

M
em

o
ry

O
rg

an
izatio

6

M

Section 6. Memory Organization
n

HIGHLIGHTS

This section of the manual contains the following major topics:

6.1 Introduction ..6-2
6.2 Program Memory Organization..6-2
6.3 Data Memory Organization ..6-8
6.4 Initialization ..6-14
6.5 Design Tips ..6-16
6.6 Related Application Notes..6-17
6.7 Revision History ...6-18
 1997 Microchip Technology Inc. DS31006A page 6-1

PICmicro MID-RANGE MCU FAMILY

6.1 Introduction

There are two memory blocks in the Section 6. Memory Organization; program memory and data
memory. Each block has its own bus, so that access to each block can occur during the same
oscillator cycle.

The data memory can further be broken down into General Purpose RAM and the Special Func-
tion Registers (SFRs). The operation of the SFRs that control the “core” are described here. The
SFRs used to control the peripheral modules are described in the section discussing each indi-
vidual peripheral module.

6.2 Program Memory Organization

Mid-Range MCU devices have a 13-bit program counter capable of addressing an 8K x 14 pro-
gram memory space. The width of the program memory bus (instruction word) is 14-bits. Since
all instructions are a single word, a device with an 8K x 14 program memory has space for 8K of
instructions. This makes it much easier to determine if a device has sufficient program memory
for a desired application.

This program memory space is divided into four pages of 2K words each (0h - 7FFh, 800h -
FFFh, 1000h - 17FFh, and 1800h - 1FFFh). Figure 6-1 shows the program memory map as well
as the 8 level deep hardware stack. Depending on the device, only a portion of this memory may
be implemented. Please refer to the device data sheet for the available memory.

To jump between the program memory pages, the high bits of the Program Counter (PC) must
be modified. This is done by writing the desired value into a SFR called PCLATH (Program
Counter Latch High). If sequential instructions are executed, the program counter will cross the
page boundaries without any user intervention. For devices that have less than 8K words,
accessing a location above the physically implemented address will cause a wraparound. That
is, in a 4K-word device accessing 17FFh actually addresses 7FFh. 2K-word devices (or less) do
not require paging.
DS31006A-page 6-2  1997 Microchip Technology Inc.

Section 6. Memory Organization

M
em

o
ry

O
rg

an
izatio

n

6

Figure 6-1: Architectural Program Memory Map and Stack

PC<12:8>

13

0000h

0004h
0005h

07FFh
0800h

1FFFh

Stack Level 1

Stack Level 8

Reset Vector

Interrupt Vector

On-chip Program

On-chip Program
Memory (Page 1)

Memory (Page 0)

CALL, RETURN
RETFIE, RETLW

On-chip Program
Memory (Page 2)

On-chip Program
Memory (Page 3)

0FFFh
1000h

17FFh
1800h

2K

4K

6K

8K

PC<12:0> PCL

PCLATH

Note 1: Not all devices implement the entire program memory space
2: Calibration Data may be programmed into program memory locations.
 1997 Microchip Technology Inc. DS31006A-page 6-3

PICmicro MID-RANGE MCU FAMILY

6.2.1 Reset Vector

On any device, a reset forces the Program Counter (PC) to address 0h. We call this address the
“Reset Vector Address” since this is the address that program execution will branch to when a
device reset occurs.

Any reset will also clear the contents of the PCLATH register. This means that any branch at the
Reset Vector Address (0h) will jump to that location in PAGE0 of the program memory.

6.2.2 Interrupt Vector

When an interrupt is acknowledged the PC is forced to address 0004h. We call this the “Interrupt
Vector Address”. When the PC is forced to the interrupt vector, the PCLATH register is not mod-
ified. Once in the service interrupt routine (ISR), this means that before any write to the PC, the
PCLATH register should be written with the value that will specify the desired location in program
memory. Before the PCLATH register is modified by the Interrupt Service Routine (ISR) the con-
tents of the PCLATH may need to be saved, so it can be restored before returning from the ISR.

6.2.3 Calibration Information

Some devices have calibration information stored in their program memory. This information is
programmed by Microchip when the device is under final test. The use of these values allows the
application to achieve better results. The calibration information is typically at the end of program
memory, and is implemented as a RETLW instruction with the literal value being the specified cal-
ibration information.

Note: For windowed devices, write down all calibration values BEFORE erasing. This
allows the device’s calibration values to be restored when the device is re-pro-
grammed. When possible writing the values on the package is recommended.
DS31006A-page 6-4  1997 Microchip Technology Inc.

