### General Description

The MAX192 is a low-cost, 10-bit data-acquisition system that combines an 8-channel multiplexer, high-bandwidth track/hold, and serial interface with high conversion speed and ultra-low power consumption. The device operates with a single +5V supply. The analog inputs are software configurable for single-ended and differential (unipolar/bipolar) operation.

The 4-wire serial interface connects directly to SPI<sup>™</sup>, QSPI<sup>™</sup>, and Microwire<sup>™</sup> devices, without using external logic. A serial strobe output allows direct connection to TMS320 family digital signal processors. The MAX192 uses either the internal clock or an external serial-interface clock to perform successive approximation A/D conversions. The serial interface can operate beyond 4MHz when the internal clock is used. The MAX192 has an internal 4.096V reference with a drift of ±30ppm typical. A reference-buffer amplifier simplifies gain trim and two sub-LSBs reduce quantization errors.

The MAX192 provides a hardwired SHDN pin and two software-selectable power-down modes. Accessing the serial interface automatically powers up the device, and the quick turn-on time allows the MAX192 to be shut down between conversions. By powering down between conversions, supply current can be cut to under 10µA at reduced sampling rates.

The MAX192 is available in 20-pin DIP and SO packages, and in a shrink-small-outline package (SSOP) that occupies 30% less area than an 8-pin DIP. The data format provides hardware and software compatibility with the MAX186/MAX188. For anti-aliasing filters, consult the data sheets for the MAX291–MAX297.

#### **Applications**

Automotive Pen-Entry Systems Consumer Electronics Portable Data Logging Robotics Battery-Powered Instruments, Battery Management Medical Instruments

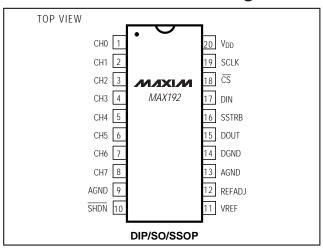
Features

#### See last page for Typical Operating Circuit.

SPI and QSPI are trademarks of Motorola Corp. Microwire is a trademark of National Semiconductor Corp.

#### 

Low-Power, 8-Channel, Serial 10-Bit ADC


- 8-Channel Single-Ended or 4-Channel Differential Inputs
- Single +5V Operation
- Low Power: 1.5mA (operating) 2μA (power-down)
- Internal Track/Hold, 133kHz Sampling Rate
- Internal 4.096V Reference
- 4-Wire Serial Interface is Compatible with SPI, QSPI, Microwire, and TMS320
- 20-Pin DIP, SO, SSOP Packages
- ♦ Pin-Compatible 12-Bit Upgrade (MAX186/MAX188)

#### \_Ordering Information

| PART       | TEMP. RANGE     | PIN-PACKAGE    | INL (LSB) |
|------------|-----------------|----------------|-----------|
| MAX192ACPP | 0°C to +70°C    | 20 Plastic DIP | ±1/2      |
| MAX192BCPP | 0°C to +70°C    | 20 Plastic DIP | ±1        |
| MAX192ACWP | 0°C to +70°C    | 20 Wide SO     | ±1/2      |
| MAX192BCWP | 0°C to +70°C    | 20 Wide SO     | ±1        |
| MAX192ACAP | 0°C to +70°C    | 20 SSOP        | ±1/2      |
| MAX192BCAP | 0°C to +70°C    | 20 SSOP        | ±1        |
| MAX192AEPP | -40°C to +85°C  | 20 Plastic DIP | ±1/2      |
| MAX192BEPP | -40°C to +85°C  | 20 Plastic DIP | ±1        |
| MAX192AEWP | -40°C to +85°C  | 20 Wide SO     | ±1/2      |
| MAX192BEWP | -40°C to +85°C  | 20 Wide SO     | ±1        |
| MAX192AEAP | -40°C to +85°C  | 20 SSOP        | ±1/2      |
| MAX192BEAP | -40°C to +85°C  | 20 SSOP        | ±1        |
| MAX192AMJP | -55°C to +125°C | 20 CERDIP      | ±1/2      |
| MAX192BMJP | -55°C to +125°C | 20 CERDIP      | ±1        |

#### Pin Configuration

Maxim Integrated Products 1



MAX192

For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800. For small orders, phone 408-737-7600 ext. 3468.

#### **ABSOLUTE MAXIMUM RATINGS**

|                             | -0.3V to +6V<br>-0.3V to +0.3V   |
|-----------------------------|----------------------------------|
| CH0-CH7 to AGND, DGND       | 0.3V to (V <sub>DD</sub> + 0.3V) |
| CH0-CH7 Total Input Current | ±20mA                            |
| VREF to AGND                | 0.3V to (V <sub>DD</sub> + 0.3V) |
| REFADJ to AGND              | 0.3V to (V <sub>DD</sub> + 0.3V) |
| Digital Inputs to DGND      | 0.3V to (V <sub>DD</sub> + 0.3V) |
| Digital Outputs to DGND     | 0.3V to (V <sub>DD</sub> + 0.3V) |
| Digital Output Sink Current | 25mA                             |

| Continuous Power Dissipation ( $T_A = +70^{\circ}C$ ) |             |
|-------------------------------------------------------|-------------|
| Plastic DIP (derate 11.11mW/°C above +70°C)           | 889mW       |
| SO (derate 10.00mW/°C above +70°C)                    | 800mW       |
| SSOP (derate 8.00mW/°C above +70°C)                   | 640mW       |
| CERDIP (derate 11.11mW/°C above +70°C)                | 889mW       |
| Operating Temperature Ranges                          |             |
| MAX192_C_P0                                           | °C to +70°C |
| MAX192_E_P40                                          | °C to +85°C |
| MAX192_MJP55°                                         | C to +125°C |
| Storage Temperature Range60°                          | C to +150°C |
| Lead Temperature (soldering, 10sec)                   | +300°C      |
|                                                       |             |

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

#### **ELECTRICAL CHARACTERISTICS**

 $(V_{DD} = 5V \pm 5\%, f_{CLK} = 2.0MHz$ , external clock (50% duty cycle), 15 clocks/conversion cycle (133ksps), 4.7µF capacitor at VREF pin,  $T_A = T_{MIN}$  to  $T_{MAX}$ , unless otherwise noted. Typical values are at  $T_A = +25$ °C.)

| PARAMETER                                             | SYMBOL          | CONDITIONS                                     | MIN    | TYP  | MAX  | UNITS  |
|-------------------------------------------------------|-----------------|------------------------------------------------|--------|------|------|--------|
| DC ACCURACY (Note 1)                                  |                 | L                                              |        |      |      |        |
| Resolution                                            |                 |                                                | 10     |      |      | Bits   |
| Deletive Accuracy (Nets 2)                            |                 | MAX192A                                        |        |      | ±1/2 | LSB    |
| Relative Accuracy (Note 2)                            |                 | MAX192B                                        |        |      | ±1   | LSB    |
| Differential Nonlinearity                             | DNL             | No missing codes over temperature              |        |      | ±1   | LSB    |
| Offset Error                                          |                 |                                                |        |      | ±2   | LSB    |
| Gain Error                                            |                 | External reference, 4.096V                     |        |      | ±2   | LSB    |
| Gain Temperature Coefficient                          |                 | External reference, 4.096V                     |        | ±0.8 |      | ppm/°C |
| Channel-to-Channel<br>Offset Matching                 |                 |                                                |        | ±0.1 |      | LSB    |
| <b>DYNAMIC SPECIFICATIONS</b> (10                     | )<br>kHz sine-w | ave input, 4.096Vp-p, 133ksps, 2.0MHz external | clock) |      |      |        |
| Signal-to-Noise + Distortion Ratio                    | SINAD           |                                                |        | 66   |      | dB     |
| Total Harmonic Distortion<br>(up to the 5th harmonic) | THD             |                                                |        | -70  |      | dB     |
| Spurious-Free Dynamic Range                           | SFDR            |                                                |        | 70   |      | dB     |
| Channel-to-Channel Crosstalk                          |                 | 65kHz, VIN = 4.096Vp-p (Note 3)                |        | -75  |      | dB     |
| Small-Signal Bandwidth                                |                 | -3dB rolloff                                   |        | 4.5  |      | MHz    |
| Full-Power Bandwidth                                  |                 |                                                |        | 800  |      | kHz    |
| CONVERSION RATE                                       |                 |                                                |        |      |      |        |
| Conversion Time (Note 4)                              | toonu           | Internal clock                                 | 5.5    |      | 10   |        |
| Conversion nine (Note 4)                              | tconv           | External clock, 2MHz, 12 clocks/conversion     | 6      |      |      | μs     |
| Track/Hold Acquisition Time                           | taz             |                                                |        |      | 1.5  | μs     |
| Aperture Delay                                        |                 |                                                |        | 10   |      | ns     |
| Aperture Jitter                                       |                 |                                                |        | <50  |      | ps     |
| Internal Clock Frequency                              |                 |                                                |        | 1.7  |      | MHz    |

#### **ELECTRICAL CHARACTERISTICS (continued)**

 $(V_{DD} = 5V \pm 5\%, f_{CLK} = 2.0MHz, external clock (50\% duty cycle), 15 clocks/conversion cycle (133ksps), 4.7\mu F capacitor at VREF pin, T_A = T_{MIN}$  to T<sub>MAX</sub>, unless otherwise noted. Typical values are at T\_A = +25°C.)

| PARAMETER                          | SYMBOL         | CON                             | DITIONS          | MIN                            | TYP   | MAX                       | UNITS  |
|------------------------------------|----------------|---------------------------------|------------------|--------------------------------|-------|---------------------------|--------|
|                                    |                | External compensation           | on, 4.7µF        | 0.1                            |       | 2.0                       |        |
| External Clock Frequency           |                | Internal compensation           | on (Note 5)      | 0.1                            |       | 0.4                       | MHz    |
|                                    |                | Used for data transfe           | er only          |                                | 10    |                           |        |
| ANALOG INPUT                       |                | L                               |                  |                                |       |                           |        |
|                                    |                | Common-mode rang                | e (any input)    | 0                              |       | V <sub>DD</sub>           |        |
|                                    |                | Single-ended range              | (unipolar only)  | 0                              |       | VREF                      |        |
| Analog Input Voltage<br>(Note 6)   |                |                                 | Unipolar         | 0                              |       | VREF                      | V      |
|                                    |                | Differential range              | Bipolar          | - <u>V<sub>REF</sub></u><br>-2 |       | $\frac{+V_{REF}}{2}$      |        |
| Multiplexer Leakage Current        |                | On/off leakage curre            | nt; VIN = 0V, 5V |                                | ±0.01 | ±1                        | μA     |
| Input Capacitance                  |                | (Note 5)                        |                  |                                | 16    |                           | рF     |
| INTERNAL REFERENCE (refer          | rence buffer e | enabled)                        |                  |                                |       |                           | 1      |
| VREF Output Voltage                |                | $T_{A} = +25^{\circ}C$ (Note 7) |                  | 4.066                          | 4.096 | 4.126                     | V      |
| VREF Short-Circuit Current         |                |                                 |                  |                                |       | 30                        | mA     |
| VREF Tempco                        |                |                                 |                  |                                | ±30   |                           | ppm/°C |
| Load Regulation (Note 8)           |                | 0mA to 0.5mA output             | t load           |                                | 2.5   |                           | mV     |
| Capacitive Bypass at VREF          |                | Internal compensation           | 0                |                                |       | μF                        |        |
|                                    |                | External compensation           | 4.7              |                                |       | μ.                        |        |
| Capacitive Bypass at REFADJ        |                | Internal compensation           | 0.01             |                                |       | μF                        |        |
| Capacitive Dypass at RELADS        |                | External compensation           | on               | 0.01                           |       |                           | μι     |
| REFADJ Adjustment Range            |                |                                 |                  |                                | ±1.5  |                           | %      |
| EXTERNAL REFERENCE AT              | VREF (buffer   | disabled, VREF = 4.09           | 6V)              |                                |       |                           |        |
| Input Voltage Range                |                |                                 |                  | 2.5                            |       | V <sub>DD</sub> +<br>50mV | V      |
| Input Current                      |                |                                 |                  |                                | 200   | 350                       | μA     |
| Input Resistance                   |                |                                 |                  | 12                             | 20    |                           | kΩ     |
| Shutdown VREF Input Current        |                |                                 |                  |                                | 1.5   | 10                        | μA     |
| Buffer Disable Threshold<br>REFADJ |                |                                 |                  | V <sub>DD</sub> -<br>50mV      |       |                           | V      |
| EXTERNAL REFERENCE AT              | REFADJ         | 1                               |                  |                                |       |                           | 1      |
|                                    |                | Internal compensation           | n mode           | 0                              |       |                           |        |
| Capacitive Bypass at VREF          |                | External compensation mode      |                  | 4.7                            |       |                           | μF     |
| Reference-Buffer Gain              |                |                                 |                  |                                | 1.678 |                           | V/V    |
|                                    |                |                                 |                  |                                |       |                           |        |

