PSR: Positive Switching Regulators

PSB-Family

No input to output isolation Single output of 5.1, 12, 15, 24 or 36 V DC/30...180 W Input voltage up to 80 V DC

- High efficiency up to 96%Wide input voltage range
- Low input to output differential voltage
- Very good dynamic properties
- Input undervoltage lock-out
- External output voltage adjustment and inhibit
- Two temperature ranges
- · Continuous no-load and short-circuit proof
- · No derating

Safety according to IEC/EN 60950

(\$ **71** •**71**

Summary

The PSB family of positive switching regulators is designed as power supply modules for electronic systems. Their major advantages include a high level of efficiency that remains virtually constant over the entire input range, high reliability, low ripple and excellent dynamic response. Modules with input voltages up to 80 V are specially designed for secondary switched and battery driven applications. The case design allows operation at nominal load up to 71 °C without additional cooling.

Type Survey and Key Data

Table 1: Type survey

Output voltage	Output current	Input voltage range	Input voltage	Efficiency ²		Type designation	Options	Superseded old type
U _{o nom} [V]	I _{o nom} [A]	<i>U</i> _i [V] ¹	U _{i nom} [V]	η_{min} [%]	$\eta_{ ext{typ}}$ [%]			(phased-out)
5.1	7	740	20	83	84	PSB 5A7-7iR	-9, L, P, C	PSR 57-7
	6	880	40	79	81	PSB 5A6-7iR		PSR 55-7
12	5	1580		89	90	PSB 125-7iR		PSR 124-7
15		1980		90	92	PSB 155-7iR		PSR 154-7
24		2980	50	93	95	PSB 245-7iR		PSR 244-7
36		4280	60	95	96	PSB 365-7iR		PSR 364-7

((

¹ See *Electrical Input Data:* $\Delta U_{io min}$ (min. differential voltage $U_i - U_o$).

³ Efficiency at U_{i nom} and I_{o nom}.

Non standard input/output configurations or special custom adaptions are available on request. See also *Commercial Information: Inquiry Form for Customized Power Supply.*

Table of Contents

Page

Summary	4 - 62
Type Survey and Key Data	4 - 62
Type Key and Product Marking	4 - 63
Functional Description	4 - 63
Electrical Input Data	4 - 64
Electrical Output Data	4 - 65
Auxiliary Functions	4 - 67

	•
Electromagnetic Compatibility (EMC)	4 - 68
Immunity to Environmental Conditions	4 - 69
Mechanical Data	4 - 70
Safety and Installation Instructions	4 - 70
Description of Options	4 - 72
Accessories	4 - 72

Page

Type Key and Product Marking

Туре Кеу

Positive switching regulator in case B02PSB	
Nominal output voltage in volt (5A for 5.1 V) 5A36	
Nominal output current in ampere 57	
Operational ambient temperature range T_A	
–2571°C7	
-4071°C (option)9	
Input filter (option) L	
Inhibit input i	
Control input for output voltage adjustment ¹ R	
Potentiometer ¹ (option)P	
Thyristor crowbar (option) C	
1 Franking Disserted as an time Disserted strength a	

PSB 12 5 -7 L i R P	С

¹ Feature R excludes option P and vice versa.

Example: PSB 125-7LiPC = A positive switching regulator with a 12 V, 5 A output, ambient temperature range of -25...71°C, input filter, inhibit input, potentiometer and thyristor crowbar.

Produkt Marking

- Main face: Family designation, applicable safety approval and recognition marks, warnings, Melcher patent nos. and company logo.
- Cover: Specific type designation, input voltage range, nominal output voltage and current, pin allocation, identification of LED, potentiometer and protection degree.
- Rear side: Label with batch no., serial no. and data code comprising production site, modification status of the main PCB and date of production.

Functional Description

The switching regulators are designed using the buck converter topology. See also *Technical Information: Topologies*. The input is not electrically isolated from the output. During the on period of the switching transistor, current is transferred to the output and energy is stored in the output choke in the form of flux. During the off period, this energy forces the current to continue flowing through the output, to the load and back through the freewheeling diode. Regulation is accomplished by varying the on to off duty ratio of the power switch. These regulators are ideal for a wide range of applications, where input to output isolation is not necessary, or where already provided by an external front end (e.g. a transformer with rectifier). To optimise customer's needs, additional options and accessories are available.