Section 6. Memory Organization

M
em

o
ry

O
rg

an
izatio

n

6

6.2.4 Program Counter (PC)

The program counter (PC) specifies the address of the instruction to fetch for execution. The PC
is 13-bits wide. The low byte is called the PCL register. This register is readable and writable. The
high byte is called the PCH register. This register contains the PC<12:8> bits and is not directly
readable or writable. All updates to the PCH register go through the PCLATH register.

Figure 6-2 shows the four situations for the loading of the PC. Situation 1 shows how the PC is
loaded on a write to PCL (PCLATH<4:0> → PCH). Situation 2 shows how the PC is loaded during
a GOTO instruction (PCLATH<4:3> → PCH). Situation 3 shows how the PC is loaded during a
CALL instruction (PCLATH<4:3> → PCH), with the PC loaded (PUSHed) onto the Top of Stack.
Situation 4 shows how the PC is loaded during one of the return instructions where the PC
loaded (POPed) from the Top of Stack.

Figure 6-2: Loading of PC In Different Situations

PC

12 8 7 0

5
PCLATH<4:0>

PCLATH
ALU result

Opcode <10:0>

8

PC

12 11 10 0

11PCLATH<4:3>

PCH PCL

8 7

2

PCLATH

PCH PCL

Situation 1 - Instruction with PCL as destination

Situation 2 - GOTO Instruction

STACK (13-bits x 8)

Top of STACK

STACK (13-bits x 8)

Top of STACK

Opcode <10:0>

PC

12 11 10 0

11PCLATH<4:3>

8 7

2

PCLATH

PCH PCL

Situation 3 - CALL Instruction
STACK (13-bits x 8)

Top of STACK

Opcode <10:0>

PC

12 11 10 0

11

8 7

PCLATH

PCH PCL

Situation 4 - RETURN, RETFIE, or RETLW Instruction
STACK (13-bits x 8)

Top of STACK
13

13

Note: PCLATH is never updated with the contents of PCH.
 1997 Microchip Technology Inc. DS31006A-page 6-5

PICmicro MID-RANGE MCU FAMILY

6.2.4.1 Computed GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL).
When doing a table read using a computed GOTO method, care should be exercised if the table
location crosses a PCL memory boundary (each 256 byte block).

6.2.5 Stack

The stack allows a combination of up to 8 program calls and interrupts to occur. The stack con-
tains the return address from this branch in program execution.

Mid-Range MCU devices have an 8-level deep x 13-bit wide hardware stack. The stack space is
not part of either program or data space and the stack pointer is not readable or writable. The PC
is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch.
The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH
is not modified when the stack is PUSHed or POPed.

After the stack has been PUSHed eight times, the ninth push overwrites the value that was stored
from the first push. The tenth push overwrites the second push (and so on). An example of the
overwriting of the stack is shown in Figure 6-3.

Figure 6-3: Stack Modification

Note: Any write to the Program Counter (PCL), will cause the lower five bits of the PCLATH
to be loaded into PCH.

Push1 Push9
Push2 Push10
Push3
Push4

Push5
Push6
Push7
Push8

Top of STACK

STACK

Note 1: There are no status bits to indicate stack overflow or stack underflow conditions.

Note 2: There are no instructions/mnemonics called PUSH or POP. These are actions that
occur from the execution of the CALL, RETURN, RETLW, and RETFIE instructions,
or the vectoring to an interrupt address.
DS31006A-page 6-6  1997 Microchip Technology Inc.

Section 6. Memory Organization

M
em

o
ry

O
rg

an
izatio

n

6

6.2.6 Program Memory Paging

Some devices have program memory sizes greater then 2K words, but the CALL and GOTO
instructions only have a 11-bit address range. This 11-bit address range allows a branch within
a 2K program memory page size. To allow CALL and GOTO instructions to address the entire 1K
program memory address range, there must be another two bits to specify the program memory
page. These paging bits come from the PCLATH<4:3> bits (Figure 6-2). When doing a CALL or
GOTO instruction, the user must ensure that page bits (PCLATH<4:3>) are programmed so that
the desired program memory page is addressed (Figure 6-2). When one of the return instruc-
tions is executed, the entire 13-bit PC is POPed from the stack. Therefore, manipulation of the
PCLATH<4:3> is not required for the return instructions.

Example 6-1 shows the calling of a subroutine in page 1 of the program memory. This example
assumes that PCLATH is saved and restored by the interrupt service routine (if interrupts are
used).