#### **ELECTRICAL CHARACTERISTICS (continued)**

 $(V_{DD} = 5V \pm 5\%, f_{CLK} = 2.0MHz, external clock (50\% duty cycle), 15 clocks/conversion cycle (133ksps), 4.7\mu F capacitor at VREF pin, T_A = T_{MIN}$  to T<sub>MAX</sub>, unless otherwise noted. Typical values are at T\_A = +25°C.)

| PARAMETER                              | SYMBOL           | CONDITIONS                                                                | MIN                   | TYP         | MAX                   | UNITS |
|----------------------------------------|------------------|---------------------------------------------------------------------------|-----------------------|-------------|-----------------------|-------|
| DIGITAL INPUTS (DIN, SCLK, C           | S, SHDN)         |                                                                           |                       |             |                       |       |
| DIN, SCLK, CS Input High Voltage       | V <sub>INH</sub> |                                                                           | 2.4                   |             |                       | V     |
| DIN, SCLK, CS Input Low Voltage        | VINL             |                                                                           |                       |             | 0.8                   | V     |
| DIN, SCLK, CS Input Hysteresis         | Vhyst            |                                                                           |                       | 0.15        |                       | V     |
| DIN, SCLK, CS Input Leakage            | lin              | $V_{IN} = 0V \text{ or } V_{DD}$                                          |                       |             | ±1                    | μA    |
| DIN, SCLK, CS Input Capacitance        | CIN              | (Note 5)                                                                  |                       |             | 15                    | рF    |
| SHDN Input High Voltage                | Vinh             |                                                                           | V <sub>DD</sub> - 0.5 |             |                       | V     |
| SHDN Input Low Voltage                 | VINL             |                                                                           |                       |             | 0.5                   | V     |
| SHDN Input Current, High               | I <sub>INH</sub> | SHDN = V <sub>DD</sub>                                                    |                       |             | 4.0                   | μA    |
| SHDN Input Current, Low                | linl             | SHDN = 0V                                                                 | -4.0                  |             |                       | μA    |
| SHDN Input Mid Voltage                 | VIM              |                                                                           | 1.5                   |             | V <sub>DD</sub> - 1.5 | V     |
| SHDN Voltage, Floating                 | VFLT             | SHDN = open                                                               |                       | 2.75        |                       | V     |
| SHDN Max Allowed Leakage,<br>Mid Input |                  | SHDN = open                                                               | -100                  |             | 100                   | nA    |
| DIGITAL OUTPUTS (DOUT, SST             | RB)              |                                                                           | 1                     |             | 1                     |       |
| Output Voltage Low                     | Voi              | ISINK = 5mA                                                               |                       |             | 0.4                   | V     |
| Oulput vollage Low                     | VOL              | ISINK = 16mA                                                              |                       | 0.3         |                       | v     |
| Output Voltage High                    | Voh              | Isource = 1mA                                                             | 4                     |             |                       | V     |
| Three-State Leakage Current            | ١L               | $\overline{\text{CS}} = 5\text{V}$                                        |                       |             | ±10                   | μA    |
| Three-State Leakage Capacitance        | Соит             | $\overline{\text{CS}} = 5\text{V}$ (Note 5)                               |                       |             | 15                    | рF    |
| POWER REQUIREMENTS                     |                  |                                                                           |                       |             |                       |       |
| Positive Supply Voltage                | V <sub>DD</sub>  |                                                                           |                       | $5 \pm 5\%$ |                       | V     |
|                                        |                  | Operating mode                                                            |                       | 1.5         | 2.5                   | mA    |
| Positive Supply Current                | IDD              | Fast power-down                                                           |                       | 30          | 70                    | μA    |
|                                        |                  | Full power-down                                                           |                       | 2           | 10                    | μΛ    |
| Positive Supply Rejection<br>(Note 9)  | PSR              | V <sub>DD</sub> = 5V ±5%; external reference, 4.096V;<br>full-scale input |                       | ±0.06       | ±0.5                  | mV    |

**Note 1:** Tested at  $V_{DD} = 5.0V$ ; single-ended, unipolar.

Note 2: Relative accuracy is the deviation of the analog value at any code from its theoretical value after the full-scale range has been calibrated.

Note 3: Grounded on-channel; sine wave applied to all off channels.

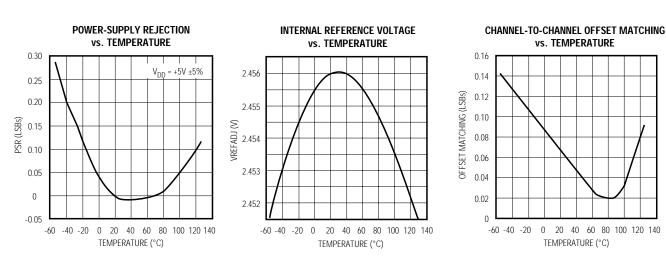
Note 4: Conversion time defined as the number of clock cycles times the clock period; clock has 50% duty cycle.

Note 5: Guaranteed by design. Not subject to production testing.

Note 6: The common-mode range for the analog inputs is from AGND to  $V_{\text{DD}}.$ 

Note 7: Sample tested to 0.1% AQL.

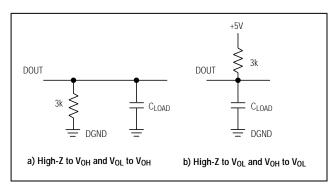
Note 8: External load should not change during conversion for specified accuracy.


Note 9: Measured at  $V_{SUPPLY}$  + 5% and  $V_{SUPPLY}$  - 5% only.

#### TIMING CHARACTERISTICS

(V\_DD = 5V  $\pm$ 5%, T<sub>A</sub> = T<sub>MIN</sub> to T<sub>MAX</sub>, unless otherwise noted.)

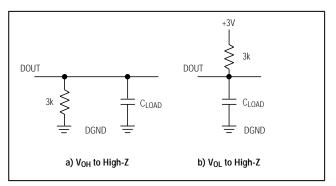
| PARAMETER                                   | SYMBOL          | CONDITIONS                                          | MIN | ТҮР | MAX | UNITS |
|---------------------------------------------|-----------------|-----------------------------------------------------|-----|-----|-----|-------|
| Acquisition Time                            | taz             |                                                     | 1.5 |     |     | μs    |
| DIN to SCLK Setup                           | t <sub>DS</sub> |                                                     | 100 |     |     | ns    |
| DIN to SCLK Hold                            | tDH             |                                                     |     |     | 0   | ns    |
| SCLK Fall to Output Data Valid              | t <sub>DO</sub> | $C_{LOAD} = 100 pF$                                 | 20  |     | 150 | ns    |
| CS Fall to Output Enable                    | tDV             | C <sub>LOAD</sub> = 100pF                           |     |     | 100 | ns    |
| CS Rise to Output Disable                   | t <sub>TR</sub> | C <sub>LOAD</sub> = 100pF                           |     |     | 100 | ns    |
| CS to SCLK Rise Setup                       | tcss            |                                                     | 100 |     |     | ns    |
| CS to SCLK Rise Hold                        | tcsh            |                                                     | 0   |     |     | ns    |
| SCLK Pulse Width High                       | tсн             |                                                     | 200 |     |     | ns    |
| SCLK Pulse Width Low                        | tcl             |                                                     | 200 |     |     | ns    |
| SCLK Fall to SSTRB                          | <b>t</b> SSTRB  | C <sub>LOAD</sub> = 100pF                           |     |     | 200 | ns    |
| CS Fall to SSTRB Output Enable (Note 5)     | tsdv            | External clock mode only, C <sub>LOAD</sub> = 100pF |     |     | 200 | ns    |
| CS Rise to SSTRB Output<br>Disable (Note 5) | tstr            | External clock mode only, CLOAD = 100pF             |     |     | 200 | ns    |
| SSTRB Rise to SCLK Rise<br>(Note 5)         | tSCK            | Internal clock mode only                            | 0   |     |     | ns    |


Note 5: Guaranteed by design. Not subject to production testing.



### Typical Operating Characteristics

**MAX192** 


| PIN   | NAME    | FUNCTION                                                                                                                                                                                                                                                                                                               |
|-------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1–8   | CH0-CH7 | Sampling Analog Inputs                                                                                                                                                                                                                                                                                                 |
| 9, 13 | AGND    | Analog Ground. Also IN- Input for single-enabled conversions. Connect both AGND pins to analog ground.                                                                                                                                                                                                                 |
| 10    | SHDN    | Three-Level Shutdown Input. Pulling SHDN low shuts the MAX192 down to 10µA (max) supply current, otherwise the MAX192 is fully operational. Pulling SHDN high puts the reference-buffer amplifier in internal compensation mode. Letting SHDN float puts the reference-buffer amplifier in external compensation mode. |
| 11    | VREF    | Reference Voltage for analog-to-digital conversion. Also, Output of the Reference Buffer Amplifier. Add a $4.7\mu$ F capacitor to ground when using external compensation mode. Also functions as an input when used with a precision external reference.                                                              |
| 12    | REFADJ  | Reference-Buffer Amplifier Input. To disable the reference-buffer amplifier, tie REFADJ to $V_{DD}$ .                                                                                                                                                                                                                  |
| 14    | DGND    | Digital Ground                                                                                                                                                                                                                                                                                                         |
| 15    | DOUT    | Serial Data Output. Data is clocked out at the falling edge of SCLK. High impedance when $\overline{\text{CS}}$ is high.                                                                                                                                                                                               |
| 16    | SSTRB   | Serial Strobe Output. In internal clock mode, SSTRB goes low when the MAX192 begins the A/D conversion and goes high when the conversion is done. In external clock mode, SSTRB pulses high for one clock period before the MSB decision. SSTRB is high impedance when CS is high (external mode).                     |
| 17    | DIN     | Serial Data Input. Data is clocked in at the rising edge of SCLK.                                                                                                                                                                                                                                                      |
| 18    | CS      | Active-Low Chip Select. Data will not be clocked into DIN unless $\overline{CS}$ is low. When $\overline{CS}$ is high, DOUT is high impedance.                                                                                                                                                                         |
| 19    | SCLK    | Serial Clock Input. Clocks data in and out of serial interface. In external clock mode, SCLK also sets the conversion speed. (Duty cycle must be 40% to 60% in external clock mode.)                                                                                                                                   |



Positive Supply Voltage,  $+5V \pm 5\%$ 



Vdd



M/IXI/M

Figure 2. Load Circuits for Disabled Time



**Pin Description** 

6



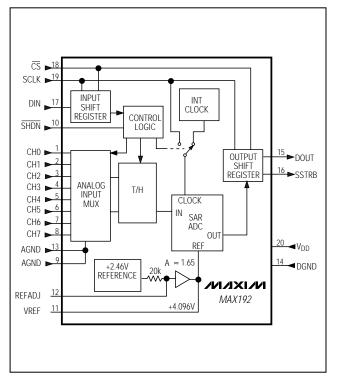



Figure 3. Block Diagram

#### **Detailed Description**

The MAX192 uses a successive-approximation conversion technique and input track/hold (T/H) circuitry to convert an analog signal to a 10-bit digital output. A flexible serial interface provides easy interface to microprocessors. No external hold capacitors are required. Figure 3 shows the block diagram for the MAX192.