Electrical Input Data

General Conditions: $T_A = 25 \degree C$, unless T_C is specified

Table 2a: Input data

Input			Р	PSB 5A7			PSB 5A6			PSB 125		
Charac	teristics	Conditions	min	typ	max	min	typ	max	min	typ	max	Unit
Ui	Operating input voltage	$I_{\rm o}=0I_{\rm o nom}$	7		40	8		80	15		80	V DC
$\Delta U_{\rm iomin}$	Min. diff. voltage U _i – U _o	T _{C min} T _{C max}			1.9			2.9			3	
U _{io}	Undervoltage lock-out			6.3			7.3			7.3		
l _{i 0}	No load input current	$I_{\rm o} = 0, \ U_{\rm i\ min} \dots U_{\rm i\ max}$			45			40			35	mA
l _{inr p}	Peak value of inrush current	U _{i nom}		75			150			150		А
t _{inr r}	Rise time	without option L		5			5			5		μs
t _{inr h}	Time to half-value			40			40			40		
l _{inr p}	Peak value of inrush current	U _{i nom}		100			180			180		А
t _{inr r}	Rise time	with option L		15			15			15		μs
t _{inr h}	Time to half-value			100			100			100		
<i>u</i> i RFI	Input RFI level, EN 55011/22 0.0130 MHz	U _{i nom} , I _{o nom} with option L			В			В			В	

Table 2b: Input data

Input			F	SB 15	5	PSB 245			PSB 365			
Characteristics		Conditions	min	typ	max	min	typ	max	min	typ	max	Unit
Ui	Operating input voltage	$I_{\rm o}=0I_{\rm o nom}$	19		80	29		80	42		80	V DC
$\Delta U_{\rm iomin}$	Min. diff. voltage <i>U</i> _i – <i>U</i> _o	T _{C min} T _{C max}			4			5			6 ¹	
U _{io}	Undervoltage lock-out			7.3			12			19		
l _{i 0}	No load input current	$I_{\rm o} = 0, \ U_{\rm imin}U_{\rm imax}$			35			35			40	mA
I _{inr p}	Peak value of inrush current	U _{i nom}		150			150			150		А
t _{inr r}	Rise time	without option L		5			5			5		μs
t _{inr h}	Time to half-value			40			40			40		
l _{inr p}	Peak value of inrush current	U _{i nom}		180			180			180		А
t _{inr r}	Rise time	with option L		15			15			15		μs
t _{inr h}	Time to half-value			100			100			100		
U _{i RFI}	Input RFI level, EN 55011/22 0.0130 MHz	U _{i nom} , I _{o nom} with option L			В			В			В	

¹ The minimum differential voltage $\Delta U_{\text{io min}}$ between input and output increases linearly by 0 to 1 V between $T_A = 46^{\circ}$ C and 71°C ($T_C = 70^{\circ}$ C and 95°C)

External Input Circuitry

The sum of the lengths of the supply lines to the source or to the nearest capacitor $\geq 100 \ \mu\text{F}$ (a + b) should not exceed 5 m unless option L is fitted. This option is recommended in order to prevent power line oscillations and reduce super-imposed interference voltages. See also *Technical Information: Application Notes*.

Switching regulator with long supply lines.

Electrical Output Data

- General Conditions:
- $T_A = +25^{\circ}C$, unless T_C is specified
- With R or option P, output voltage $U_o = U_o \text{ nom}$ at $I_o \text{ nom}$

Table 3a: Output data

Outpu	t			P	SB 5A	7	P	SB 5A	6	P	SB 12	:5	
Charac	cteristics		Conditions	min	typ	max	min	typ	max	min	typ	max	Unit
Uo	Output volta	age	U _{i nom} , I _{o nom}	5.07		5.13	5.07		5.13	11.93		12.07	V
I _o	Output curre	ent ¹	U _{i min} U _{i max}	0		7.0	0		6.0	0		5.0	А
I _{oL}	Output current limitation response ¹		T _{C min} T _{C max}	7.0		9.1	6.0		7.8	5.0		6.5	
uo	Output	Switching freq.	U _{i nom} , I _{o nom}		15	25		15	35		25	45	mV _{pp}
	voltage noise	Total	IEC/EN 61204 ² BW = 20 MHz		19	29		19	39		29	49	
ΔU _{oU}	Static line re	egulation	U _{i min} U _{i max} , I _{o nom}		25	45		25	45		25	50	mV
ΔUol	Static load r	regulation	$U_{\rm i nom}, I_{\rm o} = 0I_{\rm o nom}$		10	25		10	25		20	35	
<i>u</i> od	Dynamic	Voltage deviat.	U _{i nom}		120			100			100		
t _d	load regulation	Recovery time	$I_{o nom} \leftrightarrow \frac{1}{3} I_{o nom}$ IEC/EN 61204 ²		40			50			60		μs
αυο	Temperature coefficient U _{i min}		U _{i min} U _{i max}			±1			±1			±2	mV/K
	$\Delta U_{\rm o}/\Delta T_{\rm C}$ ($T_{\rm c}$	_{C min} <i>T</i> _{C max})	$I_{\rm o} = 0I_{\rm o nom}$			±0.02			±0.02			±0.02	%/K