Example 6-1: Call of a Subroutine in Page1 from Page0

Note: Devices with program memory sizes 2K words and less, ignore both paging bits
(PCLATH<4:3>), which are used to access program memory when more than one
page is available. The use of PCLATH<4:3> as general purpose read/write bits (for
these devices) is not recommended since this may affect upward compatibility with
future products.

Devices with program memory sizes between 2K words and 4K words, ignore the
paging bit (PCLATH<4>), which is used to access program memory pages 2 and 3
(1000h - 1FFFh). The use of PCLATH<4> as a general purpose read/write bit (for
these devices) is not recommended since this may affect upward compatibility with
future products.

 ORG 0x500
 BSF PCLATH,3 ; Select Page1 (800h-FFFh)
 CALL SUB1_P1 ; Call subroutine in Page1 (800h-FFFh)
 : ;
 : ;
 ORG 0x900 ;
SUB1_P1: ; called subroutine Page1 (800h-FFFh)
 : ;
 RETURN ; return to Call subroutine in Page0 (000h-7FFh)
 ;
 1997 Microchip Technology Inc. DS31006A-page 6-7

PICmicro MID-RANGE MCU FAMILY

6.3 Data Memory Organization

Data memory is made up of the Special Function Registers (SFR) area, and the General Pur-
pose Registers (GPR) area. The SFRs control the operation of the device, while GPRs are the
general area for data storage and scratch pad operations.

The data memory is banked for both the GPR and SFR areas. The GPR area is banked to allow
greater than 96 bytes of general purpose RAM to be addressed. SFRs are for the registers that
control the peripheral and core functions. Banking requires the use of control bits for bank selec-
tion. These control bits are located in the STATUS Register (STATUS<7:5>). Figure 6-5 shows
one of the data memory map organizations, this organization is device dependent.

To move values from one register to another register, the value must pass through the W register.
This means that for all register-to-register moves, two instruction cycles are required.

The entire data memory can be accessed either directly or indirectly. Direct addressing may
require the use of the RP1:RP0 bits. Indirect addressing requires the use of the File Select Reg-
ister (FSR). Indirect addressing uses the Indirect Register Pointer (IRP) bit of the STATUS regis-
ter for accesses into the Bank0 / Bank1 or the Bank2 / Bank3 areas of data memory.

6.3.1 General Purpose Registers (GPR)

Some Mid-Range MCU devices have banked memory in the GPR area. GPRs are not initialized
by a Power-on Reset and are unchanged on all other resets.

The register file can be accessed either directly, or using the File Select Register FSR, indirectly.
Some devices have areas that are shared across the data memory banks, so a read / write to
that area will appear as the same location (value) regardless of the current bank. We refer to this
area as the Common RAM.

6.3.2 Special Function Registers (SFR)

The SFRs are used by the CPU and Peripheral Modules for controlling the desired operation of
the device. These registers are implemented as static RAM.

The SFRs can be classified into two sets, those associated with the “core” function and those
related to the peripheral functions. Those registers related to the “core” are described in this sec-
tion, while those related to the operation of the peripheral features are described in the section
of that peripheral feature.

All Mid-Range MCU devices have banked memory in the SFR area. Switching between these
banks requires the RP0 and RP1 bits in the STATUS register to be configured for the desired
bank. Some SFRs are initialized by a Power-on Reset and other resets, while other SFRs are
unaffected.

The register file can be accessed either directly, or using the File Select Register FSR, indirectly.

Note: The Special Function Register (SFR) Area may have General Purpose Registers
(GPRs) mapped in these locations.
DS31006A-page 6-8  1997 Microchip Technology Inc.

Section 6. Memory Organization

M
em

o
ry

O
rg

an
izatio

n

6

6.3.3 Banking

The data memory is partitioned into four banks. Each bank contains General Purpose Registers
and Special Function Registers. Switching between these banks requires the RP0 and RP1 bits
in the STATUS register to be configured for the desired bank when using direct addressing. The
IRP bit in the STATUS register is used for indirect addressing.

Table 6-1: Direct and Indirect Addressing of Banks

Each Bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for the
Special Function Registers. Above the Special Function Registers are General Purpose Regis-
ters. All data memory is implemented as static RAM. All Banks may contain special function reg-
isters. Some “high use” special function registers from Bank0 are mirrored in the other banks for
code reduction and quicker access.