#### **Pseudo-Differential Input**

The sampling architecture of the ADC's analog comparator is illustrated in the Equivalent Input Circuit (Figure 4). In single-ended mode, IN+ is internally switched to CH0–CH7 and IN- is switched to AGND. In differential mode, IN+ and IN- are selected from pairs of CH0/CH1, CH2/CH3, CH4/CH5, and CH6/CH7. Refer to Tables 1 and 2 to configure the channels.

In differential mode, IN- and IN+ are internally switched to either one of the analog inputs. This configuration is pseudo-differential to the effect that only the signal at IN+ is sampled. The return side (IN-) must remain stable within  $\pm 0.5$ LSB ( $\pm 0.1$ LSB for best results) with

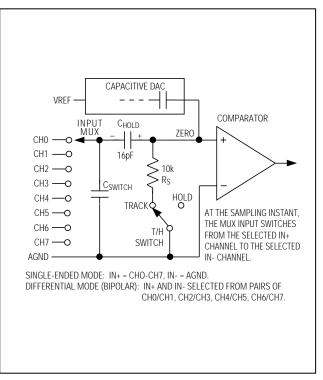



Figure 4. Equivalent Input Circuit

respect to AGND during a conversion. Accomplish this by connecting a 0.1µF capacitor from AIN- (the selected analog input, respectively) to AGND.

During the acquisition interval, the channel selected as the positive input (IN+) charges capacitor  $C_{HOLD}$ . The acquisition interval spans three SCLK cycles and ends on the falling SCLK edge after the last bit of the input control word has been entered. At the end of the acquisition interval, the T/H switch opens, retaining charge on C<sub>HOLD</sub> as a sample of the signal at IN+.

The conversion interval begins with the input multiplexer switching C<sub>HOLD</sub> from the positive input (IN+) to the negative input (IN-). In single-ended mode, IN- is simply AGND. This unbalances node ZERO at the input of the comparator. The capacitive DAC adjusts during the remainder of the conversion cycle to restore its node ZERO to 0V within the limits of its resolution. This action is equivalent to transferring a charge of 16pF x (VIN+ - VIN-) from C<sub>HOLD</sub> to the binary-weighted capacitive DAC, which in turn forms a digital representation of the analog input signal.

#### Track/Hold

The T/H enters its tracking mode on the falling clock edge after the fifth bit of the 8-bit control word has been shifted in. The T/H enters its hold mode on the falling clock edge after the eighth bit of the control word has been shifted in. If the converter is set up for single-ended inputs, IN- is connected to AGND, and the converter samples the "+" input. If the converter is set up for differential inputs, IN- connects to the "-" input, and the difference of |IN+ - IN-| is sampled. At the end of the conversion, the positive input connects back to IN+, and CHOLD charges to the input signal.

The time required for the T/H to acquire an input signal is a function of how quickly its input capacitance is charged. If the input signal's source impedance is high, the acquisition time lengthens and more time must be allowed between conversions. Acquisition time is calculated by:

#### $t_{AZ} = 9 (R_S + R_{IN}) 16 pF$

where  $R_{IN} = 5k\Omega$ ,  $R_S =$  the source impedance of the input signal, and tAZ is never less than 1.5µs. Note that source impedances below 5kW do not significantly affect the AC performance of the ADC. Higher source impedances can be used if an input capacitor is connected to the analog inputs, as shown in Figure 5. Note that the input capacitor forms an RC filter with the input source impedance, limiting the ADC's signal bandwidth.

#### Input Bandwidth

The ADC's input tracking circuitry has a 4.5MHz small-signal bandwidth, so it is possible to digitize high-speed transient events and measure periodic signals with bandwidths exceeding the ADC's sampling rate by using undersampling techniques. To avoid high-frequency signals being aliased into the frequency band of interest, anti-alias filtering is recommended. See the data sheets for the MAX291–MAX297 filters.

**Analog Input Range and Input Protection** Internal protection diodes, which clamp the analog input to V<sub>DD</sub> and AGND, allow the channel input pins to swing from AGND - 0.3V to V<sub>DD</sub> + 0.3V without damage. However, for accurate conversions near full scale, the inputs must not exceed V<sub>DD</sub> by more than 50mV, or be lower than AGND by 50mV.

# If the analog input exceeds 50mV beyond the supplies, do not forward bias the protection diodes of off channels over 2mA.

The MAX192 can be configured for differential (unipolar or bipolar) or single-ended (unipolar only) inputs, as selected by bits 2 and 3 of the control byte (Table 3).

In the single-ended mode, set the UNI/BIP bit to unipolar. In this mode, analog inputs are internally referenced to AGND, with a full-scale input range from 0V to V<sub>REF</sub>.

In differential mode, both unipolar and bipolar settings can be used. Choosing unipolar mode sets the differential input range at 0V to V<sub>REF</sub>. The output code is invalid (code zero) when a negative differential input voltage is applied. Bipolar mode sets the differential input range to  $\pm$ V<sub>REF</sub> / 2. Note that in this differential mode, the common-mode input range includes both supply rails. Refer to Tables 4a and 4b for input voltage ranges.

#### Quick Look

To evaluate the analog performance of the MAX192 quickly, use Figure 5's circuit. The MAX192 requires a control byte to be written to DIN before each conversion. Tying DIN to +5V feeds in control bytes of

| Table 1. | Channel Selection in Si | ngle-Ended Mode | (SGL/DIF = 1) |
|----------|-------------------------|-----------------|---------------|
|----------|-------------------------|-----------------|---------------|

| SEL2 | SEL1 | SEL0 | CH0 | CH1 | CH2 | CH3 | CH4 | CH5 | CH6 | CH7 | AGND |
|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|------|
| 0    | 0    | 0    | +   |     |     |     |     |     |     |     | -    |
| 1    | 0    | 0    |     | +   |     |     |     |     |     |     | -    |
| 0    | 0    | 1    |     |     | +   |     |     |     |     |     | -    |
| 1    | 0    | 1    |     |     |     | +   |     |     |     |     | -    |
| 0    | 1    | 0    |     |     |     |     | +   |     |     |     | -    |
| 1    | 1    | 0    |     |     |     |     |     | +   |     |     | -    |
| 0    | 1    | 1    |     |     |     |     |     |     | +   |     | -    |
| 1    | 1    | 1    |     |     |     |     |     |     |     | +   | -    |

## Table 2. Channel Selection in Differential Mode (SGL/ $\overline{\text{DIF}}$ = 0)

| SEL1 | SEL0                            | CH0                                                                                                                                                                                                             | CH1                                                                                                                                                                                                                                                         | CH2                                                                                                                                                                                                                                                                     | СНЗ                                                                                                                                                                                                                                                                     | CH4                                                  | CH5                                                  | CH6                                                  | CH7                                                  |
|------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| 0    | 0                               | +                                                                                                                                                                                                               | _                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                         |                                                      |                                                      |                                                      |                                                      |
| 0    | 1                               |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                             | +                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                       |                                                      |                                                      |                                                      |                                                      |
| 1    | 0                               |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                         | +                                                    | _                                                    |                                                      |                                                      |
| 1    | 1                               |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                         |                                                      |                                                      | +                                                    | _                                                    |
| 0    | 0                               | -                                                                                                                                                                                                               | +                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                         |                                                      |                                                      |                                                      |                                                      |
| 0    | 1                               |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                       | +                                                                                                                                                                                                                                                                       |                                                      |                                                      |                                                      |                                                      |
| 1    | 0                               |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                         | _                                                    | +                                                    |                                                      |                                                      |
| 1    | 1                               |                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                         |                                                      |                                                      | _                                                    | +                                                    |
|      | 0<br>0<br>1<br>1<br>0<br>0<br>1 | 0       0         0       1         1       0         1       1         0       0         0       1         1       0         0       1         1       0         0       1         0       0         1       0 | 0       0       +         0       1       -         1       0       -         0       0       -         0       1       -         1       0       -         0       1       -         1       0       -         0       1       -         1       0       - | 0       0       +       -         0       1       -       -         1       0       -       +         0       0       -       +         0       1       -       -         1       0       -       +         0       1       -       -         1       0       -       - | 0       0       +       -         0       1       +       +         1       0       -       +         1       1       -       -         0       0       -       +         0       1       -       -         1       0       -       -         1       0       -       - | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

#### Table 3. Control-Byte Format

| Bit 7<br>(MSB) | Bit 6                | Bit 5                       | Bit 4                                     | Bit 3                                                                                                          | Bit 2                                                                       | Bit 1                | Bit 0<br>(LSB) |
|----------------|----------------------|-----------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------|----------------|
| START          | SEL2                 | SEL1                        | SELO                                      | UNI/BIP                                                                                                        | SGL/DIF                                                                     | PD1                  | PD0            |
| Bit            | Name                 | Description                 | l                                         |                                                                                                                |                                                                             |                      |                |
| 7(MSB)         | START                | The first logi              | ic " <b>1</b> " bit after $\overline{CS}$ | goes low defines th                                                                                            | e beginning of the c                                                        | ontrol byte.         |                |
| 6<br>5<br>4    | SEL2<br>SEL1<br>SEL0 | These three<br>See Tables   |                                           | of the eight channe                                                                                            | Is are used for the c                                                       | onversion.           |                |
| 3              | UNI/BIP              | mode, an ar<br>mode, the d  | nalog input signal                        | from 0V to VREF ca<br>an range from -VRE                                                                       | lar conversion mode<br>in be converted; in c<br>F / 2 to +VREF / 2. S       | lifferential bipolar |                |
| 2              | SGL/DIF              | single-ender<br>the voltage | d mode, input sig<br>difference betwee    | nal voltages are refe                                                                                          | ended or differential<br>erred to AGND. In di<br>neasured. Select uni<br>2. | fferential mode,     |                |
| 1<br>0(LSB)    | PD1<br>PD0           | PD1 [<br>0 (<br>0 ^         | Fast p<br>Interna                         | n modes.<br>wer-down (I <sub>Q</sub> = 2µA<br>ower-down (I <sub>Q</sub> = 30<br>al clock mode<br>al clock mode |                                                                             |                      |                |

Table 4a. Unipolar Full Scale and ZeroScale

| REFE               | RENCE     | ZERO<br>SCALE | FULL SCALE                  |
|--------------------|-----------|---------------|-----------------------------|
| Internal Reference |           | 0V            | +4.096V                     |
| External           | at REFADJ | 0V            | V <sub>REFADJ</sub> (1.678) |
| Reference          | at VREF   | 0V            | Vref                        |

# Table 4b. Differential Bipolar Full Scale,Zero Scale, and Negative Full Scale

| REFER                 | RENCE        | NEGATIVE<br>FULL SCALE | ZERO<br>SCALE | FULL SCALE             |
|-----------------------|--------------|------------------------|---------------|------------------------|
| Internal Re           | eference     | -4.096V / 2            | 0V            | +4.096V/2              |
| External<br>Reference | at<br>REFADJ | -1/2Vrefadj<br>(1.678) | 0V            | +1/2Vrefadj<br>(1.678) |
| Reference             | 0.at VREF    | -1/2V <sub>REF</sub>   | 0V            | +1/2V <sub>REF</sub>   |

\$FF (HEX), which trigger single-ended conversions on CH7 in external clock mode without powering down between conversions. In external clock mode, the SSTRB output pulses high for one clock period before the most significant bit of the conversion result comes out of DOUT. Varying the analog input to CH7 should alter the sequence of bits from DOUT. A total of 15 clock cycles is required per conversion. All transitions of the SSTRB and DOUT outputs occur on the falling edge of SCLK.

#### How to Start a Conversion

A conversion is started on the MAX192 by clocking a control byte into DIN. Each rising edge on SCLK, with  $\overline{CS}$  low, clocks a bit from DIN into the MAX192's internal shift register. After  $\overline{CS}$  falls, the first arriving logic "1" bit defines the MSB of the control byte. Until this first "start" bit arrives, any number of logic "0" bits can be clocked into DIN with no effect. Table 3 shows the control-byte format.