Table 3b: Output data

Outpu	t			P	SB 15	5	P	SB 24	5	P	SB 36	5	
Charao	cteristics		Conditions	min	typ	max	min	typ	max	min	typ	max	Unit
Uo	Output volta	ige	U _{i nom} , I _{o nom}	14.91		15.09	23.86		24.14	35.78		36.22	V
l _o	Output curre	ent ¹	U _{i min} U _{i max}	0		5.0	0		5.0	0		5.0	А
I _{oL}	Output current limitation response ¹		T _{C min} T _{C max}	5.0		6.5	5.0		6.5	5.0		6.5	
uo	Output	Switching freq.	U _{i nom} , I _{o nom}		40	70		45	120		70	180	mV_{pp}
	voltage noise	Total	IEC/EN 61204 ² BW = 20 MHz		44	74		50	125		75	185	
$\Delta U_{ m o U}$	Static line re	egulation	U _{i min} U _{i max} , I _{o nom}		40	75		70	150		100	200	mV
ΔU _{ol}	Static load r	egulation	$U_{\rm i nom}, I_{\rm o} = 0I_{\rm o nom}$		30	65		70	120		120	160	
u _{od}	Dynamic	Voltage deviat.	U _{i nom}		100			120			180		
t _d	load regulation	Recovery time	$I_{o nom} \leftrightarrow \frac{1}{3} I_{o nom}$ IEC/EN 61204 ²		60			80			100		μs
α_{Uo}	Temperature coefficient		U _{i min} U _{i max}			±3			±5			±8	mV/K
	$\Delta U_0 / \Delta T_C (T_C)$	_{C min} <i>T</i> _{C max})	$I_{\rm o} = 0I_{\rm o nom}$			±0.02			±0.02			±0.02	%/K

¹ See also *Thermal Considerations*.

² See Technical Information: Measuring and Testing.

Dynamic load regulation.

Thermal Considerations

When a switching regulator is located in free, quasi-stationary air (convection cooling) at a temperature $T_A = 71^{\circ}$ C and is operated at its nominal output current $I_{o nom}$, the case temperature T_C will be about 95°C after the warm-up phase, measured at the *Measuring point of case temperature T*_C (see *Mechanical Data*).

Under practical operating conditions, the ambient temperature T_A may exceed 71 °C, provided additional measures (heat sink, fan, etc.) are taken to ensure that the case temperature T_C does not exceed its maximum value of 95 °C.

Example: Sufficient forced cooling allows $T_{A \max} = 85 \text{ °C}$. A simple check of the case temperature T_C ($T_C \le 95 \text{ °C}$) at full load ensures correct operation of the system.

Output current derating versus temperature

Output Protection

A voltage suppressor diode which in worst case conditions fails into a short circuit, (or a thyristor crowbar, option C) protects the output against an internally generated overvoltage. Such an overvoltage could occur due to a failure of either the control circuit or the switching transistor. The output protection is not designed to withstand externally applied overvoltages. The user should ensure that systems with Melcher power supplies, in the event of a failure, do not result in an unsafe condition (fail-safe).

Parallel and Series Connection

Outputs of equal nominal voltages can be parallel-connected. However, the use of a single unit with higher output power, because of its power dissipation, is always a better solution.

In parallel-connected operation, one or several outputs may operate continuously at their current limit knee-point which will cause an increase of the heat generation. Consequently, the max. ambient temperature value should be reduced by 10 K.

Outputs can be series-connected with any other module. In series-connection the maximum output current is limited by the lowest current limitation. Electrically separated source voltages are needed for each module!

