ DAC1 to 10110000 0401 H 12 H B0 H

← answer from SLIO 0400 H 32 H B0 H

→ ACT to 00000010 0401 H 1C H 02 H

← answer from SLIO 0400 H 3C H 02 H

3.9 Handling of External Events

Pins P0 to P7 provide monitoring of external events through
detection of rising or/and falling edge transition. The configu-
ration is done through the SLIO registers PE and NE. A one
in a given bit of these registers enables the external event
mode for the corresponding pin.

Example: configuration P0 - pos. edge and P1 - pos./
neg. edge

Table 20 depicts the configuration of the status of P0–P7 via
the CAN bus. Subsequent to this configuration a matching

edge on the port will result in a transmission of P0–P7 status
on the bus from the SLIO. In order to eliminate the possibility
of noise or switch bounce, the port is resampled after a time
period of Bt. Note that this period is dependent on the CPU
clock frequency. If an event occurs during a bus transaction
the reporting of the event will be delayed until the bus is
clear.

During the receive/transmit phase of the SLIO the process
caused through event is delayed until CAN communication is
finished.

TABLE 20. Configuration of PE and NE via CAN

Direction Name ID first databyte second databyte
→ conf SINGLE WIRE RX0 0401 H 1F H 08 H

← answer from SLIO 0400 H 3F H 08 H

→ PE to 00000011 0401 H 01 H 03 H

← answer from SLIO 0400 H 21 H 03 H

→ NE to 00000010 0401 H 02 H 02 H

← answer from SLIO 0400 H 22 H 02 H

www.national.com 32



3.10 Power Save Mode Examples

The SLIO device supports two different power save modes,
SLEEP mode and NAP mode. SLEEP mode stops all activi-
ties and clock. NAP mode stops all activities but the clock
and an internal counter. This counter will wake-up the device
every Bt time (Figure 25). The device will wake-up from both
modes by an external signal applied on one or more of the
port pins P0 to P6, by a recessive to dominate transition on
the CAN bus and by pulling the RESET pin low. Waking-up
triggers and automatic wakeup in NAP mode through the in-
ternal counter cause the transmission of a status message. If
the device wakes up from SLEEP mode, it will stay in active
mode (Figure 25) and all previous settings of the registers
are valid again.

The power mode bits PO0 to PO2 in the control register CTR
set up the power saving modes SLEEP and NAP. The differ-
ent configurations are summarized in Table 21.

TABLE 21. Power Modes Configuration (CTR Register)

PO2 PO1 PO0 power mode

0 0 0 active

0 0 1 NAP: 1 * Bt

0 1 0 NAP: 2 * Bt

0 1 1 NAP: 4 * Bt

1 0 0 NAP: 8 * Bt

1 0 1 NAP: 16 * Bt

1 1 0 NAP: 32 * Bt

1 1 1 SLEEP

Example: SLEEP mode

The CAN messages, described in Table 22, enables the
SLEEP mode.

TABLE 22. Configuration of SLEEP Mode

Direction Name ID first databyte second databyte
→ conf SINGLE WIRE RX0

and enable SLEEP mode
0401 H 1F H E8 H

← answer from SLIO 0400 H 3F H E8 H

After this data transfer the device enters SLEEP mode, all
activities including the CKI clock are stopped. The SLIO will
wake up on a rising/falling edge on any enabled pin PO - P6

or upon a recessive/dominant transition on the CAN bus.
Table 23 gives an example of a wake-up transaction from
SLEEP mode over CAN.

TABLE 23. Example of Wake-Up SLEEP Mode

Direction Name ID first databyte second databyte
→ wake-up message

(SOF=rec./dom. transition)
0401 H xx H xx H

← status message answer 0400 H 20 H 00 H

AN100026-28

Note: 1Bt = 40960/CKI

FIGURE 24. Delay Time External Rising Event

33 www.national.com



After wake-up the clock is running and the SLIO will stay in
active mode.

