

PIC16C64

PIC16C64 Rev. A Silicon Errata Sheet

The PIC16C64 (Rev. A) parts you have received conform functionally to the Device Data Sheet (DS30234D), except for the anomalies described below.

All the problems listed here will be addressed in future revisions of the PIC16C64 silicon.

1. Module: USART

When the USART (SCI) is configured in asynchronous mode with the BRGH bit set, a high number of receive errors may be experienced. For asynchronous receive operations, it is recommended that the USART be configured with the BRGH bit cleared.

Note: As with any windowed EPROM device, please cover the window at all times, except when erasing.

Clarifications/Corrections to the Data Sheet:

In the Device Data Sheet (DS30234**D**), the following clarifications and corrections should be noted.

1. Module: I/O Ports

The specification for the High Voltage Open Drain I/O (The RA4 pin on most devices) cannot be met without possible long term reliability issues on that I/O pin. If a high voltage drive is required, use an external transistor that can support the required voltage.

TABLE 1: DC SPECIFICATION CHANGES FROM DATA SHEET

Param No.	Sym.	Characteristic	New Specification			Data Sheet Specification			Units
			Min	Тур	Max	Min	Тур	Max	
D150	Vod	Open-drain High Voltage	_	_	10	_	_	14	V

2. Module: SSP (SPI Mode Timing Specificatios)

 The SPI interface timings have been modified to the values shown in Table 2.

TABLE 2: DC SPECIFICATION CHANGES FROM DATA SHEET

Parm No.	Sym.	Characteristic		New Specification			Data Sheet Specification			Units
NO.				Min	Тур	Max	Min	Тур	Max	
71	TscH	SCK input high time (slave mode)	Continuous	1.25Tcy + 30 ns	_	-	Tcy + 20 ns	_	_	ns
71A			Single Byte (1)	40	_	_		N.A.		ns
72	TscL	SCK input low time (slave mode)	Continuous	1.25Tcy + 30 ns	_	_	Tcy + 20 ns	_	_	ns
72A			Single Byte (1)	40	_	_	N.A.			ns
73A	Тв2в	Last clock edge of the Byte1 to 1st clock edge of the Byte2 (1)		1.5 Tcy + 40 ns	_		N.A.			ns

^{*} This parameter is characterized but not tested

Note 1: Specification 73A is only required if specifications 71A and 72A are used.

3. Module: Timer1

 The operation of Timer1 needs some clarification when the timer registers are written when the TMR1ON bit is set.

The internal clock signal that is the input to the TMR1 presaler affects the incrementing of Timer1 (TMR1H:TMR1L registers and the Timer1 prescaler). When the Timer1 registers are NOT written, the Timer1 will increment on the rising edge of the TMR1 increment clock.

When the TMR1H and/or TMR1L registers are written while this clock is high, TMR1 will increment on the next rising edge of this clock.

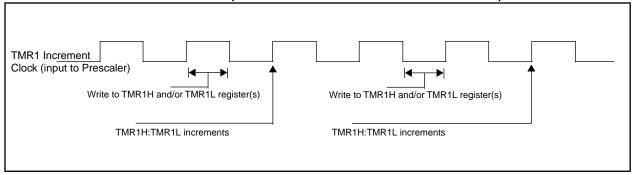

When the TMR1H and/or TMR1L registers are written while this clock is low, TMR1 will not increment on the next rising edge of this clock, but must first have a falling clock and the the rising clock for TMR1 to increment.

Figure 1 shows the two cases of writes to the TMR1H and/or TMR1L registers. Due to the V_{IH} and V_{IL} thresholds on the oscillator/clock pins, external

Timer1 oscillator components, and external clock frequency, the Timer1 increment clock may not be of a 50% duty cycle.

The TMR1 increment clock is out of phase of the T1OSO/T1CKI pin by a small propagation delay.

FIGURE 1: WRITES TO TIMER1 (EXTERNAL CLOCK / OSCILLATOR MODE)

4. Module: RC Oscillator

The table for RC Oscillator Frequencies in the Device Characterization section of the Data Sheet is incorrect. The correct characterization information is shown in Table 3.