The MAX192 is compatible with Microwire, SPI, and OSPI devices. For SPI, select the correct clock polarity and sampling edge in the SPI control registers: set CPOL = 0 and CPHA = 0. Microwire and SPI both transmit a byte and receive a byte at the same time. Using the *Typical Operating Circuit*, the simplest software interface requires only three 8-bit transfers to perform a conversion (one 8-bit transfer to configure the ADC, and two more 8-bit transfers to clock out the 12-bit conversion result).

#### Example: Simple Software Interface

Make sure the CPU's serial interface runs in master mode so the CPU generates the serial clock. Choose a clock frequency from 100kHz to 2MHz.

- Set up the control byte for external clock mode, call it TB1. TB1 should be of the format: 1XXXXX11 binary, where the Xs denote the particular channel and conversion-mode selected.
- 2) Use a general-purpose I/O line on the CPU to pull CS on the MAX192 low.
- 3) Transmit TB1 and simultaneously receive a byte and call it RB1. Ignore RB1.
- 4) Transmit a byte of all zeros (\$00 HEX) and simultaneously receive byte RB2.
- 5) Transmit a byte of all zeros (\$00 HEX) and simultaneously receive byte RB3.
- 6) Pull  $\overline{\text{CS}}$  on the MAX192 high.

Figure 6 shows the timing for this sequence. Bytes RB2 and RB3 will contain the result of the conversion padded with one leading zero, two sub-LSB bits, and three trailing zeros. The total conversion time is a function of the serial clock frequency and the amount of dead time between 8-bit transfers. Make sure that the total conversion time does not exceed 120µs, to avoid excessive T/H droop.

#### **Digital Output**

In unipolar input mode, the output is straight binary (Figure 15). For bipolar inputs in differential mode, the output is twos-complement (Figure 16). Data is clocked out at the falling edge of SCLK in MSB-first format.

#### Internal and External Clock Modes

The MAX192 may use either an external serial clock or the internal clock to perform the successive-approximation conversion. In both clock modes, the external clock shifts data in and out of the MAX192. The T/H acquires the input signal as the last three bits of the control byte are clocked into DIN. Bits PD1 and PD0 of the control byte program the clock mode. Figures 7 through 10 show the timing characteristics common to both modes.

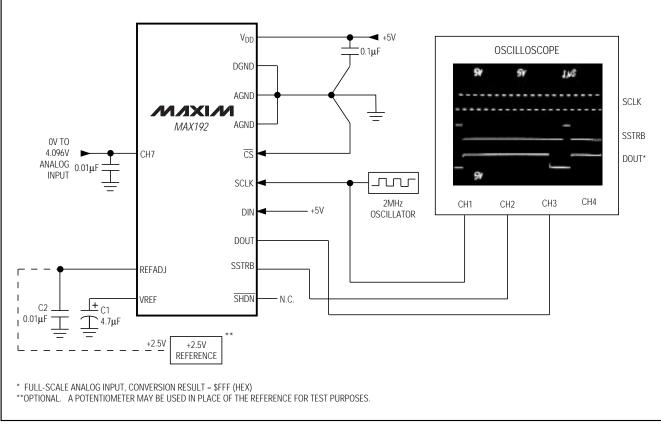



Figure 5. Quick-Look Circuit

#### External Clock

In external clock mode, the external clock not only shifts data in and out, it also drives the analog-to-digital conversion steps. SSTRB pulses high for one clock period after the last bit of the control byte. Successive-approximation bit decisions are made and appear at DOUT on each of the next 12 SCLK falling edges (see Figure 6). The first 10 bits are the true data bits, and the last two are sub-LSB bits.

SSTRB and DOUT go into a high-impedance state when  $\overline{CS}$  goes high; after the next  $\overline{CS}$  falling edge, SSTRB will output a logic low. Figure 8 shows the SSTRB timing in external clock mode.

The conversion must complete in some minimum time, or else droop on the sample-and-hold capacitors may degrade conversion results. Use internal clock mode if the clock period exceeds 10µs, or if serial-clock interruptions could cause the conversion interval to exceed 120µs.

#### Internal Clock

**MAX192** 

In internal clock mode, the MAX192 generates its own conversion clock internally. This frees the microprocessor from the burden of running the SAR conversion clock, and allows the conversion results to be read back at the processor's convenience, at any clock rate from zero to typically 10MHz. SSTRB goes low at the start of the conversion and then goes high when the conversion is complete. SSTRB will be low for a maximum of 10µs, during which time SCLK should remain low for best noise performance. An internal register stores data when the conversion is in progress. SCLK clocks the data out at this register at any time after the conversion is complete. After SSTRB goes high, the next falling clock edge will produce the MSB of the conversion at DOUT, followed by the remaining bits in MSB-first format (Figure 9). CS does not need to be held low once a conversion is started.

#### 



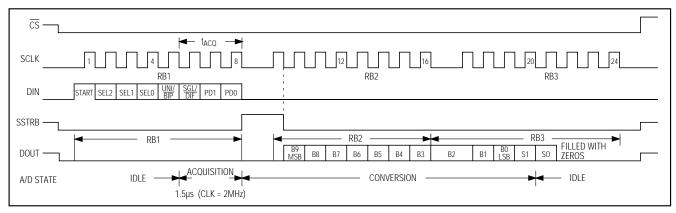



Figure 6. 24-Bit External Clock Mode Conversion Timing (SPI, QSPI and Microwire Compatible)

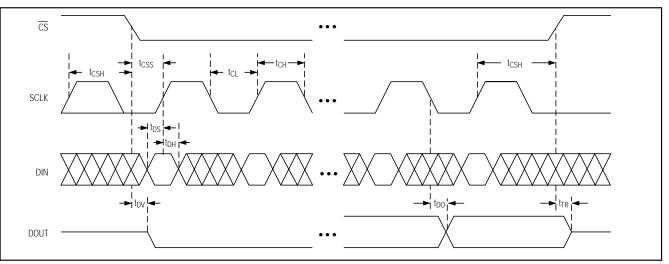



Figure 7. Detailed Serial-Interface Timing

Pulling  $\overline{CS}$  high prevents data from being clocked into the MAX192 and three-states DOUT, but it does not adversely affect an internal clock-mode conversion already in progress. When internal clock mode is selected, SSTRB does not go into a high-impedance state when  $\overline{CS}$  goes high.

Figure 10 shows the SSTRB timing in internal clock mode. In internal clock mode, data can be shifted in and out of the MAX192 at clock rates exceeding 4.0MHz, provided that the minimum acquisition time, t<sub>AZ</sub>, is kept above 1.5µs.

#### **Data Framing**

The falling edge of  $\overline{CS}$  does **not** start a conversion on the MAX192. The first logic high clocked into DIN is interpreted as a start bit and defines the first bit of the control byte. A conversion starts on the falling edge of SCLK,

after the eighth bit of the control byte (the PD0 bit) is clocked into DIN. The start bit is defined as:

The first high bit clocked into DIN with  $\overline{\text{CS}}$  low anytime the converter is idle, e.g. after V<sub>DD</sub> is applied.

#### OR

The first high bit clocked into DIN after bit 3 of a conversion in progress is clocked onto the DOUT pin.

If a falling edge on  $\overline{CS}$  forces a start bit before bit 3 (B3) becomes available, then the current conversion will be terminated and a new one started. Thus, the fastest the MAX192 can run is 15 clocks per conversion. Figure 11a shows the serial-interface timing necessary to perform a conversion every 15 SCLK cycles in external clock mode. If  $\overline{CS}$  is low and SCLK is continuous, guarantee a start bit by first clocking in 16 zeros.



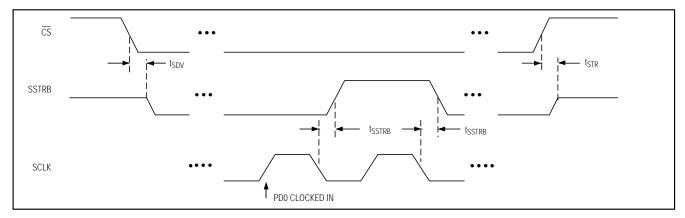



Figure 8. External Clock Mode SSTRB Detailed Timing

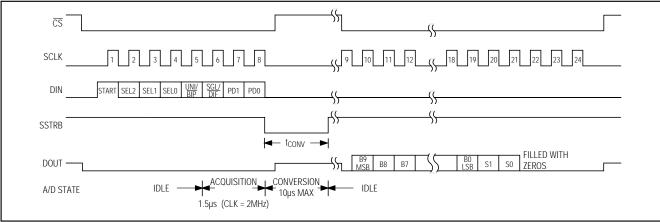



Figure 9. Internal Clock Mode Timing

Most microcontrollers require that conversions occur in multiples of 8 SCLK clocks; 16 clocks per conversion will typically be the fastest that a microcontroller can drive the MAX192. Figure 11b shows the serial-interface timing necessary to perform a conversion every 16 SCLK cycles in external clock mode.

#### **Applications Information**

#### **Power-On Reset**

When power is first applied and if SHDN is not pulled low, internal power-on reset circuitry will activate the MAX192 in internal clock mode, ready to convert with SSTRB = high. After the power supplies have been stabilized, the internal reset time is 100µs and no conversions should be performed during this phase. SSTRB is high on power-up and, if  $\overline{CS}$  is low, the first logical 1 on DIN will be interpreted as a start bit. Until a conversion takes place, DOUT will shift out zeros.

#### **Reference-Buffer Compensation**

In addition to its shutdown function, the SHDN pin also selects internal or external compensation. The compensation affects both power-up time and maximum conversion speed. Compensated or not, the minimum clock rate is 100kHz due to droop on the sample-and-hold.

To select external compensation, float SHDN. See the Typical Operating Circuit, which uses a 4.7µF capacitor at VREF. A value of 4.7µF or greater ensures stability and allows operation of the converter at the full clock speed of 2MHz. External compensation increases power-up time (see the Choosing Power-Down Mode section, and Table 5).

Internal compensation requires no external capacitor at VREF, and is selected by pulling SHDN high. Internal compensation allows for shortest power-up times, but is only available using an external clock and reduces the maximum clock rate to 400kHz.







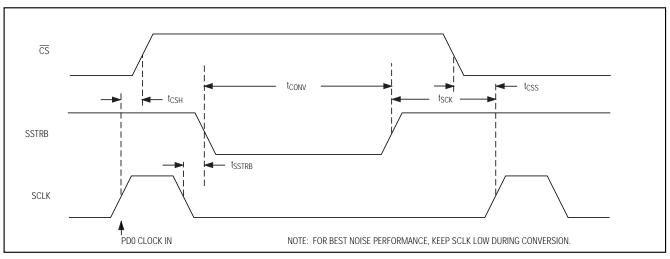



Figure 10. Internal Clock Mode SSTRB Detailed Timing

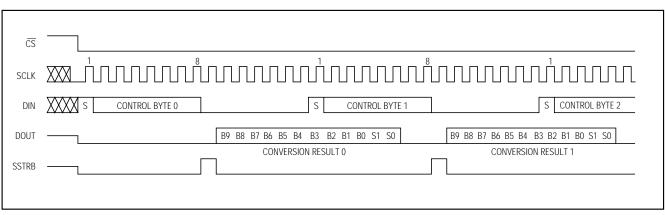



Figure 11a. External Clock Mode, 15 Clocks/Conversion Timing

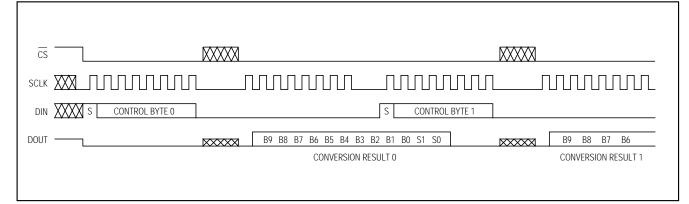



Figure 11b. External Clock Mode, 16 Clocks/Conversion Timing



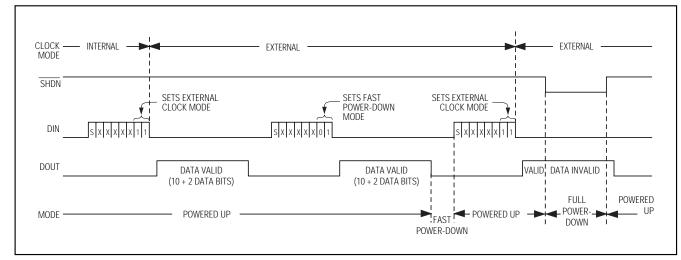



Figure 12a. Timing Diagram Power-Down Modes, External Clock

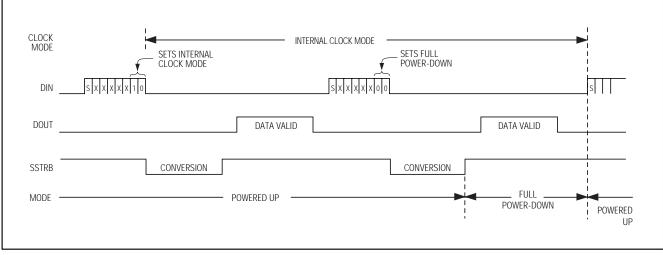



Figure 12b. Timing Diagram Power-Down Modes, Internal Clock

#### Power-Down Choosing Power-Down Mode

You can save power by placing the converter in a low-current shutdown state between conversions. Select full power-down or fast power-down mode via bits 1 and 0 of the DIN control byte with SHDN either high or floating (see Tables 3 and 6). Pull SHDN low at any time to shut down the converter completely. SHDN overrides bits 1 and 0 of DIN word (see Table 7).