Through the evolution of the products, there are a few variations in the layout of the Data Memory.
The data memory organization that will be the standard for all new devices is shown in
Figure 6-5. This Memory map has the last 16-bytes mapped across all memory banks. This is to
reduce the software overhead for context switching. The registers in bold will be in every device.
The other registers are peripheral dependent. Not every peripheral’s registers are shown,
because some file addresses have a different registers from those shown. As with all the figures,
tables, and specifications presented in this reference guide, verify the details with the device spe-
cific data sheet.

Figure 6-4: Direct Addressing

Accessed
Bank

Direct
(RP1:RP0)

Indirect
(IRP)

0 0 0
0

1 0 1

2 1 0
1

3 1 1

Data
Memory

Direct Addressing

bank select location select

RP1 RP0 6 0from opcode

00 01 10 11

7Fh

00h

7Fh

Bank0 Bank1 Bank2 Bank3
 1997 Microchip Technology Inc. DS31006A-page 6-9

PICmicro MID-RANGE MCU FAMILY

Figure 6-5: Register File Map

File
Address

File
Address

File
Address

File
Address

INDF 00h INDF 80h INDF 100h INDF 180h
TMR0 01h OPTION_REG 81h TMR0 101h OPTION_REG 181h
PCL 02h PCL 82h PCL 102h PCL 182h

STATUS 03h STATUS 83h STATUS 103h STATUS 183h
FSR 04h FSR 84h FSR 104h FSR 184h

PORTA 05h TRISA 85h 105h 185h
PORTB 06h TRISB 86h PORTB 106h TRISB 186h
PORTC 07h TRISC 87h PORTF 107h TRISF 187h
PORTD 08h TRISD 88h PORTG 108h TRISG 188h
PORTE 09h TRISE 89h 109h 189h
PCLATH 0Ah PCLATH 8Ah PCLATH 10Ah PCLATH 18Ah
INTCON 0Bh INTCON 8Bh INTCON 10Bh INTCON 18Bh

PIR1 0Ch PIE1 8Ch 10Ch 18Ch
PIR2 0Dh PIE2 8Dh 10Dh 18Dh

TMR1L 0Eh PCON 8Eh 10Eh 18Eh
TMR1H 0Fh OSCCAL 8Fh 10Fh 18Fh
T1CON 10h 90h 110h 190h
TMR2 11h 91h 111h 191h

T2CON 12h PR2 92h 112h 192h
SSPBUF 13h SSPADD 93h 113h 193h
SSPCON 14h SSPATAT 94h 114h 194h
CCPR1L 15h 95h 115h 195h
CCPR1H 16h 96h 116h 196h

CCP1CON 17h 97h 117h 197h
RCSTA 18h TXSTA 98h 118h 198h
TXREG 19h SPBRG 99h 119h 199h
RCREG 1Ah 9Ah 11Ah 19Ah
CCPR2L 1Bh 9Bh 11Bh 19Bh
CCPR2H 1Ch 9Ch 11Ch 19Ch

CCP2CON 1Dh 9Dh 11Dh 19Dh
ADRES 1Eh 9Eh 11Eh 19Eh

ADCON0 1Fh ADCON1 9Fh 11Fh 19Fh

General
Purpose

Registers (2)

20h
General
Purpose

Registers (3)

A0h

EFh

General
Purpose

Registers (3)

120h

16Fh

General
Purpose

Registers (3)

1A0h

1EFh

7Fh

Mapped in
Bank0

70h - 7Fh (4)

F0h

FFh

Mapped in
Bank0

70h - 7Fh (4)

170h

17Fh

Mapped in
Bank0

70h - 7Fh (4)

1F0h

1FFh
Bank0 Bank1 Bank2 (5) Bank3 (5)

Note 1: Registers in BOLD will be present in every device.
2: Not all locations may be implemented. Unimplemented locations will read as '0'.
3: These locations may not be implemented. Depending on the device, accesses to the unimplemented loca-

tions operate differently. Please refer to the specific device data sheet for details.
4: Some device do not map these registers into Bank0. In devices where these registers are mapped into

Bank0, these registers are referred to as common RAM
5: Some devices may not implement these banks. Locations in unimplemented banks will read as ’0’.
6: General Purpose Registers (GPRs) may be located in the Special Function Register (SFR) area.
DS31006A-page 6-10  1997 Microchip Technology Inc.

Section 6. Memory Organization
M

em
o

ry
O

rg
an

izatio
n

6

The map in Figure 6-6 shows the register file memory map of some 18-pin devices.
Unimplemented registers will read as '0'.