TABLE 3: RC OSCILLATOR FREQUENCIES CHARACTERIZATION CHANGES FROM DATA SHEET

Cext	Rext	Correct Charac	cterization Data	Current Data Sheet Values			
Cext	Rext	Average	% Variation	Average	% Variation		
22 pF	5.1 K	3.55 MHz	± 9.63%	4.12 MHz	± 1.4%		
	10 K	1.99 MHz	± 10.53%	2.35 MHz	± 1.4%		
	100 K	221.9 KHz	± 12.10%	268 KHz	± 1.1%		
100 pF	3.3 K	1.77 MHz	± 10.67%	1.80 MHz	± 1.0%		
	5.1 K	1.22 MHz	± 10.41%	1.27 MHz	± 1.0%		
	10 K	669.4 KHz	± 10.92%	688 KHz	± 1.2%		
	100 K	71.5 KHz	± 11.21%	77.2 KHz	± 1.0%		
330 pF	3.3 K	625.1 KHz	± 10.68%	707 KHz	± 1.4%		
	5.1 K	428.5 KHz	± 10.96%	501 KHz	± 1.2%		
	10 K	231.9 KHz	± 11.32%	269 KHz	± 1.6%		
	100 K	24.4 KHz	± 12.93%	28.3 KHz	± 1.1%		

The percentage variation indicated here is part to part variation due to normal process distribution. The variation indicated is ± 3 standard deviation from the average value for Vdd = 5V

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

Microchip Technology Inc. 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 602-786-7200 Fax: 602-786-7277 Technical Support: 602 786-7627 Web: http://www.microchip.com

Atlanta

Microchip Technology Inc. 500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770-640-0034 Fax: 770-640-0307

Boston

Microchip Technology Inc. 5 Mount Royal Avenue Marlborough, MA 01752 Tel: 508-480-9990 Fax: 508-480-8575

Chicago

Microchip Technology Inc. 333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Microchip Technology Inc. 14651 Dallas Parkway. Suite 816 Dallas, TX 75240-8809 Tel: 972-991-7177 Fax: 972-991-8588

Dayton

Microchip Technology Inc. Two Prestige Place, Suite 150 Miamisburg, OH 45342 Tel: 937-291-1654 Fax: 937-291-9175

Microchip Technology Inc. 42705 Grand River, Suite 201 Novi, MI 48375-1727 Tel: 248-374-1888 Fax: 248-374-2874

Los Angeles

Microchip Technology Inc. 18201 Von Karman, Suite 1090 Irvine, CA 92612 Tel: 714-263-1888 Fax: 714-263-1338

New York

Microchip Technology Inc. 150 Motor Parkway, Suite 202 Hauppauge, NY 11788 Tel: 516-273-5305 Fax: 516-273-5335

San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955

AMERICAS (continued)

Toronto

Microchip Technology Inc. 5925 Airport Road, Suite 200 Mississauga, Ontario L4V 1W1, Canada Tel: 905-405-6279 Fax: 905-405-6253

ASIA/PACIFIC

Microchip Asia Pacific

Hong Kong

RM 3801B, Tower Two Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2-401-1200 Fax: 852-2-401-3431

Microchip Technology Inc. India Liaison Office No. 6, Legacy, Convent Road Bangalore 560 025, India Tel: 91-80-229-0061 Fax: 91-80-229-0062

Japan

Microchip Technology Intl. Inc. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa 222-0033 Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea

Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea Tel: 82-2-554-7200 Fax: 82-2-558-5934

Shanghai

Microchip Technology RM 406 Shanghai Golden Bridge Bldg. 2077 Yan'an Road West, Hong Qiao District Shanghai, PRC 200335 Tel: 86-21-6275-5700 Fax: 86 21-6275-5060

ASIA/PACIFIC (continued)

Singapore

Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore 188980 Tel: 65-334-8870 Fax: 65-334-8850

Taiwan, R.O.C

Microchip Technology Taiwan 10F-1C 207 Tung Hua North Road Taipei, Taiwan, ROC

Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

United Kingdom

Arizona Microchip Technology Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44-1189-21-5858 Fax: 44-1189-21-5835

Arizona Microchip Technology SARL Zone Industrielle de la Bonde 2 Rue du Buisson aux Fraises 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany

Arizona Microchip Technology GmbH Gustav-Heinemann-Ring 125 D-81739 Müchen, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44

Italy

Arizona Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy Tel: 39-39-6899939 Fax: 39-39-6899883

9/29/98

Microchip received ISO 9001 Quality System certification for its worldwide headquarters, design, and wafer fabrication facilities in January, 1997. Our field-programmable PICmicro® 8-bit MCUs, Serial EEPROMs, related specialty memory products and development systems conform to the stringent quality standards of the International Standard Organization (ISO).

All rights reserved. © 1998 Microchip Technology Incorporated. Printed in the USA. 10/98 🏻 📢 Printed on recycled paper.

Information contained in this publication regarding device applications and the like is intended for suggestion only and may be superseded by updates. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.