| attice

mmmmmE Seamjconductor

== s nn COrporation

A 32 x 32 Crossbar Switch
Implementation Using the
Lattice ispLSI° 5384V Device

Introduction

Crossbar switches are widely used today in a variety of
applications including network switching, parallel com-
puting and various telecommunications applications.
There are off-the-shelf devices available today thatimple-
ment standard crossbar configurations. By using CPLDs
to implement crossbar switches, design engineers have
the flexibility to customize the switch to suit their specific
design goals, as well as obtain switch configurations not
available with off-the-shelf parts. Additionally, the use of
in-system programmable devices allows the switch to be
re-configured if design modifications become necessary.
This document addresses the implementation of a 32 x
32 Non-Blocking Crossbar switch in the Lattice ispLSI
5384V Complex Programmable Logic Device (CPLD)
architecture. The design modifications for implementing
a 64 x 64 crossbar switch are also given.

Crossbar Switches

A crossbar switch, also known as a crosspoint switch, is
defined as a switch with n input lines and n output lines
(n port switch). The switch has n? intersections, called
crosspoints, where an input line and output line can be
electrically connected (see Figure 1).

As can be seen from Figure 1, the number of crosspoints
grows as the square of the number of lines into the switch.
If we assume that a switch port does not connect to itself,
the number of crosspoints needed is given by n(n-1)/2.
For n=32, there are 496 crosspoint connections.

Figure 2. Space Division Switch

N/n Crossbars

Figure 1. 8-Port Unidirectional Switch

Connection

0 ‘/

1

- o
[%)
= 2
3 9
] o
£

[$;]

6 ®

0o 1 2 3 4 5 6 7
Outputs

Splitting the crossbar switch into several smaller switches
and interconnecting them can dramatically reduce the
number of crosspoints. This technique is called space
division switching. There is a penalty inherent in this
technique known as blocking. Blocking can occur when
two switch inputs attempt to access the same intermedi-
ate switch channel. Figure 2 illustrates space division
switching.

N/n Crossbars

n { nxk kxn
K Crossbars
n x k (N/n) x (N/ KX n
nx k (N/n) x (N/ KXn
nxk kxn
N Inputs N Outputs

an8035_02

November 1998

A 32 x 32 Crossbar Switch Implementation
Using the Lattice ispLSI 5384V Device

As can be seen from Figure 2, only half the number of
switch inputs can transmit at any given time. The total
number of crosspoints needed for the switch in Figure 2
can be calculated. For the first stage, there are N/n
crossbars with nk crosspoints for a total of Nk. For the
second stage there are k crossbars with (N/n)2
crosspoints. The third stage has the same number of
crosspoints as the first. Adding all three stages gives:

Number of crosspoints = 2kN + k(N/n)2

For 32inputs, N=32, k=4, n=8. This gives 320 crosspoints,
which is a 35 percent reduction in the number of
crosspoints needed for anon-partitioned crossbar switch.
The percent reduction in the number of crosspoints is
proportional to n2.

32 x 32 Crossbhar Switch Architecture

This ispLSI 5384V 32 x 32 (32 port) crossbar switch
design is based on the National Semiconductor CLC018
8 x 8 Digital Crosspoint Switch, which is used for serial
digital video routing, telecom/datacom switching, and

Figure 3. Crossbar Switch Block Diagram

ATM SONET. The block diagram of the switch is shown
in Figure 3.

The switch has 32 inputs that connect to any or all 32
outputs via the 32 x 32 switch matrix. The switch matrix
is constructed with 32, 32-input multiplexers. Each out-
put supports individual tri-state control. The MUX select
lines (switch interconnects) and tri-state control are con-
figured using a set of double buffered configuration
registers. The LOAD Registers are loaded for each port
individually by asserting the LOAD and CS signals. The
Output Address lines are decoded to select the port’s
LOAD register, and the input address lines are latched
along with the TRI signal. The latched inputaddresslines
drive the port's MUX select lines, and TRI drives the
port’s tri-state control. After the LOAD registers have
been configured, the CNFG and CS signals are asserted,
simultaneously configuring all 32 ports. This double
buffering scheme prevents any data from being lost while
the switch interconnects are updated. Two reset modes
are supported. Broadcast reset results in all switch
outputs being set to select port 0. Broadcast is initiated
by asserting RES and CS simultaneously. Tri-state reset