Example: configuration NAP mode - 16*Bt

The CAN message in Table 24 enables the 16*Bt NAP
mode.

TABLE 24. Configuration 16*Bt NAP Mode

Direction Name ID first databyte second databyte
→ conf SINGLE WIRE RX0

and enable NAP mode
0401 H 1F H A8 H

← answer from SLIO 0400 H 3F H A8 H

After this data transfer, the device is in NAP mode, all activi-
ties excluding the internal timer are stopped. This internal
timer was configured through the second data byte of the
previous message (Table 24) that after every 16*Bt, the de-

vice wakeup for 1*Bt (see also Figure 25). If during the NAP
condition a wakeup is coming, the device will be active dur-
ing the next 16*Bt, period. If during this period the power
mode is not changed, the NAP mode is entering again.

4.0 CAN SYSTEM EXAMPLE

4.1 Start Up Consideration

In this section an example is shown to start a first CAN appli-
cation. Before starting the following steps have to be
checked:

• At least two CAN nodes have to be connected on the
CAN Bus, because every message on the bus needs
an acknowledge

• Usage of the same physical bus interface as de-
scribed in section 1

• Usage of the same bus mode (differential/single wire)

• Configuration of the termination on the two CAN bus
endings depending on the physical bus interface

— ISO High Speed (ext. Transceiver): 120Ω between
CAN_H and CAN_L

— ISO Low Speed: voltage divider 1.75V/ 3.25V reces-
sive levels

• Usage of the same bus timing (described in section
1) for all CAN nodes

• Consideration of length/frequency and the number of
CAN nodes

• Consideration of the number of SLIO nodes depend-
ing on the SLIO Identifier mode

— Pin mode: connected SLIO < 16 (only 4+1 Identifier
can be configured)

— EEPROM mode: quasi no limit (all ID in standard CAN
format are used)

4.2 Network Description

These CAN communication examples between COP884BC
and the SLIO describe the basis of an application with Na-
tional CAN interface. The COP884BC software controls the
CAN data transfer, which means that the counter value of a
decrement 8-Bit counter is transmitted to the SLIO pins P0 to
P7. In order to control the CAN data, the status of the
counter is also given out to L_port of the COP884BC. The
communication is restricted to SLIO CAN format. The sche-
matics of COP884BC node and SLIO node are shown in Fig-
ure 26 and Figure 27.

To start the application, the following steps have to be ex-
ecuted:

• Reset COP884BC

• create a rising edge to the port pin G0 for COP884BC

• Reset the SLIO

After the Controller receives the Status Message of the
SLIO, the counter will be enabled and the data transfer be-
gins. Next, all CAN frames from COP884BC will be re-
quested from the SLIO by an answering message. The soft-
ware of COPCAN waits for this message and will generate
the next data frame after a delay caused through the IDLE
Timer pending flag T0PND.

The physical features are summarized in the next points:

• CKI = 10 MHz

• Bus Rate = 250 kbit/s

• external transceiver chip connection (ISO High
Speed)

AN100026-29

FIGURE 25. Timing NAP-mode (16*Bt)

www.national.com 34



• usage of the external EEPROM NMC93C06

The EEPROM configures the receive/transmit ID′s to/from
the SLIO (0023/0022), the bus mode and the data direction
of P0 to P7. The configuration of the EEPROM registers are
shown in Table 25.