Figure 6-6: Register File Map

File
Address

File
Address

INDF 00h INDF 80h
TMR0 01h OPTION_REG 81h
PCL 02h PCL 82h

STATUS 03h STATUS 83h
FSR 04h FSR 84h

PORTA 05h TRISA 85h
PORTB 06h TRISB 86h

07h PCON 87h
ADCON0 /
EEDATA (2)

08h ADCON1 /
EECON1 (2)

88h

ADRES /
EEADR (2)

09h ADRES /
EECON2 (2)

89h

PCLATH 0Ah PCLATH 8Ah
INTCON 0Bh INTCON 8Bh

General
Purpose

Registers (3)

0Ch

7Fh

General
Purpose

Registers (4)

8Ch

FFh
Bank0 Bank1

Note 1: Registers in BOLD will be present in every device.
2: These registers may not be implemented, or are implemented as other registers in

some devices.
3: Not all locations may be implemented. Unimplemented locations will read as ’0’.
4: These locations are unimplemented in Bank1. Access to these unimplemented

locations will access the corresponding Bank0 register.
 1997 Microchip Technology Inc. DS31006A-page 6-11

PICmicro MID-RANGE MCU FAMILY
6.3.4 Indirect Addressing, INDF, and FSR Registers

Indirect addressing is a mode of addressing data memory where the data memory address in
the instruction is not fixed. An SFR register is used as a pointer to the data memory location that
is to be read or written. Since this pointer is in RAM, the contents can be modified by the pro-
gram. This can be useful for data tables in the data memory. Figure 6-7 shows the operation of
indirect addressing. This shows the moving of the value to the data memory address specified
by the value of the FSR register.

Indirect addressing is possible by using the INDF register. Any instruction using the INDF register
actually accesses the register pointed to by the File Select Register, FSR. Reading the INDF reg-
ister itself indirectly (FSR = '0') will read 00h. Writing to the INDF register indirectly results in a
no-operation (although status bits may be affected). An effective 9-bit address is generated by
the concatenation of the IRP bit (STATUS<7>) with the 8-bit FSR register, as shown in Figure 6-8.

Figure 6-7: Indirect Addressing

Opcode Address

File Address = INDF

FSR

Instruction
Executed

Instruction
Fetched

RAM

Opcode File IRP

RP1:RP0 99

72

9

Address = 0hAddress != 0
DS31006A-page 6-12  1997 Microchip Technology Inc.

Section 6. Memory Organization
M

em
o

ry
O

rg
an

izatio
n

6

Figure 6-8: Indirect Addressing

Example 6-2 shows a simple use of indirect addressing to clear RAM (locations 20h-2Fh) in a
minimum number of instructions. A similar concept could be used to move a defined number of
bytes (block) of data to the USART transmit register (TXREG). The starting address of the block
of data to be transmitted could easily be modified by the program.

Example 6-2: Indirect Addressing

Data
Memory

Indirect Addressing

IRP FSR register7 0

bank select location select

00 01 10 11
00h

7Fh

00h

7Fh

Bank0 Bank1 Bank2 Bank3

 BCF STATUS, IRP ; Indirect addressing Bank0/1
 MOVLW 0x20 ; Initialize pointer to RAM
 MOVWF FSR ;
NEXT CLRF INDF ; Clear INDF register
 INCF FSR,F ; Inc pointer
 BTFSS FSR,4 ; All done?
 GOTO NEXT ; NO, clear next
CONTINUE ;
 : ; YES, continue
 1997 Microchip Technology Inc. DS31006A-page 6-13

PICmicro MID-RANGE MCU FAMILY
6.4 Initialization

Example 6-3 shows how the bank switching occurs for Direct addressing, while Example 6-4
shows some code to do initialization (clearing) of General Purpose RAM.

Example 6-3: Bank Switching

 CLRF STATUS ; Clear STATUS register (Bank0)
 : ;
 BSF STATUS, RP0 ; Bank1
 : ;
 BCF STATUS, RP0 ; Bank0
 : ;
 MOVLW 0x60 ; Set RP0 and RP1 in STATUS register, other
 XORWF STATUS, F ; bits unchanged (Bank3)
 : ;
 BCF STATUS, RP0 ; Bank2
 : ;
 BCF STATUS, RP1 ; Bank0
DS31006A-page 6-14  1997 Microchip Technology Inc.