Full power-down mode turns off all chip functions that draw quiescent current, typically reducing  $I_{DD}$  to  $2\mu A$ .

Fast power-down mode turns off all circuitry except the bandgap reference. With the fast power-down mode, the supply current is  $30\mu$ A. Power-up time can be shortened to  $5\mu$ s in internal compensation mode.

In both software shutdown modes, the serial interface remains operational, however, the ADC will not convert. Table 5 illustrates how the choice of reference-buffer compensation and power-down mode affects both power-up delay and maximum sample rate.

In external compensation mode, the power-up time is 20ms with a  $4.7\mu$ F compensation capacitor when the capacitor is fully discharged. In fast power-down, you can eliminate start-up time by using low-leakage capaci-



#### Table 5. Worst-Case Power-Up Delay Times

| Reference<br>Buffer | Reference-<br>Buffer<br>Compensation<br>Mode | VREF<br>Capacitor<br>(µF) | Power-<br>Down<br>Mode | Power-Up<br>Delay<br>(sec) | Maximum<br>Sampling<br>Rate (ksps) |
|---------------------|----------------------------------------------|---------------------------|------------------------|----------------------------|------------------------------------|
| Enabled             | Internal                                     |                           | Fast                   | 5μ                         | 26                                 |
| Enabled             | Internal                                     |                           | Full                   | 300µ                       | 26                                 |
| Enabled             | External                                     | 4.7                       | Fast                   | See Figure 14c             | 133                                |
| Enabled             | External                                     | 4.7                       | Full                   | See Figure 14c             | 133                                |
| Disabled            |                                              |                           | Fast                   | 2μ                         | 133                                |
| Disabled            |                                              |                           | Full                   | 2μ                         | 133                                |

## Table 6. Software Shutdown and ClockMode

| PD1 | PD0 | Device Mode          |  |
|-----|-----|----------------------|--|
| 1   | 1   | External Clock Mode  |  |
| 1   | 0   | Internal Clock Mode  |  |
| 0   | 1   | Fast Power-Down Mode |  |
| 0   | 0   | Full Power-Down Mode |  |

tors that will not discharge more than 1/2LSB while shut down. In shutdown, the capacitor has to supply the current into the reference ( $1.5\mu A$  typ) and the transient currents at power-up.

Figures 12a and 12b illustrate the various power-down sequences in both external and internal clock modes.

#### Software Power-Down

Software power-down is activated using bits PD1 and PD0 of the control byte. As shown in Table 6, PD1 and PD0 also specify the clock mode. When software shutdown is asserted, the ADC will continue to operate in the last specified clock mode until the conversion is complete. Then the ADC powers down into a low quiescent-current state. In internal clock mode, the interface remains active and conversion results may be clocked out while the MAX192 has already entered a software power-down.

The first logical 1 on DIN will be interpreted as a start bit, and powers up the MAX192. Following the start bit, the data input word or control byte also determines clock and power-down modes. For example, if the DIN word contains PD1 = 1, then the chip will remain powered up. If PD1 = 0, a power-down will resume after one conversion.

## Table 7. Hard-Wired Shutdown andCompensation Mode

| SHDN<br>State | Device<br>Mode  |                       |  |
|---------------|-----------------|-----------------------|--|
| 1             | Enabled         | Internal Compensation |  |
| Floating      | Enabled         | External Compensation |  |
| 0             | Full Power-Down | N/A                   |  |

#### Hardware Power-Down

The SHDN pin places the converter into the full power-down mode. Unlike with the software shutdown modes, conversion is not completed. It stops coincidentally with SHDN being brought low. There is no power-up delay if an external reference is used and is not shut down. The SHDN pin also selects internal or external reference compensation (see Table 7).

#### **Power-Down Sequencing**

The MAX192 auto power-down modes can save considerable power when operating at less than maximum sample rates. The following discussion illustrates the various power-down sequences.

#### Lowest Power at up to 500 Conversions/Channel/Second

The following examples illustrate two different power-down sequences. Other combinations of clock rates, compensation modes, and power-down modes may give lowest power consumption in other applications.

Figure 14a depicts the MAX192 power consumption for one or eight channel conversions utilizing full power-down mode and internal reference compensation. A  $0.01\mu$ F bypass capacitor at REFADJ forms an



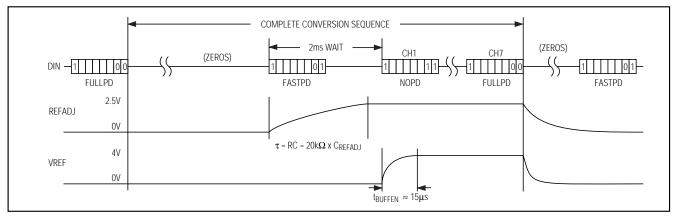



Figure 13. FULLPD/FASTPD Power-Up Sequence

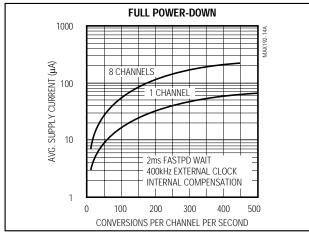



Figure 14a. Supply Current vs. Sample Rate/Second, FULLPD, 400kHz Clock

RC filter with the internal  $20k\Omega$  reference resistor with a 0.2ms time constant. To achieve full 10-bit accuracy, 10 time constants or 2ms are required after power-up. Waiting 2ms in FASTPD mode instead of full power-up will reduce the power consumption by a factor of 10 or more. This is achieved by using the sequence shown in Figure 13.

#### Lowest Power at Higher Throughputs

Figure 14b shows the power consumption with external-reference compensation in fast power-down, with one and eight channels converted. The external 4.7µF compensation requires a 50µs wait after power-up, accomplished by 75 idle clocks after a dummy conversion. This circuit combines fast multi-channel conversion with lowest power consumption possible. Full power-down mode may provide increased power savings in applications where the

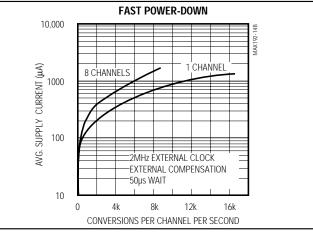



Figure 14b. Supply Current vs. Sample Rate/Second, FASTPD, 2MHz Clock

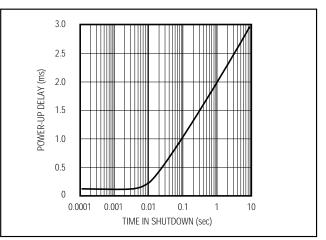



Figure 14c. Typical Power-Up Delay vs. Time in Shutdown

**MAX192** 

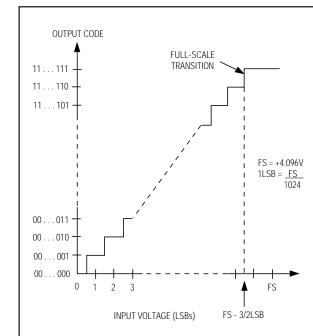



Figure 15. Unipolar Transfer Function, 4.096V = Full Scale

MAX192 is inactive for long periods of time, but where intermittent bursts of high-speed conversions are required.

#### External and Internal References

The MAX192 can be used with an internal or external reference. Diode D1 shown in the *Typical Operating Circuit* ensures correct start-up. Any standard signal diode can be used. An external reference can either be connected directly at the VREF terminal or at the REFADJ pin.

The MAX192's internally trimmed 2.46V reference is buffered with a gain of 1.678 to scale an external 2.5V reference at REFADJ to 4.096V at VREF.

#### Internal Reference

The full-scale range of the MAX192 with internal reference is 4.096V with unipolar inputs, and  $\pm 2.048V$  with differential bipolar inputs. The internal reference voltage is adjustable to  $\pm 1.5\%$  with the Reference-Adjust Circuit of Figure 17.

#### External Reference

An external reference can be placed at either the input (REFADJ) or the output (VREF) of the internal buffer amplifier. The REFADJ input impedance is

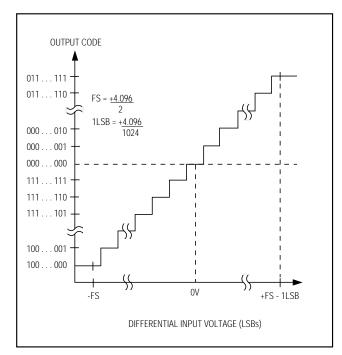



Figure 16. Differential Bipolar Transfer Function, ±4.096V / 2 = Full Scale

typically 20k $\Omega$ . At VREF, the input impedance is a minimum of 12k $\Omega$  for DC currents. During conversion, an external reference at VREF must be able to deliver up to 350µA DC load current and have an output impedance of 10 $\Omega$  or less. If the reference has higher output impedance or is noisy, bypass it close to the VREF pin with a 4.7µF capacitor.

Using the buffered REFADJ input avoids external buffering of the reference. To use the direct VREF input, disable the internal buffer by tying REFADJ to V<sub>DD</sub>.

#### Transfer Function and Gain Adjust

Figure 15 depicts the nominal, unipolar input/output (I/O) transfer function, and Figure 16 shows the differential bipolar input/output transfer function. Code transitions occur halfway between successive integer LSB values. Output coding is binary with 1LSB = 4.00mV (4.096V / 1024) for unipolar operation and 1LSB = 4.00mV [(4.096V / 2 - -4.096V / 2)/1024] for bipolar operation.

Figure 17, the Reference-Adjust Circuit, shows how to adjust the ADC gain in applications that use the internal reference. The circuit provides  $\pm 1.5\%$  ( $\pm 15$ LSBs) of gain adjustment range.

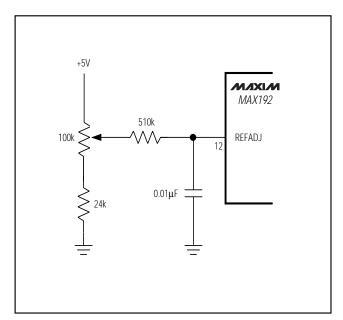



Figure 17. Reference-Adjust Circuit

#### Layout, Grounding, Bypassing

For best performance, use printed circuit boards. Wire-wrap boards are not recommended. Board layout should ensure that digital and analog signal lines are separated from each other. Do not run analog and digital (especially clock) lines parallel to one another, or digital lines underneath the ADC package.

Figure 18 shows the recommended system ground connections. A single-point analog ground ("star" ground point) should be established at AGND, separate from the logic ground. All other analog grounds and DGND should be connected to this ground. No other digital system ground should be connected to this single-point analog ground. The ground return to the power supply for this ground should be low impedance and as short as possible for noise-free operation.

High-frequency noise in the V<sub>DD</sub> power supply may affect the high-speed comparator in the ADC. Bypass these supplies to the single-point analog ground with 0.1µF and 4.7µF bypass capacitors close to the MAX192. Minimize capacitor lead lengths for best supply-noise rejection. If the +5V power supply is very noisy, a 10 $\Omega$  resistor can be connected as a lowpass filter, as shown in Figure 18.

