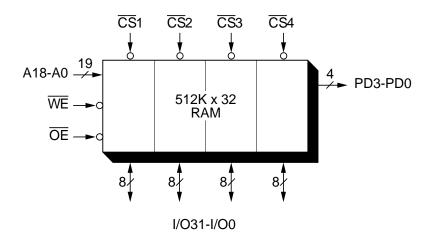


512K x 32 CMOS Static RAM Module

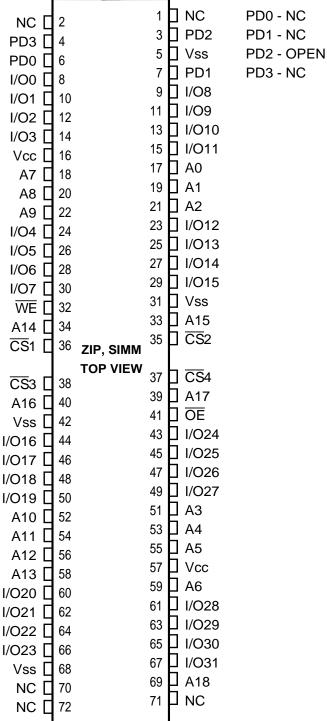
Features

Ш	High-density 2 megabyte Static RAM module
	Low profile 72-pin ZIP (Zig-zag In-line vertical
	Package) or 72-pin SIMM (Single In-line Memory
	Module)
	Fast access time: 15 ns (max.)
	Surface mounted plastic components on an epoxy
	laminate (FR-4) substrate Single 5V (±10%) powe
	supply
	Multiple V _{SS} pins and decoupling capacitors for
	maximum noise immunity
	Inputs/outputs directly TTL compatible

Description


The PDM4M4110 is a 512K x 32 static RAM module constructed on an epoxy laminate (FR-4) substrate using four (4) 512K x 8 static RAMs in plastic SOJ packages. Availability of four chip select lines provides byte access. The PDM4M4110 is available with access times as fast as 15 ns with minimal power consumption.

The PDM4M4110 is packaged in a 72-pin FR-4 ZIP (Zig-zag In-line vertical Package) or a 72-pin SIMM (Single In-line Memory Module). The ZIP configuration allows 72 pins to be placed on a package 3.95" long and 0.250" wide. At only 0.600" high, this low-profile package is ideal for systems with minimum board spacing. The SIMM configuration allows use of edge mounted sockets to secure the module.


All inputs and outputs of the PDM4M4110 are TTL compatible and operate from a single 5V supply. Multiple ground pins and on board decoupling capacitors provide maximum immunity from noise.

Four identification pins (PD0, PD1, PD2, PD3) are provided for applications in which different density versions of the module are used. In this way, the target system can read the respective levels of PD0, PD1, PD2, PD3 to determine a 512K depth.

Functional Block Diagram

Pin Configuration⁽¹⁾

NOTE: 1. Pins 3, 4, 6, and 7 (PD0, PD1, PD02, and PD3 respectively) are read by the user to determine the density of the module. If PD0 reads NC, PD1 reads NC, PD2 reads OPEN, PD3 reads NC then the module has a 512K depth.

Pin Assignment

Pin	Signal
I/O31-I/O0	Data Inputs/Outputs
A18-A0	Addresses
CS4-CS1	Chip Selects
WE	Write Enable
ŌĒ	Output Enable
PD3-PD0	Depth Identification
V _{CC}	Power
V _{SS}	Ground
NC	No Connect

Truth Table

Mode	CS	ŌĒ	WE	Output	Power
Deselect/ Power-down	Н	Х	Х	High-Z	Standby
Read	L	L	Н	DATA _{OUT}	Active
Write	L	Х	L	DATA _{IN}	Active
Deselect	L	Н	Н	High-Z	Active

Absolute Maximum Ratings⁽¹⁾

Symbol	Rating	Com'l.	Ind.	Unit
V_{TERM}	Terminal Voltage with Respect to V _{SS}	-0.5 to +7.0	-0.5 to +7.0	V
T _{BIAS}	Temperature Under Bias	-10 to +85	-10 to +85	°C
T _{STG}	Storage Temperature	-55 to +125	-65 to +150	°C
T _A	Operating Temperature	0 to +70	0 to +70	°C
P _T	Power Dissipation	1.0	1.0	W
I _{OUT}	DC Output Current	50	50	mA