Short Circuit Behaviour

A constant current limitation circuit holds the output current almost constant whenever an overload or a short circuit is applied to the regulator's output. It acts self-protecting and recovers – in contrary to the fold back method – automatically after removal of the overload or short circuit condition.

Overload, short-circuit behaviour Uo versus Io

MELCHER

The Power Partners.

Auxiliary Functions

i Inhibit for Remote On and Off

Note: With open i-input, output is enabled $(U_0 = on)$

The inhibit input allows the switching regulator output to be disabled via a control signal. In systems with several units, this feature can be used, for example, to control the activation sequence of the regulators by a logic signal (TTL, C-MOS, etc.). An output voltage overshoot will not occur when switching on or off.

Table 4: Inhibit characteristics

Charact	teristics		Conditions	min ty	p max	Unit
U _{inh}	Inhibit input voltage to keep	Inhibit input voltage to keep $U_{o} = on$		-50	+0.8	V DC
	regulator output voltage	$U_{\rm o} = {\rm off}$	$T_{\rm C min} \dots T_{\rm C max}$	+2.4	+50	
tr	Switch-on time after inhibit co	mmand	$U_{\rm i} = U_{\rm i nom}$	5	5	ms
t _f	Switch-off time after inhibit co	ommand	$R_{\rm L} = U_{\rm o \ nom} / I_{\rm o \ nom}$	1		
l _{i inh}	Input current when inhibited		$U_{\rm i} = U_{\rm i nom}$	1	0	mA

R Control for Output Voltage Adjustment

Note: With open R input, $U_0 \approx U_{o \text{ nom}}$. R excludes option P. (For superseded PSR types $U_0 \approx 1.08 \cdot U_{o \text{ nom}}$)

The output voltage U_{o} can either be adjusted with an external voltage (U_{ext}) or with an external resistor (R_{1} or R_{2}). The adjustment range is 0...108% of $U_{o nom}$. The minimum differential voltage $\Delta U_{io min}$ between input and output (see *Electrical Input Data*) should be maintained. Undervoltage lock-out = Minimum input voltage.

Voltage adjustment with Uext between R and G (Go-)

a)
$$U_{o} = 0...108\% U_{o nom}$$
, using U_{ext} between R and G (Go–)
 $U_{ext} \approx 2.5 \text{ V} \cdot \frac{U_{o}}{U_{o nom}}$ $U_{o} \approx U_{o nom} \cdot \frac{U_{ext}}{2.5 \text{ V}}$

Caution: To prevent damage U_{ext} should not exceed 20 V, nor be negative and R_2 should never be less than 47 k Ω .

Fig. 10

Voltage adjustment with external resistor R1 or R2

b) $U_0 = 0...100\% U_{0 \text{ nom}}$, using R_1 between R and G (Go–):

$$R_1 \approx \frac{4000 \ \Omega \bullet U_0}{U_0 \ \text{nom} - U_0} \qquad \qquad U_0 \approx \frac{U_0 \ \text{nom} \bullet R_1}{R_1 + 4000 \ \Omega}$$

c) $U_0 = U_{0 \text{ nom}} \dots U_{0 \text{ max}}$, using R_2 between R and Vo+: $U_{0 \text{ max}} = U_{0 \text{ nom}} + 8\%$

$$R_{2} \approx \frac{4000 \ \Omega \bullet U_{o} \bullet (U_{o \text{ nom}} - 2.5 \text{ V})}{2.5 \text{ V} \bullet (U_{o} - U_{o \text{ nom}})}$$
$$U_{o} \approx \frac{U_{o \text{ nom}} \bullet 2.5 \text{ V} \bullet R_{2}}{2.5 \text{ V} \bullet (R_{2} + 4000 \ \Omega) - U_{o \text{ nom}} \bullet 4000 \ \Omega}$$

LED Output Voltage Indicator

A yellow output indicator LED shines when the output voltage is higher than approx. 3 V.

Electromagnetic Compatibility (EMC)

Electromagnetic Immunity

General condition: Case not earthed.