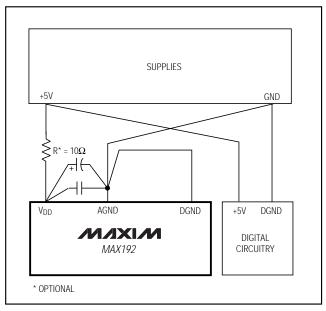



Figure 18. Power-Supply Grounding Connection

#### **High-Speed Digital Interfacing**

The MAX192 can interface with QSPI at high throughput rates using the circuit in Figure 19. This QSPI circuit can be programmed to do a conversion on each of the eight channels. The result is stored in memory without taxing the CPU since QSPI incorporates its own micro-sequencer.

Figure 20 details the code that sets up QSPI for autonomous operation. In external clock mode, the MAX192 performs a single-ended, unipolar conversion on each of the eight analog input channels. Figure 21 shows the timing associated with the assembly code of Figure 20. The first byte clocked into the MAX192 is the control byte, which triggers the first conversion on CH0. The last two bytes clocked into the MAX192 are all zero, and clock out the results of the CH7 conversion.



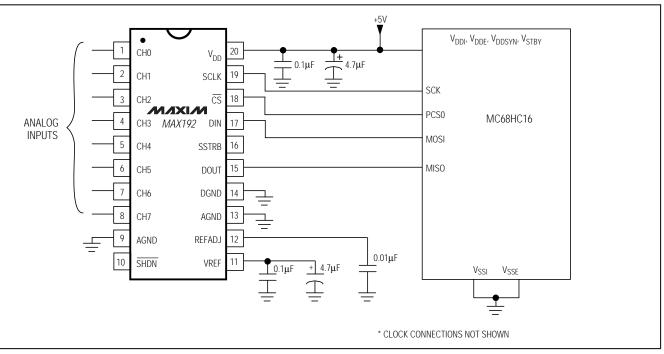



Figure 19. MAX192 QSPI Connection

#### TMS320 to MAX192 Interface

Figure 22 shows an application circuit to interface the MAX192 to the TMS320 in external clock mode. The timing diagram for this interface circuit is shown in Figure 23.

Use the following steps to initiate a conversion in the MAX192 and to read the results:

- The TMS320 should be configured with CLKX (transmit clock) as an active-high output clock and CLKR (TMS320 receive clock) as an active-high input clock. CLKX and CLKR of the TMS320 are tied together with the SCLK input of the MAX192.
- The MAX192 CS is driven low by the XF\_ I/O port of the TMS320 to enable data to be clocked into DIN of the MAX192.
- An 8-bit word (1XXXXX11) should be written to the MAX192 to initiate a conversion and place the device into external clock mode. Refer to Table 3 to select the proper XXXXX bit values for your specific application.

- 4) The SSTRB output of the MAX192 is monitored via the FSR input of the TMS320. A falling edge on the SSTRB output indicates that the conversion is in progress and data is ready to be received from the MAX192.
- 5) The TMS320 reads in one data bit on each of the next 16 rising edges of SCLK. These data bits represent the 10-bit conversion result and two sub-LSBs, followed by four trailing bits, which should be ignored.
- 6) Pull CS high to disable the MAX192 until the next conversion is initiated.