Section 6. Memory Organization
M

em
o

ry
O

rg
an

izatio
n

6

Example 6-4: RAM Initialization

 CLRF STATUS ; Clear STATUS register (Bank0)
 MOVLW 0x20 ; 1st address (in bank) of GPR area
 MOVWF FSR ; Move it to Indirect address register
Bank0_LP
 CLRF INDF0 ; Clear GPR at address pointed to by FSR
 INCF FSR ; Next GPR (RAM) address
 BTFSS FSR, 7 ; End of current bank ? (FSR = 80h, C = 0)
 GOTO Bank0_LP ; NO, clear next location
;
; Next Bank (Bank1)
; (** ONLY REQUIRED IF DEVICE HAS A BANK1 **)
;
 MOVLW 0xA0 ; 1st address (in bank) of GPR area
 MOVWF FSR ; Move it to Indirect address register
Bank1_LP
 CLRF INDF0 ; Clear GPR at address pointed to by FSR
 INCF FSR ; Next GPR (RAM) address
 BTFSS STATUS, C ; End of current bank? (FSR = 00h, C = 1)
 GOTO Bank1_LP ; NO, clear next location
;
; Next Bank (Bank2)
; (** ONLY REQUIRED IF DEVICE HAS A BANK2 **)
;
 BSF STATUS, IRP ; Select Bank2 and Bank3
 ; for Indirect addressing
 MOVLW 0x20 ; 1st address (in bank) of GPR area
 MOVWF FSR ; Move it to Indirect address register
Bank2_LP
 CLRF INDF0 ; Clear GPR at address pointed to by FSR
 INCF FSR ; Next GPR (RAM) address
 BTFSS FSR, 7 ; End of current bank? (FSR = 80h, C = 0)
 GOTO Bank2_LP ; NO, clear next location
;
; Next Bank (Bank3)
; (** ONLY REQUIRED IF DEVICE HAS A BANK3 **)
;
 MOVLW 0xA0 ; 1st address (in bank) of GPR area
 MOVWF FSR ; Move it to Indirect address register
Bank3_LP
 CLRF INDF0 ; Clear GPR at address pointed to by FSR
 INCF FSR ; Next GPR (RAM) address
 BTFSS STATUS, C ; End of current bank? (FSR = 00h, C = 1)
 GOTO Bank3_LP ; NO, clear next location
 : ; YES, All GPRs (RAM) is cleared
 1997 Microchip Technology Inc. DS31006A-page 6-15

PICmicro MID-RANGE MCU FAMILY
6.5 Design Tips

Question 1: Program execution seems to get lost.

Answer 1:

When a device with more then 2K words of program memory is used, the calling of subroutines
may require that the PCLATH register be loaded prior to the CALL (or GOTO) instruction to specify
the correct program memory page that the routine is located on. The following instructions will
correctly load PCLATH register, regardless of the program memory location of the label SUB_1.

 MOVLW HIGH (SUB_1) ; Select Program Memory Page of
 MOVWF PCLATH ; Routine.
 CALL SUB_1 ; Call the desired routine
 :
 :
SUB_1 : ; Start of routine
 :
 RETURN ; Return from routine

Question 2: I need to initialize RAM to ’0’s. What is an easy way to do that?

Answer 2:

Example 6-4 shows this. If the device you are using does not use all 4 data memory banks, some
of the code may be removed.
DS31006A-page 6-16  1997 Microchip Technology Inc.

Section 6. Memory Organization
M

em
o

ry
O

rg
an

izatio
n

6

6.6 Related Application Notes

This section lists application notes that are related to this section of the manual. These applica-
tion notes may not be written specifically for the Mid-range MCU family (that is they may be writ-
ten for the Base-Line, or High-End families), but the concepts are pertinent, and could be used
(with modification and possible limitations). The current application notes related to memory are:

Title Application Note #

Implementing a Table Read AN556
 1997 Microchip Technology Inc. DS31006A-page 6-17

PICmicro MID-RANGE MCU FAMILY
6.7 Revision History

Revision A

This is the initial released revision of the Memory Organization description.
DS31006A-page 6-18  1997 Microchip Technology Inc.

	6.1 Introduction
	6.2 Program Memory Organization
	6.2.1 Reset Vector
	6.2.2 Interrupt Vector
	6.2.3 Calibration Information
	6.2.4 Program Counter (PC)
	6.2.4.1 Computed GOTO

	6.2.5 Stack
	6.2.6 Program Memory Paging

	6.3 Data Memory Organization
	6.3.1 General Purpose Registers (GPR)
	6.3.2 Special Function Registers (SFR)
	6.3.3 Banking
	6.3.4 Indirect Addressing, INDF, and FSR Registers...

	6.4 Initialization
	6.5 Design Tips
	6.6 Related Application Notes
	6.7 Revision History