Table 5: Immunity type tests

Phenomenon	Standard ¹	Class Level	Coupling mode ²	Value applied	Waveform	Source Imped.	Test procedure	In oper.	Per- form. ³
1 MHz burst	IEC	Ш	i/o, i/c, o/c	2500 V _p	400 damped	200 Ω	2 s per	yes	A 5
disturbance	60255-22-1		+i/—i, +o/—o	1000 V _p	1 MHz waves/s		coupling mode		
Voltage surge	IEC 60571-1		i/c, +i/–i	800 V _p	100 μs	100 Ω		yes	В
				1500 V _p	50 μs		1 pos. and 1 neg. voltage surge per coupling mode		
				3000 V _p	5 μs				
				4000 V _p	1 μs				
				7000 V _p	100 ns				
Electrostatic discharge	IEC/EN 61000-4-2	3	contact discharge to case	6000 V _p	1/50 ns	330 Ω	10 positive and 10 negative discharges	yes	B ⁴⁵
Electromagnetic field	IEC/EN 61000-4-3	2	antenna	3 V/m	AM 80% 1 kHz		261000 MHz	yes	A
Electrical fast	IEC/EN	3	i/c, +i/–i	2000 V _p	bursts of 5/50 ns	50 Ω	1 min positive	yes	A 4
transient/burst	61000-4-4	4		4000 V _p	5 kHz rep. rate transients with 15 ms burst duration and a 300 ms period		1 min negative bursts per coupling mode		B ⁴⁵
Surge	IEC/EN	2	i/c	1000 V _p	1.2/50 μs	12 Ω	5 pos. and 5 neg.	yes	A ⁴
	61000-4-5		+i/—i	500 V _p		2 Ω	surges per coupling mode		
Conducted disturbancies	IEC/EN 61000-4-6	3	i, o, signal wires	140 dBμV (10 V _{rms})	AM 80% 1 kHz	150 Ω	0.1580 MHz	yes	A

¹ For related and previous standards see *Technical Information: Safety & EMC.* ² i = input, o = output, c = case.

³ A = Normal operation, no deviation from specifications, B = Normal operation, temporary deviation from specs possible.

⁴ Option L neccessary. ⁵ With option C, manual reset might be necessary.

Electromagnetic Emission

For emission levels refer to Electrical Input Data.

Fig. 11

Typical disturbance voltage (quasi-peak) at the input according to EN 55011/22 measured at U_{i nom} and I_{o nom}.

Immunity to Environmental Conditions

Table 6: Mechanical stress

Test I	Method	Standard	Test Conditions		Status
Са	Damp heat steady state	IEC/DIN IEC 60068-2-3 MIL-STD-810D section 507.2	Temperature: Relative humidity: Duration:	40 ^{±2} °C 93 +2/-3 % 56 days	Unit not operating
Ea	Shock (half-sinusoidal)	IEC/EN/DIN EN 60068-2-27 MIL-STD-810D section 516.3	Acceleration amplitude: Bump duration: Number of bumps:	100 g _n = 981 m/s ² 6 ms 18 (3 each direction)	Unit operating
Eb	Bump (half-sinusoidal)	IEC/EN/DIN EN 60068-2-29 MIL-STD-810D section 516.3	Acceleration amplitude: Bump duration: Number of bumps:	40 g _n = 392 m/s ² 6 ms 6000 (1000 each direction)	Unit operating
Fc	Vibration (sinusoidal)	IEC/EN/DIN EN 60068-2-6 MIL-STD-810D section 514.3	Acceleration amplitude: Frequency (1 Oct/min): Test duration:	0.35 mm (1060 Hz) 5 g _n = 49 m/s ² (602000 Hz) 102000 Hz 7.5 h (2.5 h each axis)	Unit operating
Fda	Random vibration wide band Reproducibility high	IEC 60068-2-35 DIN 40046 part 23	Acceleration spectral density: Frequency band: Acceleration magnitude: Test duration:	0.05 g ² /Hz 20500 Hz 4.9 g _{rms} 3 h (1 h each axis)	Unit operating
Kb	Salt mist, cyclic (sodium chloride NaCl solution)	IEC/EN/DIN IEC 60068-2-52	Concentration: Duration: Storage: Storage duration: Number of cycles:	5% (30°C) 2 h per cycle 40°C, 93% rel. humidity 22 h per cycle 3	Unit not operating

Table 7: Temperature specifications, valid	or air pressure of 800	1200 hPa (8001200 mbar)
--	------------------------	-------------------------

Temperature			Stand	ard -7	Optio		
Char	haracteristics Conditions		min	max	min	max	Unit
TA	Ambient temperature ¹	Operational ²	-25	71	-40	71	°C
T _C	Case temperature		-25	95	-40	95	
Ts	Storage temperature ¹	Non operational	-40	100	-55	100	