NOTE: 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Recommended DC Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
V_{CC}	Supply Voltage	4.5	5.0	5.5	V
V _{SS}	Supply Voltage	0	0	0	V
Commercial	Ambient Temperature	0	25	70	°C

DC Electrical Characteristics (V $_{CC}$ = 5.0V \pm 10%, T_A = 0°C to +70°C)

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
I _{LI}	Input Leakage Current (Address and Control)	$V_{CC} = Max., V_{IN} = V_{SS}$ to V_{CC}	_	40	μΑ
ILI	Input Leakage Current (Data)	$V_{CC} = Max., V_{IN} = V_{SS} \text{ to } V_{CC}$	_	10	μА
I _{LO}	Output Leakage Current	$V_{OUT} = V_{SS}$ to V_{CC} , $V_{CC} = Max.$, $\overline{CS} = V_{IH}$	_	10	μА
V _{OL}	Output Low Voltage	I _{OL} = 8 mA, V _{CC} = Min.	_	0.4	V
V _{OH}	Output High Voltage	$I_{OL} = -4 \text{ mA}, V_{CC} = \text{Min}.$	2.4	_	V
V _{IH}	Input High Voltage		2.2	6.0	V
V _{IL}	Input Low Voltage		-0.5 ⁽¹⁾	0.8	V

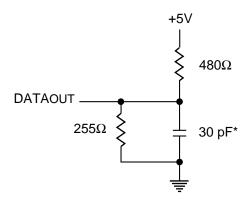
NOTE 1. $V_{IL} = -2.0V$ for pulse widths less than 10 ns, once per cycle.

Power Supply Characteristics

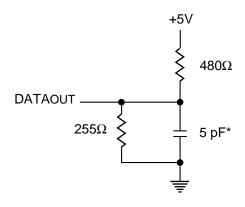
Symbol	Parameter	Max ⁽¹⁾	Unit
Icc	Operating Current $\overline{CS} = V_{IL}$, $V_{CC} = Max.$, $f = f_{MAX}$, Outputs Open	680	mA
I _{SB}	Standby Current $\overline{CS} \ge V_{IH}$, $V_{CC} = Max.$, $f = f_{MAX}$, Outputs Open	160	mA
I _{SB1}	Full Standby Current $\overline{CS} \ge V_{CC} - 0.2V$, $f = 0$, $V_{IN} > V_{CC} - 0.2V$ or $< 0.2V$	60	mA

NOTE 1. Preliminary specification only.

Capacitance⁽¹⁾ ($T_A = +25$ °C, f = 1.0 MHz)


Symbol	Parameter	Max.	Unit
C _{IN(D)}	Input Capacitance, (Data) V _{IN} = 0V	12	pF
C _{IN(A)}	Input Capacitance, (Address and Control) V _{IN} = 0V	40	pF
C _{OUT}	Input Capacitance, V _{OUT} = 0V	12	pF

NOTE 1. This parameter is determined by device characteristics but is not production tested.


AC Test Conditions

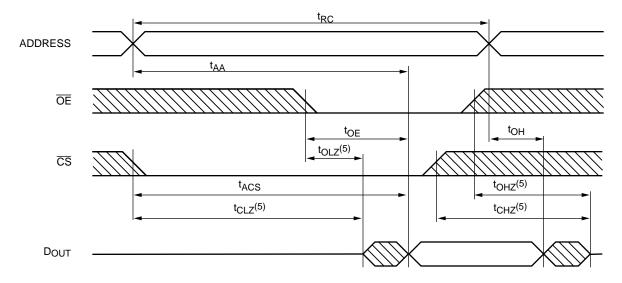
Input Pulse Levels	V _{SS} to 3.0V
Input Rise/Fall Times	5 ns
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
Output Load	See Figures 1 and 2

^{*} Including scope and jig capacitances

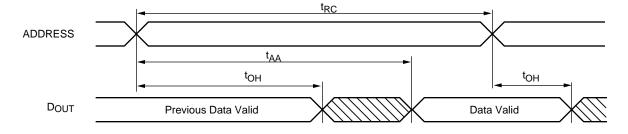
Figure 1. Output Load

* Including scope and jig capacitances

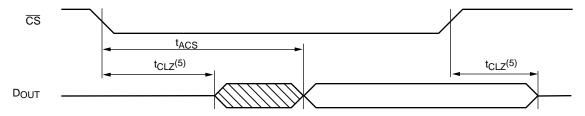
Figure 2. Output Load (for tOHZ, tCHZ, tOLZ, and tCLZ)