32 Inputs l/

N 32 x 32 Switch
Matrix

32 Outputs >

|

CNFG
D 32 Configuration
LE .
Registers
RES | |
LE 32 Load 32 5-32
LOAD > Registers 7 Decoder
? 5 A A
CS —
\,>O 5 5
Input Output
Address TRI Address

A 32 x 32 Crossbar Switch Implementation
Using the Lattice ispLSI 5384V Device

Figure 4. 32 x 32 Crossbar Switch Implementation

Switch Inputs Lattice Switch Outputs
| DIO-DI31 ispLSI 5384V DO0-DO15
Lattice
ispLSI 5384V DO16-DO31 >

Switch Control
Lines

results in all outputs being disabled. Tri-state reset is
initiated when TRI is asserted along with RES and CS.

Implementation

This design is ideally suited to the Lattice ispLSI 5384V
device due to the large number of inputs required for each
MUX. For the 32 x 32 switch, 32 x 32-input MUXes are
required. The Lattice ispLSI 5384V has 68 inputs into
each Generic Logic Block (GLB), which allows the MUXes
to be implemented in a single level of logic. Because this
design uses a double buffered switch configuration
scheme, a significant amount of device resources must
be devoted to the switch control. Each port requires 12
configuration registers. For 32 ports, this totals 384
macrocells, not including the required decoding logic.
Because of this, two ispLS15384V CPLDs are required to
implement a 32 x 32 crossbar switch (Figure 4). How-
ever, the entire implementation still takes only one level
of logic.

This implementation requires 228 macrocells per device,
or 60% utilization, leaving room for additional logic. The
switch design was coded in VHDL allowing for the num-
ber of ports or control logic to be reconfigured simply by
making modifications to the VHDL source code.

64 x 64 Implementation

The flexibility of the ispLSI 5384V does not limit the
maximum number of ports to 32. A 64 x 64 Crossbar
Switch can be implemented using four ispLSI 5384V
devices, all in a single level of logic. This can be
accomplished in the following manner. Although there
are 68 inputs into each GLB, the maximum number of
product terms allowed for a GLB output is 35. It would
take two GLB levels to directly implement a 64 x 1 MUX.
However, because the ispLSI 5384V supports tri-state
control on all I/0s, a 64 x 1 MUX can be constructed in a
single GLB level. Thisis accomplished by externally tying
the outputs of two 32 x 1 MUXes together and using the
tri-state control on the 1/0s as the MSB of the MUX select
lines (Figure 5)

By inverting the tri-state control between the two MUX
outputs, only one MUX can drive the output pin at any
given time, thus avoiding the possibility of contention.

Conclusion

Clearly, the Lattice ispLSI 5384V is the superior choice
for implementing crossbar switches due to its Big Fast
Wide (BFW) GLB structure. No other CPLD can boast a

A 32 x 32 Crossbar Switch Implementation
Using the Lattice ispLSI 5384V Device

Figure 5. 64-Input MUX

Input 0 ——
I
i 64 x 1 MUX
Input 31 ————— Output
‘7
Input 32 ——
|
Input 63 —
5

MUX Select MUX Select
0-4 5

one-level crossbar switch implementation with up to 64
inputs and outputs. This is achieved in the ispLSI 5384V
duetothe large number of GLB inputs (68/GLB) and GLB
product terms (160/GLB). In using the ispLSI 5384V and
coding the design in VHDL, the system designer is not
limited to the standard feature set available with off-the-
shelf solutions. Because this 32 x 32 implementation
requires only 60% device utilization, there are sufficient
resources left available to implement other types of
standard logic and control functions.

	Introduction
	Crossbar Switches
	32x32 Crossbar Switch Architecture
	Implementation
	64x64 Implementation
	Conclusion