¹ MIL-STD-810D section 501.2 and 502.2

² See Thermal Considerations

Table 8: MTBF and device hours

MTBF	Ground Benign	Ground	d Fixed	Ground Mobile	Device Hours ¹
MTBF acc. to MIL-HDBK-217F	$T_{\rm C} = 40 ^{\circ}{\rm C}$	$T_{\rm C} = 40^{\circ}{\rm C}$	$T_{\rm C} = 70^{\circ}{\rm C}$	$T_{\rm C} = 50^{\circ}{\rm C}$	
	624'000	207'000 h	96'000 h	46'000 h	13'000'000 h

¹ Statistical values, based on an average of 4300 working hours per year and in general field use

Industrial Environment

Mechanical Data

Dimensions in mm. Tolerances ± 0.3 mm unless otherwise specified.

Fig. 12 Case B02, weight 230 g Aluminium, black finish and self cooling

Safety and Installation Instructions

Installation Instruction

Installation of the switching regulators must strictly follow the national safety regulations in compliance with the enclosure, mounting, creepage, clearance, casualty, markings and segregation requirements of the end-use application.

Check for hazardous voltages before altering any connections. Connections can be made using fast-on or soldering technique.

The input and the output circuit are not separated, i.e. the negative path is internally interconnected!

The units should be connected to a secondary circuit.

Do not open the module.

Ensure that a unit failure (e.g. by an internal short-circuit) does not result in a hazardous condition. See also *Safety of operator accessible output circuit.*

Cleaning Agents

In order to avoid possible damage, any penetration of cleaning fluids is to be prevented, since the power supplies are not hermetically sealed.

Protection Degree

The protection degree is IP 20.

Standards and Approvals

All switching regulators are UL recognized according to UL 1950, UL 1012 and EN 60950, UL recognized for Canada to CAN/CSA C22.2 No. 234-M90 and SEV approved to IEC/ EN 60950 and EN 55014 standards.

The units have been evaluated for:

- Building in,
- Operational insulation from input to output and input/output to case,
- The use in an overvoltage category II environment,
- The use in a pollution degree 2 environment.

The switching regulators are subject to manufacturing surveillance in accordance with the above mentioned UL and CSA and with ISO 9001 standards.

Isolation

Electric strength test voltage between input interconnected with output and case: 750 V DC, 1 s.

This test is performed as factory test in accordance with IEC/EN 60950 and UL 1950 and should not be repeated in the field. Melcher will not honour any guarantee claims resulting from electric strength field tests.

safety regulations.

EMC.

However, it is the sole responsibility of the installer or user

to assure the compliance with the relevant and applicable

More information is given in Technical Information: Safety &

Safety of Operator Accessible Output Circuit

If the output circuit of a switching regulator is operator-accessible, it shall be an SELV circuit according to IEC/EN 60950 related safety standards

The following table shows some possible installation configurations, compliance with which causes the output circuit of the switching regulator to be an SELV circuit according to IEC/EN 60950 up to a nominal output voltage of 30 V, or 48 V if option C is fitted.

Table 9: Insulation concept leading to an SELV output circuit

Conditions Front end Switching regulator Result Supply Minimum required grade Maximum Minimum required safety Measures to achieve the Safety status of of isolation, to be provided DC output status of the front end specified safety status of the voltage the switching by the AC-DC front end, voltage output circuit output circuit regulator output including mains supplied from the circuit front end 1 battery charger Battery Double or Reinforced ≤60 V SELV circuit None SELV circuit supply, >60 V Earthed hazardous voltage Input fuse 3 and earthed 4 Farthed SELV considered or non accessible case 5 secondary circuit² circuit as secon-Unearthed hazardous Input fuse ³ and unearthed, Unearthed SELV dary circuit non accessible case 5 voltage secondary circuit 5 circuit Input fuse ³ and earthed output Earthed SELV Hazardous voltage circuit ⁴ and earthed ⁴ or non secondary circuit circuit accessible case 5 Earthed SELV circuit⁴ Mains Basic ≤60 V None ≤250 V AC ELV circuit Input fuse ³ and earthed output circuit ⁴ and earthed ⁴ or non >60 V Hazardous voltage accessible case 5 secondary circuit Double or reinforced ≤60 V SELV circuit SELV circuit None >60 V Double or reinforced insu-Input fuse ³ and unearthed Unearthed SELV lated unearthed hazardous and non accessible case 5 circuit voltage secondary circuit⁵

¹ The front end output voltage should match the specified input voltage range of the switching regulator.