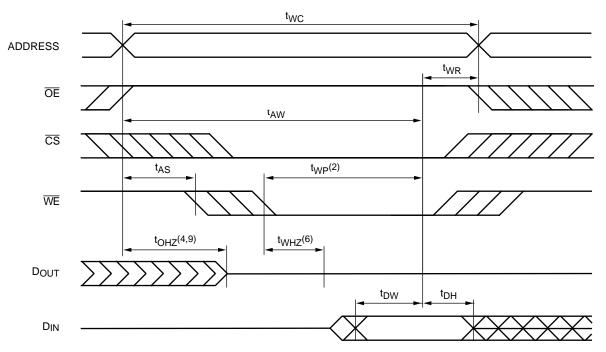
AC Electrical Characteristics (Vcc = 5V \pm 10%, T_A = 0°C to +70°C)

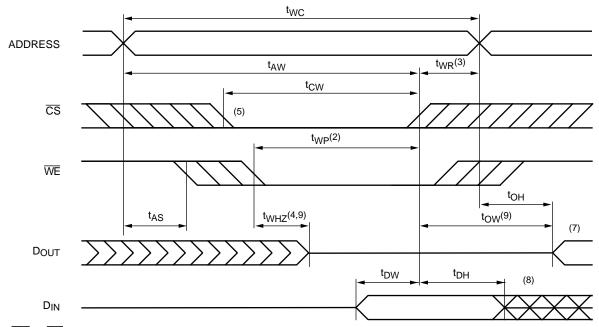

	PDM4M4110SXXZ, PDM4M4110SXXM									
		-15 ns -20 ns			-25	i ns	-35	ns		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cycl	е	•	<u>'</u>					<u>'</u>		
t _{RC}	Read Cycle Time	15	-	20	-	25	-	35	_	ns
t _{AA}	Address Access Time		15	_	20	_	25	_	35	ns
t _{ACS}	Chip Select Access Time	_	15	_	20	_	25	_	35	ns
t _{CLZ} ⁽¹⁾	Chip Select to Output inLow-Z	5	_	3	_	3	_	3	_	ns
t _{OE}	Output Enable to Output Valid		6	_	10	_	12	_	15	ns
t _{OLZ} ⁽¹⁾	Output Enable to Output in Low-Z	0	_	0	_	0	_	0	_	ns
t _{CHZ} ⁽¹⁾	Chip Deselect to Output in High-Z	<u> </u>	10	_	12	_	14	_	16	ns
t _{OHZ} ⁽¹⁾	Output Disable to Output in High-Z	_	6	_	8	_	10	_	12	ns
t _{OH}	Output Hold from Address Change	3	_	3	_	3	_	3	_	ns
t _{PU} ⁽¹⁾	Chip Select to Power-Up Time	0	_	0	_	0	_	0	_	ns
t _{PD} ⁽¹⁾	Chip Deselect to Power-Down Time	_	15	_	20	_	25	_	35	ns
Write Cycl	e	·	•				•	•		
t _{WC}	Write Cycle Time	15	_	20	_	25	_	35	_	ns
t _{CW}	Chip Select to End of Write	13	_	18	_	20	-	25	_	ns
t _{AW}	Address Valid to End of Write	13	_	18	_	20	_	25	_	ns
t _{AS} ⁽²⁾	Address Setup Time	3	_	3	-	3	_	3	_	ns
t _{WP}	Write Pulse Width	13	_	15	_	17	_	22	_	ns
t _{WR} ⁽²⁾	Write Recovery Time	0	_	0	_	0	_	0	_	ns
t _{WHZ} ⁽¹⁾	Write Enable to Output in High-Z	<u> </u>	8	_	8	_	13	_	15	ns
t _{DW}	Data to Write Time Overlap	10	_	12	_	15	_	20	_	ns
t _{DH} ⁽²⁾	Data Hold from Write Time	0	_	0	-	0	-	0	_	ns
t _{OW} ⁽¹⁾	Output Active from End of Write	2	_	2	_	2	_	2	_	ns