TABLE 25. Example of Configuration of SLIO Registers
in EEPROM Mode

E2-address EEPROM Registers SLIO Registers

0x00

E2-MASK
0xAA

PIN-E2-MASK
0x00

0x01

RXIDH
0x00

RXIDL
0x22

0x02

RXIDGH
0x00

RXIDGL
0x00

0x03

PEDGE
0x00

PE
0x00

NEDGE
0x00

NE
0x00

E2-address EEPROM Registers SLIO Registers

0x04

ODATA1
0x00

OD1
0x00

ODATA2
0x00

OD2
0x00

0x05

DATADIR1
0xFF

DD1
0xFF

DATADIR2
0x00

DD2
0x00

0x06

DACH
0x00

DAC2
0x00

DACL
0x00

DAC1
0x00

0x07

ACR
0x00

ACT
0x00

CCR
0x00

CCT
0x00

0x08

DCR
0x08

CTR
0x08

CAN_PSC
0x03

CAN Prescaler
0x03

35 www.national.com



AN100026-30

FIGURE 26. COP884BC Node

www.national.com 36



4.3 Software Structure

The Block Diagram in Figure 28 describes the software pro-
cess. The software can be separated into the following
modules.

AN100026-31

FIGURE 27. SLIO Node Schematic

37 www.national.com



• initialization (init)

After Reset, the software will execute the initialization rou-
tine. Within this routine the various interrupts and the initial-
ization of the CAN interface will be configured.

• rising edge wait (wait_edg)

Next, the software waits for the rising edge on pin G0. If this
rising edge is received, the interrupt routine enables the ac-
cess of the application.

• main cycle (main)

• CAN receive interrupt routine (can_rx)

This is the same receive interrupt routine as described for 2
bytes or less in section 2. It processes the answering mes-
sage from the SLIO and saves the data in the receive object
rx_obj. Then the control bit is set and the COP884BC can
transmit the next data message with the next counter value
after a self defined delay.

• CAN Transmit routine (can_tx)

This is the same transmit interrupt routine as described for 2
bytes or less in section 2.

4.4 Source Code

.incld cop888bc.inc
tx_cnt = 0 ; flag equations for the control register
tx_dly = 1 ; flag equations for the control register
action = 2 ; flag equations for the control register
lo = 00a ; delay (lo * 40960/CKI)
.sect msg_buf, base

tx_obj: .dsb 4
; transmit object format:
; tx_obj[0] = trtr, tid[10:4]
; tx_obj[1] = tid[3:0], tdlc[3:0]
; tx_obj[2] = txd1 !
; tx_obj[3] = txd2 !
rx_obj0: .dsb 4
; rx_obj[0] = lock, rid[10:4]
; tx_obj[1] = rid[3:0], rdlc[3:0]
; tx_obj[2] = rxd1 !
; tx_obj[3] = rxd2 !

.endsect
;==========================================================================
.sect base,base

control: .dsb 1 ; allocation of flag control register
.endsect
;==========================================================================
.sect register,reg

counter: .dsb 1
light: .dsb 1

.endsect
;==========================================================================
.sect code,rom,abs=0
main:

AN100026-32

FIGURE 28. Software Block Diagram

www.national.com 38



reset:
ld sp,#02f ;load stack pointer

;----------------------------------------------------------------------
; clear ram from 0x00 to 0x2f
; stack area will overwrite as well →don’t use as a subroutine
;----------------------------------------------------------------------
clr_ram:

ld b,#02f ; pointer to the last ram location
clr_loop:

ld [b],#0 ; clear ram byte
drsz b ; decrement and “skip if zero”
jp clr_loop ; ..counter >0
ld [b],#0 ; clear first ram byte

;----------------------------------------------------------
init:

ld counter,#000 ; reset counter
ld light,#000 ; reset light counter

init_prt_l:
ld portlc,#0ff

init_G0:
rbit iedg,cntrl ; →rising edge
sbit exen,psw ; enable extrn int
rbit expnd,psw ; clear extern int pending

init_can:
jsr can_init

conf_rx_obj0:
ld b,#rx_obj0 ; configure receive message box
ld [b+], #082 ; with ID 002 2 , 2 byte messages
ld [b], #022

enable_can:
ld cbus,#058 ; conf single wire rx0

; RIAF enabled →compare with higher id’s
; enable CAN

enable_int:
ld b,#tcntl
sbit rie,[b] ; enable can receive int
sbit gie,psw ; enable global interrupt