² The conductor to the Gi- terminal of the switching regulator has to be connected to earth by the installer according to the relevant safety standard, e.g. IEC/EN 60950.

³ The installer shall provide an approved fuse (slow blow type with the lowest current rating suitable for the application, max, 12.5 A) in a non-earthed input conductor directly at the input of the switching regulator. If Vo+ is earthed, insert the fuse in the Gi- line. For UL's purpose, the fuse needs to be UL-listed. If option C is fitted, a suitable fuse is already built-in in the Vi+ line.

⁴ The earth connection has to be provided by the installer according to the relevant safety standard, e.g. IEC/EN 60950.

⁵ Has to be insulated from earth by double or reinforced insulation according to the relevant safety standard, based on the maximum output voltage from the front end.

4

Description of Options

-9 Extended Temperature Range

The operational ambient temperature range is extended to $T_A = -40...71$ °C. ($T_C = -40...95$ °C, $T_S = -55...100$ °C.)

P Potentiometer

Option P excludes R-function. The output voltage U_o can be adjusted with a screwdriver in the range from 0.92...1.08 of the nominal output voltage U_o nom.

However, the minimum differential voltage $\Delta U_{i \text{ o min}}$ between input and output voltages as specified in *Electrical Input Data* should be maintained.

L Input Filter

Option L is recommended to reduce superimposed interference voltages and to prevent oscillations, if input lines exceed approx. 5 m in total length. The fundamental wave (approx. 120 kHz) of the reduced interference voltage between Vi+ and Gi– has, with an input line inductance of 5 μ H, a maximum magnitude of 60 mV_{rms}. A reduction can be achieved by insertion of a capacitor across the input (e.g. plastic foil between Vi+ and Gi–).

The input impedance of the switching regulator at 120 kHz is about 17 Ω . The harmonics are small in comparison with the fundamental wave. See also *Electrical Input Data: RFI*.

With option L, the maximum permissible additionally superimposed ripple u_i of the input voltage (rectifier mode) at a specified input frequency f_i has the following values:

Units with max input voltage 40 V:

 $u_{i \text{ max}} = 12 \text{ V}_{pp} \text{ at } 100 \text{ Hz or } \text{V}_{pp} = 1200 \text{ Hz}/f_i \bullet 1\text{ V}$

Units with max input voltage 80 V:

 $u_{i \text{ max}} = 22 \text{ V}_{pp} \text{ at } 100 \text{ Hz or } \text{V}_{pp} = 2200 \text{ Hz}/f_i \bullet 1 \text{V}$

C Thyristor Crowbar

This option is recommended to protect the load against power supply malfunction, but it is not designed to sink external currents.

A fixed-value monitoring circuit checks the output voltage U_0 . When the trigger voltage $U_0 c$ is reached, the thyristor crowbar triggers and disables the output. It may be deactivated by removal of the input voltage. In case of a switching transistor defect, an internal fuse prevents excessive current.

Note: As a central overvoltage protection device, the crowbar is usually connected to the external load via distributed inductance of the lines. For this reason, the overvoltage at the load can temporarily exceed the trigger voltage $U_{\rm o\,c}$. Depending on the application, further decentralized overvoltage protection elements may have to be used additionally. For further information see *Technical Information: Application Notes*.

Characteristics (Conditions	5.1 V		12 V		15 V		24 V		36 V		Unit
			min	max	min	max	min	max	min	max	min	max	
U _{oc}	Trigger voltage	U _{i min} U _{i max}	5.8	6.8	13.5	16	16.5	19	27	31	40	45.5	v
ts	Delay time	$I_0 = 0I_{0 \text{ nom}}$ $T_{C \text{ min}}T_{C \text{ max}}$		1.5		1.5		1.5		1.5		1.5	μs

Table 10: Crowbar trigger levels

Accessories

A variety of electrical and mechanical accessories are available including:

- PCB-tags and isolation pads for easy and safe PCBmounting.
- Ring core chockes for ripple and interference reduction.

For more detailed information please refer to Accessory Products.

MELCHER

The Power Partners.

4