NOTE 1. This parameter is determined by device characteristics but is not production tested. 2. $t_{AS} = 0$ ns for \overline{CS} controlled write cycles. t_{DH} , $t_{WR} = 3$ ns for \overline{CS} controlled write cycles


Timing Waveforms of Read Cycle No.1⁽¹⁾

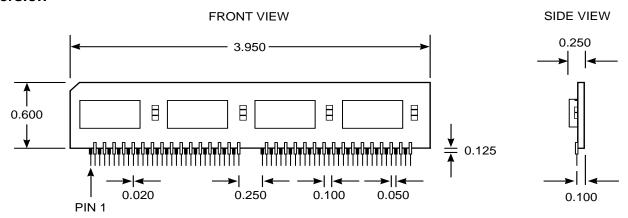
Timing Waveforms of Read Cycle No.2^(1,2,4)

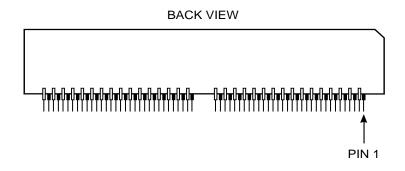

Timing Waveforms of Read Cycle No.3^(1,3,4)


- NOTES 1 $\overline{\text{WE}}$ is HIGH for Read Cycle.

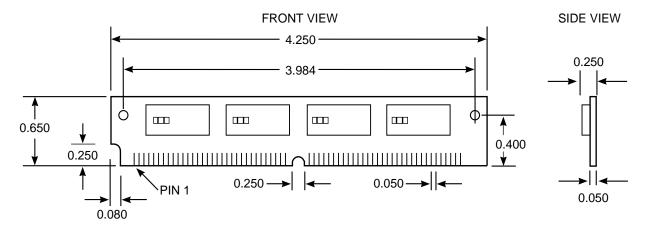
 - Device is continuously selected. \$\overline{CS} = V_{|L}\$.
 Address valid prior to or coincident with \$\overline{CS}\$ transition LOW.
 - 4. $\overline{OE} = V_{II}$.
 - 5. Transition is measured ±200 mV for steady state. This parameter is determined by device characteristics but is not production tested.

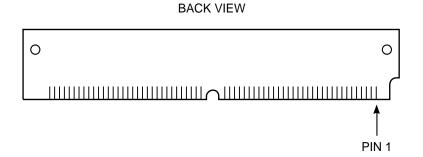
Timing Waveforms of Write Cycle No.1⁽¹⁾

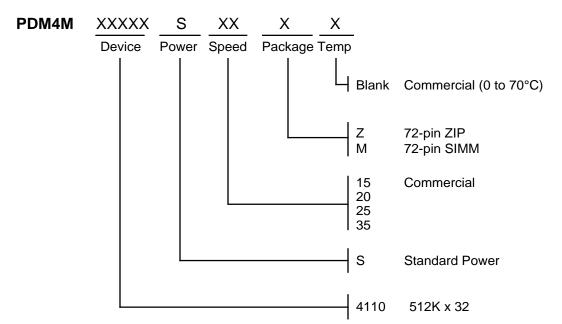

Timing Waveforms of Write Cycle No.2^(1,6)



- NOTES 1 $\overline{\text{WE}}$ or $\overline{\text{CS}}$ must be HIGH during all address transitions.
 - 2. A write occurs during the overlap $(t_{\overline{WP}})$ of <u>a LOW \overline{CS} </u>.
 - 3. t_{WR} is measured from the earlier of \overline{CS} or \overline{WE} going HIGH to end the write cycle.
 - 4. During this period, I/O pins are in the output state, and input signals to the opposite phase to the outputs must not be applied.
 - 5. If the CS LOW transition occurs simultaneously with or after the WE LOW transition, the outputs remain in a high-impedance state.
 - 6. \overline{OE} is continuously LOW ($\overline{OE} = V_{IL}$)
 - 7. $D_{\mbox{\scriptsize OUT}}$ is the same phase of write data of this write cycle.
 - 8. If CS is LOW during this period, I/O pins are in the output state. Then the data input signals of the opposite phase to the outputs must not be applied to them.
 - 9. Transition is measured ±200 mV for steady state with a 5 pF load (including scope and jig). This parameter is determined by device characteristics but is not production tested.


Package Dimensions


ZIP Version



SIMM Version

Ordering Information