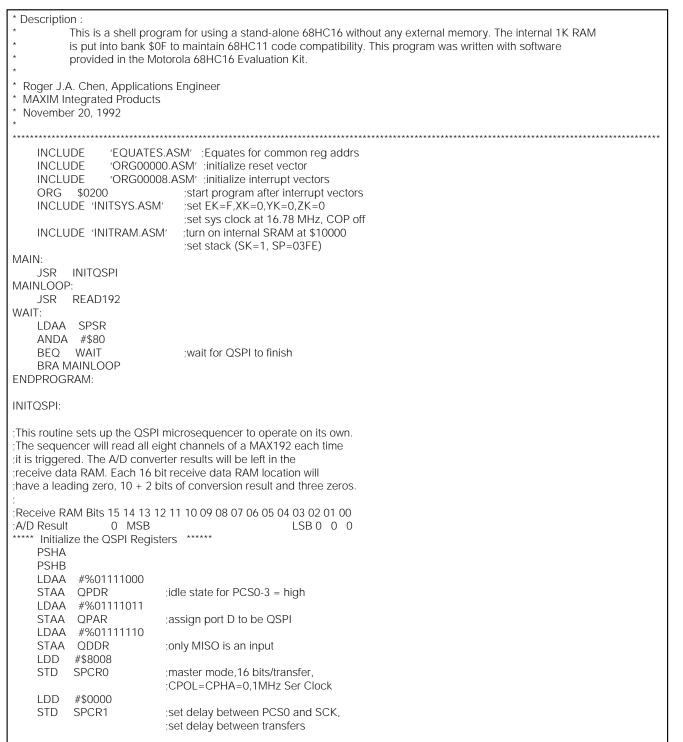



Figure 20. MAX192 Assembly-Code Listing

M/IXI/M

**MAX192** 

| LDD #50800<br>STD SPCR2 ::set ENDOP to \$8 for 9 transfers<br>initialize OSPI Command RAM *****<br>LDAA #\$80 :CONT=1,BITSE=0,DT=0,DSCK=0,PCS0=ACTIVE<br>STAA \$FD40 :store first byte in COMMAND RAM<br>LDAA #\$40 :CONT=1,BITSE=1,DT=0,DSCK=0,PCS0=ACTIVE<br>STAA \$FD43<br>STAA \$FD44<br>STAA \$FD45<br>STAA \$FD45<br>STAA \$FD46<br>STAA \$FD47<br>LDAA #\$40 :CONT=0,BITSE=1,DT=0,DSCK=0,PCS0=ACTIVE<br>STAA \$FD48<br>**** Initialize OSPI Transmit RAM *****<br>LDD #\$000F STD \$FD20<br>LDD #\$000F STD \$FD24<br>LDD #\$000F STD \$FD24<br>RTM \$FD48<br>STD \$FD28<br>LDD #\$000F STD \$FD26<br>LDD #\$000F STD \$FD26<br>RTM \$FD28<br>LDD #\$000F STD \$FD26<br>RTM \$FD28<br>LDD #\$000F STD \$FD26<br>LDD #\$000F STD \$FD26<br>RTM \$FD28<br>LDD #\$000F STD \$FD26<br>RTM \$FD28<br>RTM \$FD24<br>STA \$FD43<br>STA \$FD44<br>STA \$FD44<br>STA \$FD47<br>STA \$FD47<br>STA \$FD47<br>STA \$FD47<br>STA \$FD47<br>STA \$FD47<br>STA \$FD47<br>STA \$FD47<br>STA \$FD48<br>STA \$FD47<br>STA \$FD47<br>STA \$FD47<br>STA \$FD47<br>STA \$FD47<br>STA \$FC41 ; just set SPE<br>PULA<br>RTS<br>***** Intervpts/Exceptions *****<br>BDM: BGND ::exception vectors point here<br>:and put the user in background debug mode<br>Figure 20 MAY122 Assemble-Cade Listing (capatinged)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                           |                                   |            |                                        |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------|------------|----------------------------------------|--|--|--|
| Initialize QSPI Command RAM *****  LDAA #\$80 :CONT=1,BITSE=0,DT=0,DSCK=0,PCS0=ACTIVE STAA \$FD40 :store first byte in COMMAND RAM LDAA #\$40 :CONT=1,BITSE=1,DT=0,DSCK=0,PCS0=ACTIVE STAA \$FD43 STAA \$FD45 STAA \$FD45 STAA \$FD46 STAA \$FD46 STAA \$FD47 LDAA #\$40 :CONT=0,BITSE=1,DT=0,DSCK=0,PCS0=ACTIVE STAA \$FD48 ***** Initialize QSPI Transmit RAM ***** LDD #\$000F STD \$FD20 LDD #\$000F STD \$FD22 LDD #\$000F STD \$FD24                                                                                                                                                                                                                                                                                           |                                                           |                                   |            |                                        |  |  |  |
| LDAA #\$80 ::CONT=1.BITSE=0.DT=0.DSCK=0.PCS0=ACTIVE<br>STAA \$FD40 ::Store first byte in COMMAND RAM<br>LDAA #\$C0 ::CONT=1.BITSE=1.DT=0.DSCK=0.PCS0=ACTIVE<br>STAA \$FD43<br>STAA \$FD44<br>STAA \$FD45<br>STAA \$FD45<br>STAA \$FD45<br>STAA \$FD46<br>STAA \$FD48<br>***** Initialize OSPI Transmit RAM *****<br>LDD #\$000F STD \$FD20<br>LDD #\$000F STD \$FD24<br>LDD #\$000F STD \$FD24<br>LDD #\$000F STD \$FD26<br>LDD #\$000F STD \$FD26<br>READ192:<br>TThis routine triggers the OSPI microsequencer to autonomously<br>trigger conversions on all 8 channels of the MAX192. Each<br>:conversion result is stored in the receive data RAM.<br>PSHA #\$80<br>ORAA \$PCR1<br>STAA \$PCR1<br>S                                            |                                                           |                                   |            |                                        |  |  |  |
| STAA       \$FD40       :store first byte in COMMAND RAM         LDAA       \$FC01       :CONT=1.BITSE=1.DT=0.DSCK=0.PCS0=ACTIVE         STAA       \$FD41       :STAA         STAA       \$FD42       :STAA         STAA       \$FD45       :STAA         STAA       \$FD46       :CONT=0.BITSE=1.DT=0.DSCK=0.PCS0=ACTIVE         STAA       \$FD46       :CONT=0.BITSE=1.DT=0.DSCK=0.PCS0=ACTIVE         STAA       \$FD44       :CONT=0.BITSE=1.DT=0.DSCK=0.PCS0=ACTIVE         STAA       \$FD44       :CONT=0.BITSE=1.DT=0.DSCK=0.PCS0=ACTIVE         STAA       \$FD44       :CONT=0.BITSE=1.DT=0.DSCK=0.PCS0=ACTIVE         STAA       \$FD44       :CONT=0.BITSE=1.DT=0.DSCK=0.PCS0=ACTIVE         STAA       \$FD45       :CONT=0.BITSE=1.DT=0.DSCK=0.PCS0=ACTIVE         STAA       \$FD46       :CONT=0.BITSE=1.DT=0.DSCK=0.PCS0=ACTIVE         STAA       \$FD47       :STD         LDD       #\$000F       STD       \$FD22         LDD       #\$000F       STD       \$FD28         LDD       #\$00F       STD       \$FD22         LDD       #\$00F       STD       \$FD21         LDD       #\$00F       STD       \$FD22         LDD       #\$00F       STD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                           |                                   |            |                                        |  |  |  |
| LDAA #\$C0 ;CONT=1,BiTSE=1,DT=0,DSCK=0,PCS0=ACTIVE<br>STAA \$FD42<br>STAA \$FD44<br>STAA \$FD44<br>STAA \$FD44<br>STAA \$FD45<br>STAA \$FD47<br>LDAA #\$40 ;CONT=0,BITSE=1,DT=0,DSCK=0,PCS0=ACTIVE<br>STAA \$FD47<br>LDA #\$40 ;CONT=0,BITSE=1,DT=0,DSCK=0,PCS0=ACTIVE<br>STAA \$FD47<br>LDD #\$009F STD \$FD22<br>LDD #\$000F STD \$FD28<br>LDD #\$000F STD \$FD28<br>LDD #\$000F STD \$FD26<br>LDD #\$000F STD \$FD26<br>LD #\$00F STD \$FD26<br>LD #\$00F STD \$FD26<br>LD #\$00F STD \$FD26<br>LD #\$00F                                                                                                                                                          |                                                           |                                   |            |                                        |  |  |  |
| STAA       SFD41         STAA       SFD42         STAA       SFD43         STAA       SFD44         STAA       SFD46         STAA       SFD46         STAA       SFD46         STAA       SFD46         STAA       SFD46         STAA       SFD46         STAA       SFD47         LDA       SF045         TAA       SFD46         STAA       SFD46         STAA       SFD46         STAA       SFD46         STAA       SFD47         LDA       SF045         LDD       #\$000CF       STD         SFD24       SFD24         LDD       #\$000F       STD         SFD26       STD       SFD26         LDD       #\$000F       STD         PULB       STO       SFD30         PULB       STO       SFD30         SFD4 </td <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           |                                   |            |                                        |  |  |  |
| STAA SFD42<br>STAA SFD43<br>STAA SFD44<br>STAA SFD45<br>STAA SFD45<br>STAA SFD47<br>LDAA #S40 :CONT=0.BITSE=1.DT=0.DSCK=0.PCS0=ACTIVE<br>STAA SFD47<br>LDAA #S40 :CONT=0.BITSE=1.DT=0.DSCK=0.PCS0=ACTIVE<br>STAA SFD43<br>************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                           |                                   |            | CONTET,BITSET,DTEU,DSCK=U,PCSU=ACTIVE  |  |  |  |
| STAA SFD43<br>STAA SFD44<br>STAA SFD44<br>STAA SFD47<br>LDAA #\$40 :CONT=0.BITSE=1.DT=0.DSCK=0.PCS0=ACTIVE<br>STAA SFD47<br>LDAA #\$40 :CONT=0.BITSE=1.DT=0.DSCK=0.PCS0=ACTIVE<br>STAA SFD47<br>LDAA #\$40 :CONT=0.BITSE=1.DT=0.DSCK=0.PCS0=ACTIVE<br>STAA SFD47<br>LDD #\$000F STD \$FD20<br>LDD #\$000F STD \$FD22<br>LDD #\$000F STD \$FD24<br>LDD #\$000F STD \$FD24<br>LDD #\$000F STD \$FD26<br>LDD #\$000F STD \$FD26<br>LDD #\$000F STD \$FD28<br>LDD #\$000F STD \$FD24<br>LDD #\$000F STD \$FD26<br>LDD #\$000F STD \$FD26<br>LDD #\$000F STD \$FD26<br>LDD #\$000F STD \$FD26<br>LDD #\$000F STD \$FD26<br>STD \$FD26<br>LDD #\$000F STD \$FD26<br>STD \$FD26<br>STD \$FD26<br>STD \$FD27<br>STD \$FD28<br>READ192:<br>This routine triggers the QSPI microsequencer to autonomously<br>:conversion result is stored in the receive data RAM.<br>PSHA<br>LDAA #\$80<br>ORAA \$PCR1 ;just set SPE<br>PULA<br>RTS<br>**** Interrupts/Exceptions *****<br>BDM: BGND :: :exception vectors point here<br>:and put the user in background debug mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                   |            |                                        |  |  |  |
| STAA SFD45<br>STAA SFD46<br>STAA SFD47<br>LDAA FS40 :CONT=0,BITSE=1,DT=0,DSCK=0,PCS0=ACTIVE<br>STAA SFD47<br>LDD #\$008F STD SFD20<br>LDD #\$000F STD SFD22<br>LDD #\$000F STD SFD24<br>LDD #\$000F STD SFD24<br>LDD #\$000F STD SFD24<br>LDD #\$000F STD SFD26<br>LDD #\$000F STD SFD24<br>LDD #\$008F STD SFD26<br>LDD #\$008F STD SFD26<br>LDD #\$008F STD SFD27<br>LDD #\$008F STD SFD28<br>LDD #\$000F STD SFD27<br>LDD #\$000F STD SFD28<br>LDD #\$000F STD SFD28<br>LDD #\$000F STD SFD28<br>LDD #\$000F STD SFD28<br>LDD #\$000F STD SFD27<br>LDD #\$000F STD SFD28<br>LDD #\$000F STD SFD28<br>STD SFD28                                                                                                                                                            |                                                           |                                   |            |                                        |  |  |  |
| STAA       SFD46         STAA       SFD47         LDAA       SFD47         STAA       SFD47         STAA       SFD47         STAA       SFD47         STAA       SFD48         ************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                           |                                   |            |                                        |  |  |  |
| STAA       \$FD47<br>LDAA       **540         STAA       \$FD47<br>LDAA       :CONT=0,BTSE=1,DT=0,DSCK=0,PCS0=ACTIVE         STAA       \$FD48         Initialize USPI Transmit RAM       STD         LDD       #\$000F       STD         LDD       #\$00FF       STD         STD       \$FD26         LDD       #\$00FF       STD         STD       \$FD24         LDD       #\$00FF       STD         STD       \$FD26         LDD       #\$00FF       STD         STD       \$FD30         PULB       #\$00FF       STD         PULA       STS         STA       SPCR1         STA       SPCR1         STA       SPCR1         STA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                           |                                   |            |                                        |  |  |  |
| LDAA #\$40 ;CONT=0,BITSE=1,DT=0,DSCK=0,PCS0=ACTIVE<br>STAA \$FD48<br>**** Initialize QSPI Transmit RAM ******<br>LDD #\$008F STD \$FD20<br>LDD #\$000F STD \$FD24<br>LDD #\$000F STD \$FD24<br>LDD #\$000F STD \$FD28<br>LDD #\$000F STD \$FD28<br>LDD #\$008F STD \$FD28<br>LDD #\$000F STD \$FD28<br>STD \$ |                                                           |                                   |            |                                        |  |  |  |
| STAA       \$FD48         LDD       #\$008F         LDD       #\$009F         LDD       #\$009F         LDD       #\$009F         STD       \$FD20         LDD       #\$009F         STD       \$FD24         LDD       #\$000F         STD       \$FD26         LDD       #\$000F         STD       \$FD26         LDD       #\$000F         STD       \$FD28         LDD       #\$000F         STD       \$FD28         LDD       #\$008F         STD       \$FD26         LDD       #\$008F         STD       \$FD28         LDD       #\$008F         STD       \$FD26         LDD       #\$0000         STD       \$FD26         LDD       #\$0000         STD       \$FD26         LDD       #\$0000         STD       \$FD26         LDD       #\$0000         STD       \$FD30         PULB       pulla         RTS       stored in the receive data RAM.         PSHA       LDAA         LDAA       SPCR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                           |                                   |            | CONT=0 BITSE=1 DT=0 DSCK=0 PCS0=ACTIVE |  |  |  |
| LDD       #\$008F       STD       \$FD20         LDD       #\$009F       STD       \$FD24         LDD       #\$009F       STD       \$FD24         LDD       #\$008F       STD       \$FD26         LDD       #\$008       STD       \$FD26         STD       \$FD26       STD       \$FD26         LDD       #\$008       STD       \$FD26         STD       \$FD26       STD       \$FD26         STD       \$FD27       \$STD       \$FD26         STD       \$FD28       \$STS       \$STS         STAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           |                                   |            |                                        |  |  |  |
| IDD     #S00F     STD     \$FD20       IDD     #S00F     STD     \$FD24       IDD     #S00F     STD     \$FD24       IDD     #S00F     STD     \$FD26       IDD     #S000     STD     \$FD26       IDD     #S000     STD     \$FD26       IDD     #S000     STD     \$FD26       PULB     STD     \$FD26       PULB     STD     \$FD26       STD     \$FD26     \$FD26       STD     \$FD26     \$FD26       STD     \$FD26     \$FD26       STD     \$FD26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | *****                                                     | Initializ                         | ze QSPI Tr | ansmit RAM *****                       |  |  |  |
| IDD     #S00F     STD     \$FD20       IDD     #S00F     STD     \$FD22       IDD     #S00DF     STD     \$FD24       IDD     #S00AF     STD     \$FD26       IDD     #S00EF     STD     \$FD26       IDD     #S000F     STD     \$FD26       IDD     #S0000     STD     \$FD26       IDD     #S0000     STD     \$FD26       PULS     STD     \$FD30       PULS     STD     \$FD30       PULS     STD     \$ISD       STA     \$PCR1     ;just set SPE       STA     \$PCR1     ;just set SPE       STA     \$PCR1     ;just set SPE       STA <td></td> <td>חחו</td> <td>#\$008F</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                           | חחו                               | #\$008F    |                                        |  |  |  |
| IDD     #\$009F     STD     \$FD22       IDD     #\$000F     STD     \$FD24       IDD     #\$00AF     STD     \$FD26       IDD     #\$00AF     STD     \$FD28       IDD     #\$00BF     STD     \$FD24       IDD     #\$00BF     STD     \$FD28       IDD     #\$00BF     STD     \$FD26       IDD     #\$00BF     STD     \$FD26       IDD     #\$000F     STD     \$FD26       IDD     #\$0000     STD     \$FD26       IDD     #\$0000     STD     \$FD26       IDD     #\$0000     STD     \$FD26       PULB     pulta     water state stat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                           | 200                               | # \$6661   | STD \$FD20                             |  |  |  |
| LDD       #\$009F       STD       \$FD24         LDD       #\$000F       STD       \$FD26         LDD       #\$000F       STD       \$FD28         LDD       #\$000F       STD       \$FD24         LDD       #\$000F       STD       \$FD26         LDD       #\$000F       STD       \$FD28         LDD       #\$000F       STD       \$FD24         LDD       #\$000F       STD       \$FD24         LDD       #\$000F       STD       \$FD24         LDD       #\$000F       STD       \$FD26         LDD       #\$000F       STD       \$FD26         LDD       #\$000F       STD       \$FD26         LDD       #\$0000       STD       \$FD26         LDD       #\$0000       STD       \$FD26         LDA       #\$0000       STD       \$FD26         PULA       RTS       stored in the reserver to autonomously         :trigger conversions on all 8 channels of the MAX192. Each       stored in the reserver to autonomously         :conversion result is stored in the reserver to autonomously       stored in the reserver to autonomously         :trigger conversions on all 8 channels of the MAX192. Each       stored in the reserver to autonom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                           | LDD                               | #\$00CF    |                                        |  |  |  |
| IDD     #\$00DF     STD     \$FD24       IDD     #\$00AF     STD     \$FD26       IDD     #\$00EF     STD     \$FD28       IDD     #\$00BF     STD     \$FD2A       IDD     #\$00BF     STD     \$FD2C       IDD     #\$0000     STD     \$FD2E       IDD     #\$0000     STD     \$FD30       PULB     PULA     STD     \$FD30       RTS     STD     \$FD30       RTS     STD     \$FD30       PULB     STD     \$FD30       PULA     STD     \$FD30       RTS     STD     \$FD30       RTS     STD     \$FD30       PULA     STD     \$FD30       PULA     STD     \$ID30       PULA     STD     \$ID30       PULA     STD     \$ID30       PULA     STOP     STD       STA     SPCR1     ;just set SPE       PULA     STA     SPCR1       STA     SPCR1     ;just set SPE       PULA     STC     STA       RTS     STA     SPCR1       STA     SPCR1     situation there       STA     SPCR1     situation there       STA     SPCR1     situation there<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                           | חחו                               | #\$000E    | STD \$FD22                             |  |  |  |
| STD \$FD26   LDD #\$00EF   STD \$FD28   LDD #\$00EF   STD \$FD2A   LDD #\$00FF   STD \$FD2C   LDD #\$0000   \$STD \$FD2E   LDD #\$0000   STD \$FD30   PULA<br>RTS STD <b>STD</b> SFD30 <b>STD STD STD</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           | LDD                               | # \$00 71  | STD \$FD24                             |  |  |  |
| LDD #\$00AF STD \$FD28   LDD #\$00BF STD \$FD2A   LDD #\$00FF STD \$FD2C   LDD #\$0000 STD \$FD28   LDD #\$0000 STD \$FD2C   LDD #\$0000 STD \$FD30   PULB STD \$FD30   PULB STD \$FD30 <b>READ192:</b> :This routine triggers the QSPI microseque-cer to autonomously :trigger conversions on all 8 channels of the MAX192. Each :conversion result is stored in the receive data RAM. PSHA LDAA \$PSCR1 .just set SPE PULA RTS ***** Interrupts/Exceptions ***** BDM: BGND :exception vectors point here :and put the user in background debug mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           | LDD                               | #\$00DF    |                                        |  |  |  |
| STD \$FD28   LDD #\$00EF STD   LDD #\$00BF STD   LDD #\$00FF STD   LDD #\$0000 \$FD22   LDD #\$0000 \$FD30   PULB STD   PULA STD   RTS STD   READ192: :This routine triggers the OSPI microsequencer to autonomously :trigger conversions on all 8 channels of the MAX192. Each :conversion result is stored in the receive data RAM. PSHA RTS STAA SPCR1 :just set SPE PULA RTS :exception vectors point here :and put the user in background debug mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                           | חחו                               | #\$00AE    | STD \$FD26                             |  |  |  |
| LDD #\$00EF<br>LDD #\$00FF<br>STD \$FD2C<br>LDD #\$000F<br>STD \$FD2E<br>LDD #\$0000<br>STD \$FD30<br>PULB<br>PULA<br>RTS<br>READ192:<br>:This routine triggers the OSPI microsequencer to autonomously<br>:trigger conversion result is stored in the receive data RAM.<br>PSHA<br>LDAA #\$80<br>ORAA SPCR1<br>STAA S                                                                                                                            |                                                           | LDD                               | # \$00AI   | STD \$FD28                             |  |  |  |
| LDD #\$00BF<br>LDD #\$00FF<br>LDD #\$0000<br>PULB<br>PULA<br>RTS<br>READ192:<br>:This routine triggers the QSPI microsequencer to autonomously<br>:trigger conversions on all 8 channels of the MAX192. Each<br>:conversion result is stored in the receive data RAM.<br>PSHA<br>LDAA #\$80<br>ORAA SPCR1<br>STAA SPCR1<br>STAA SPCR1<br>STAA SPCR1<br>:just set SPE<br>PULA<br>RTS<br>*****<br>BDM: BGND :: exception vectors point here<br>:and put the user in background debug mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                           | LDD                               | #\$00EF    |                                        |  |  |  |
| Image: STD       \$FD2C         Image: STD       \$FD2E         Image: STD       \$FD30         PULB       \$FD30         PULA       \$FD30         PSHA       \$Conversions on all 8 channels of the MAX192. Each         :conversion result is stored in the receive dat RAM.       \$PSH3         PSH4       \$EDAA #\$80         ORAA \$PCR1       :just set SPE         PULA       \$FD30         RTS       :just set SPE         PULA       \$FO20         RTS       :just set SPE         PULA       \$FO20         RTS       :just set SPE         PULA       :just set SPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                           | חחו                               | #\$00BE    | STD \$FD2A                             |  |  |  |
| STD \$FD2E<br>LDD #\$0000<br>PULB<br>PULA<br>RTS<br>READ192:<br>:This routine triggers the OSPI microsequencer to autonomously<br>:trigger conversions on all 8 channels of the MAX192. Each<br>:conversion result is stored in the receive data RAM.<br>PSHA<br>LDAA #\$80<br>ORAA SPCR1<br>STAA SPCR1 : just set SPE<br>PULA<br>RTS<br>***** Interrupts/Exceptions *****<br>BDM: BGND : exception vectors point here<br>:and put the user in background debug mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                           | LDD                               | # \$00DI   | STD \$FD2C                             |  |  |  |
| LDD #\$0000<br>STD \$FD30<br>PULB<br>PULA<br>RTS<br>READ192:<br>:This routine triggers the OSPI microsequencer to autonomously<br>:trigger conversions on all 8 channels of the MAX192. Each<br>:conversion result is stored in the receive data RAM.<br>PSHA<br>LDAA #\$80<br>ORAA SPCR1<br>STAA SPCR1 : just set SPE<br>PULA<br>RTS<br>***** Interrupts/Exceptions *****<br>BDM: BGND : exception vectors point here<br>:and put the user in background debug mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                           | LDD                               | #\$00FF    |                                        |  |  |  |
| STD \$FD30<br>PULB<br>PULA<br>RTS<br>READ192:<br>;This routine triggers the QSPI microsequencer to autonomously<br>;trigger conversions on all 8 channels of the MAX192. Each<br>;conversion result is stored in the receive data RAM.<br>PSHA<br>LDAA #\$80<br>ORAA SPCR1<br>STAA SPCR1<br>STAA SPCR1<br>STAA SPCR1<br>ijust set SPE<br>PULA<br>RTS<br>****** Interrupts/Exceptions *****<br>BDM: BGND :: exception vectors point here<br>;and put the user in background debug mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           | חחו                               | #\$0000    | STD \$FD2E                             |  |  |  |
| PULA<br>RTS<br>READ192:<br>:This routine triggers the OSPI microsequencer to autonomously<br>:trigger conversions on all 8 channels of the MAX192. Each<br>:conversion result is stored in the receive data RAM.<br>PSHA<br>LDAA #\$80<br>ORAA SPCR1<br>STAA SPCR1<br>:just set SPE<br>PULA<br>RTS<br>****** Interrupts/Exceptions *****<br>BDM: BGND :: exception vectors point here<br>:and put the user in background debug mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                           | LDD                               | #\$0000    | STD \$FD30                             |  |  |  |
| RTS         READ192:         :This routine triggers the QSPI microsequencer to autonomously         :trigger conversions on all 8 channels of the MAX192. Each         :conversion result is stored in the receive data RAM.         PSHA         LDAA       #\$80         ORAA       SPCR1         STAA       SPCR1         :just set SPE         PULA         RTS         ****** Interrupts/Exceptions *****         BDM: BGND       ;exception vectors point here         :and put the user in background debug mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                           | PULB                              |            |                                        |  |  |  |
| READ192:<br>; This routine triggers the QSPI microsequencer to autonomously<br>; trigger conversions on all 8 channels of the MAX192. Each<br>; conversion result is stored in the receive data RAM.<br>PSHA<br>LDAA #\$80<br>ORAA SPCR1<br>STAA SPCR1 ; just set SPE<br>PULA<br>RTS<br>****** Interrupts/Exceptions *****<br>BDM: BGND ; exception vectors point here<br>; and put the user in background debug mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           |                                   |            |                                        |  |  |  |
| <pre>;This routine triggers the QSPI microsequencer to autonomously<br/>;trigger conversions on all 8 channels of the MAX192. Each<br/>;conversion result is stored in the receive data RAM.<br/>PSHA<br/>LDAA #\$80<br/>ORAA SPCR1<br/>STAA SPCR1 ;just set SPE<br/>PULA<br/>RTS<br/>***** Interrupts/Exceptions *****<br/>BDM: BGND ;exception vectors point here<br/>;and put the user in background debug mode</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                           | RIS                               |            |                                        |  |  |  |
| <pre>;trigger conversions on all 8 channels of the MAX192. Each ;conversion result is stored in the receive data RAM.     PSHA     LDAA #\$80     ORAA SPCR1     sTAA SPCR1 ;just set SPE     PULA     RTS ****** Interrupts/Exceptions ***** BDM: BGND</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | REAI                                                      | D192:                             |            |                                        |  |  |  |
| <pre>;conversion result is stored in the receive data RAM.<br/>PSHA<br/>LDAA #\$80<br/>ORAA SPCR1<br/>STAA SPCR1 ;just set SPE<br/>PULA<br/>RTS</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ;This                                                     |                                   |            |                                        |  |  |  |
| PSHA         LDAA       #\$80         ORAA       SPCR1         STAA       SPCR1         PULA       rts         *****       Interrupts/Exceptions         BDM:       BGND         ;exception vectors point here         ;and put the user in background debug mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | trigger conversions on all 8 channels of the MAX192. Each |                                   |            |                                        |  |  |  |
| LDAA       #\$80         ORAA       SPCR1         STAA       SPCR1         PULA       rts         *****       Interrupts/Exceptions         BDM:       BGND         ;exception vectors point here         ;and put the user in background debug mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                           |                                   |            |                                        |  |  |  |
| ORAA SPCR1<br>STAA SPCR1 ;just set SPE<br>PULA<br>RTS<br>***** Interrupts/Exceptions *****<br>BDM: BGND ;exception vectors point here<br>;and put the user in background debug mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                           |                                   | #\$80      |                                        |  |  |  |
| PULA<br>RTS         *****         Interrupts/Exceptions         BDM: BGND         ;exception vectors point here<br>;and put the user in background debug mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                           |                                   |            |                                        |  |  |  |
| RTS         *****       Interrupts/Exceptions         BDM: BGND       ;exception vectors point here<br>;and put the user in background debug mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                           | STAA                              | SPCR1      | ;just set SPE                          |  |  |  |
| *****       Interrupts/Exceptions         BDM: BGND       ;exception vectors point here<br>;and put the user in background debug mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           |                                   |            |                                        |  |  |  |
| BDM: BGND ;exception vectors point here<br>;and put the user in background debug mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           | RIS                               |            |                                        |  |  |  |
| BDM: BGND ;exception vectors point here<br>;and put the user in background debug mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *****                                                     | ***** Interrupts/Exceptions ***** |            |                                        |  |  |  |
| and put the user in background debug mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                           |                                   |            |                                        |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RDIM                                                      | : RGNI                            | J          |                                        |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Flow                                                      | - 20 -                            | 11V100 1   |                                        |  |  |  |