;-------------------------------------------------------------------
;main cycle
;-------------------------------------------------------------------
start:
wait_begin:

ifbit action,control ; wait until rising edge is comming
jp start_loop ; yes.. process
jp wait_begin

start_loop:
ifbit tx_cnt,control ; transmission
jsr cantx
jp start_loop

;-------------------------------------------------------------------
cantx:

jsr delay ; delay routine
jsr action_count ; count lights
jsr can_tx ; transmit
sbit 7,rx_obj0 ; enable receive buffer 0
ret

;-------------------------------------------------------------------
delay:

ld counter,#lo ; conf t0pnd_counter
ld b,#icntrl ; point icntrl

dlay:
rbit t0pnd,[b] ; reset t0 pending flag

loop_w:
ifbit t0pnd,[b] ; wait unti t0pnd is set
jp count ;
jp loop_w ;

count:

39 www.national.com



drsz counter ; count x*(40960/CKI)
jp dlay
rbit t0pnd,[b] ;
ret

;-------------------------------------------------------------------
action_count:

rbit tx_cnt,control ; reset
drsz light
nop
ld a,light
x a,portld

conf_tx_obj:
ld b, #tx_obj
ld [b+], #002 ; tid,#002
ld [b+], #032 ; tdlc,#032
ld [b+], #003 ; rxd1, #003
ld a,light
x a, [b] ; rxd2, #count value light
ret

;==========================================================================
.sect code_can_init, rom
; this code initializes the CAN with minimun
; possible instuctions/rom space
can_init:

ld b, #cscal
ld [b+], #3 ; CAN prescaler
ld [b+], #00f ; ctim (BTL)
ld [b], #0 ; TCNTL ; don’t point to RTSTAT

; clear RERR, TERR, etc..
ret

.endsect
;==========================================================================
.sect code_can_tx, rom
; this code transmit s a 0 to 2 byte or remote CAN message
; from a transmit buffer tx_obj[0:3]
; this code intentionally does not check for remote or
; DLC (data length code) as the COPCAN interface will
; automatically transmit no data bytes in a remote frame
; and not more than DLC data bytes
can_tx:

rc ; (*) reset error flag
ifbit TXPND, RTSTAT ; check if transmit busy
jp tx_busy ; .. yes then exit
ld b, #tx_obj ; point to tx_obj[0]
ld x, #TID ; point to TID
ld a, [b+] ; get tx_obj[0]; point to tx_obj[1]
x a, [x-] ; .. and save
ld a, [b+] ; get tx_obj[1]; point to tx_obj[2]
x a, [x-] ; .. and save
ld a, [b+] ; point to tx_obj[3]
ld a, [b-] ; get tx_obj[3]; point to tx_obj[2]
x a, [x-] ; save to TXD1
ld a, [b] ; get tx_obj[3]
x a, [x] ; save to TXD2

tx_done:
sbit txss, tcntl ;set pending transmission

;automatic reset of txss after transmission
ret ; exit without error

tx_busy:
sc ; (*) indicate tx_busy
ret ; (*) exit with error
; retsk ; optional use retsk instead

; 1st and last 2 lines to skip next
.endsect
;==========================================================================
.sect int,rom,abs=0ff
interrupt:

www.national.com 40



push a
ld a,b
push a

restore:
vis

int_end:
pop a
x a,b
pop a
reti

.endsect
;==========================================================================
.sect inttab, rom , abs=01E0

.addrw restore ; default VIS

.addrw restore ; PortL interrupt/wake-up

.addrw restore ; reserved

.addrw restore ; reserved

.addrw restore ; reserved

.addrw restore ; PWM Timer

.addrw restore ; MicroWire/Plus
. addrw restore ; T1B

.addrw restore ; T1A

.addrw restore ; Idle Timer

.addrw int_g0 ; Pin G0

.addrw restore ; CAN Transmit

.addrw restore ; CAN Error

.addrw can_rx ; CAN Receive

.addrw restore ; reserved

.addrw reset ; Opcode 00 Software-Trap
.endsect
;==========================================================================
.sect code_can_rx, rom ; from interrupt
can_rx:

; this interrupt is triggerd by RBF, RRTR or RFV
; RRTR and RBF are cleared by reading or b’s pointing to RXD1
; RFV is cleared by reading RTSTAT to A
; or executing the equiv. of LD B, #RSTAT; LD A, #xx

;------
sbit tx_cnt,control

;------
ld b, #rx_obj0 ; (*) receive id h i ; * only with RIAF = 0
ifbit 7, [b] ; buffer free
jp receive_msg ; .. yes then receive
ld b, #rx_obj1 ; next buffer
ifbit 7, [b] ; buffer free
jp receive_msg ; .. then receive msg
jp can_rx_exit ; else exit

receive_msg:
rbit 7, [b]
ld a, rid ; (*) get received id
ifne a, [b] ; (*) check if accept
jp can_rx_exit ; (*) .. no then exit
x a, [b+]
ld a, ridl ; get received IDLC
x a, [b] ; save message
ifbit RRTR, RTSTAT ; received frame remote frame?
jp can_rx_rtr ; yes
jp save_data ; no

can_rx_rtr:
ld a,[b] ; remote frame is signed
or a,#0F ; through rdlc = F
x a,[b] ;
jp wait_rx ;

save_data:
ld a,[b+] ;dummy read →point rx_data register
ld a, RXD1 ;
x a, [b+]

41 www.national.com



ld a, RXD2
x a, [b]
ld b, #RTSTAT

wait_rx:
ifbit RFV, [b]
jp rx_done
ifbit RERR, TCNTL
jp rx_error
jp wait_rx

; this is the error routine error interrupt must not be enabled
rx_error:

ld b, #rx_obj1
ifbit 7, [b]
jp check_obj0
jp end_error

check_obj0:
ld b, #rx_obj0

end_error:
sbit 7, [b] ; free buffer
rbit RERR, TCNTL

rx_done:
can_rx_exit:

ld a, RXD1 ; dummy read to clear RBF, RTR
ld a, RTSTAT ; dummy read to clear RFV
jp int_end

.endsect
;==========================================================================
.sect rom,rom
int_g0:

sbit action,control
rbit expnd,psw ;clear extern int pending
jp int_end

.endsect

.end main

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL
SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or
systems which, (a) are intended for surgical implant
into the body, or (b) support or sustain life, and
whose failure to perform when properly used in
accordance with instructions for use provided in the
labeling, can be reasonably expected to result in a
significant injury to the user.

2. A critical component in any component of a life support
device or system whose failure to perform can be
reasonably expected to cause the failure of the life
support device or system, or to affect its safety or
effectiveness.

National Semiconductor
Corporation
Americas
Tel: 1-800-272-9959
Fax: 1-800-737-7018
Email: support@nsc.com

www.national.com

National Semiconductor
Europe

Fax: +49 (0) 1 80-530 85 86
Email: europe.support@nsc.com

Deutsch Tel: +49 (0) 1 80-530 85 85
English Tel: +49 (0) 1 80-532 78 32
Français Tel: +49 (0) 1 80-532 93 58
Italiano Tel: +49 (0) 1 80-534 16 80

National Semiconductor
Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd.
Tsimshatsui, Kowloon
Hong Kong
Tel: (852) 2737-1600
Fax: (852) 2736-9960

National Semiconductor
Japan Ltd.
Tel: 81-3-5620-6175
Fax: 81-3-5620-6179

A
N
-1
07
4

C
A
N
P
ro
du
ct
s
fro
m
N
at
io
na
lS

em
ic
on
du
ct
or

U
se
rs
G
ui
de

an
d
A
pp
lic
at
io
n
N
ot
e

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.