Figure 20. MAX192 Assembly-Code Listing (continued)

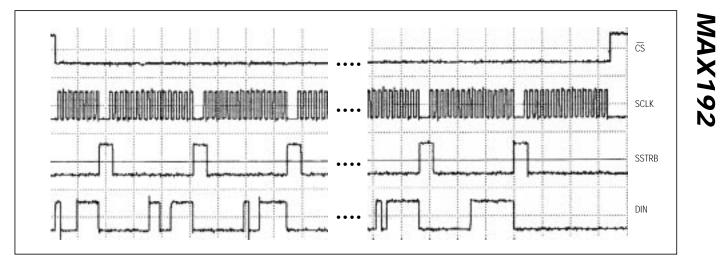



Figure 21. QSPI Assembly-Code Timing

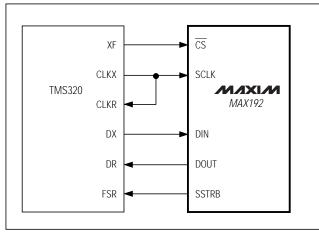



Figure 22. MAX192 to TMS320 Serial Interface

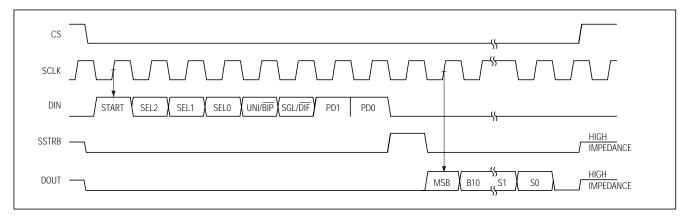
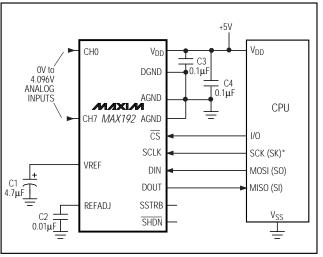
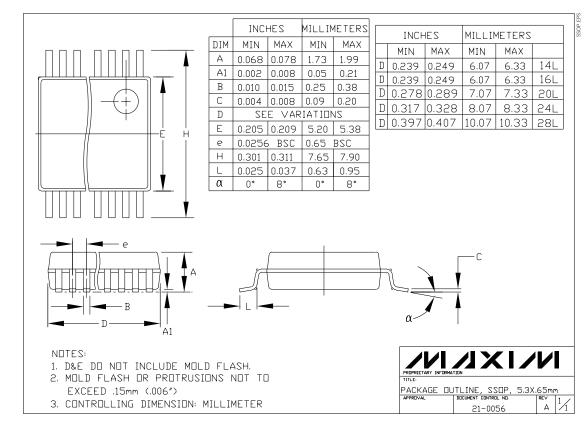




Figure 23. TMS320 Serial-Interface Timing Diagram

**MAX192** 


## \_\_\_\_Typical Operating Circuit



Chip Information

TRANSISTOR COUNT: 2278

#### Package Information



Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

#### \_\_\_Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 1997 Maxim Integrated Products

24

Printed USA

**MAXIM** is a registered trademark of Maxim Integrated Products.