

128K x 24 Three Megabit 3.3V CMOS Static RAM

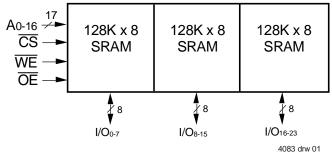
PRELIMINARY IDT7MMV4101

Features

- High density 3 megabit 3.3V static RAM
- Low profile 119 lead, 14mm x 22mm BGA (Ball Grid Array)
- Fast RAM access times: 10,12,15ns
- Single 3.3V power supply
- Multiple Vcc & GND pins for maximum noise immunity
- Inputs/outputs directly LVTTL compatible
- Commercial (0° C to +70° C) Industrial (-40° C to +85° C) temperature options
 - Commercial: 10/12/15 ns
 - Industrial: 12/15 ns

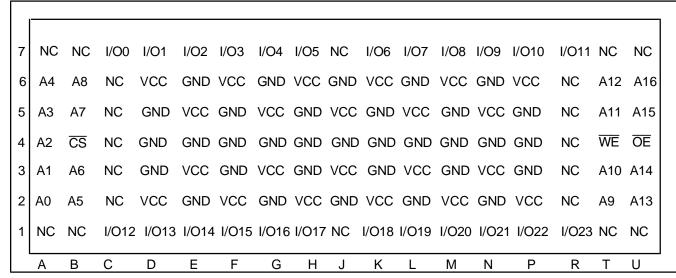
Description

The IDT7MMV4101 is a three megabit static RAM constructed on an multilayer laminate substrate using three 3.3V, 128K x 8 (IDT71V124) static RAMS encapsulated in a Ball Grid Array (BGA).


The IDT7MMV4101 is packaged in a plastic BGA. The BGA configuration allows 119 leads to be placed on a package 14mm by 22mm. At a maximum of 3.5mm high, this low-profile surface mount package is ideal for ultra dense systems.

All inputs and outputs of the IDT7MMV4101 are LVTTL compatible and operate from a single 3.3V supply. Full asynchronous circuitry requires no clocks or refresh for operation and provides equal access and cycle times for ease of use.

Pin Names


I/O ₀ - 23	Data Inputs/Outputs
A0 - 16	Addresses
c s	Chip Select
WE	Write Enable
ŌĒ	Output Enable
Vcc	Power
GND	Ground
NC	No Connect

Functional Block Diagram

4083 tbl 01

Pin Configuration

Top View

4083 drw 02

SEPTEMBER 2000

©2000 Integrated Device Technology, Inc. DSC-4083/04

Capacitance (TA = +25°C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Max.	Unit
CIN	Input Capacitance	$V_{IN} = 3dV$	20	pF
Cvo	I/O Capacitance	Vout = 3dV	10	pF

NOTE:

1. This parameter is guaranteed by design but not tested.

Truth Table

Mode	ĊŚ	ŌĒ	WE	I/O	Power
Standby	Н	Х	Х	High-Z	Standby
Read	L	L	Н	DATAоит	Active
Write	L	Х	L	DATAIN	Active
Outputs Disabled	L	Н	Н	High-Z	Active

4083 tbl 04

Recommended DC Operating Conditions

Symbol	Parameter	Min.	Тур.	Мах.	Unit
Vcc ⁽¹⁾	Supply Voltage	3.15	3.3	3.6	٧
Vcc ⁽²⁾	Supply Voltage	3.0	3.3	3.6	٧
GND	Ground	0	0	0	V
V⊪	Input High Voltage	2.0		Vcc + 0.3 ⁽⁴⁾	٧
VIL	Input Low Voltage	-0.3 ⁽³⁾	_	0.8	٧

NOTES:

- $1. \ \ For \ 7MMV4101S10BG \ only.$
- 2. For all speed grades except 7MMV4101S10BG.
- 3. VIL (min) = -1.5V for pulse width less than 5ns, once per cycle.
- 4. VIH (max) = Vcc + 1.5V for pulse width less than 5ns, once per cycle.

Absolute Maximum Ratings(1)

Symbol	Rating	Commercial	Industrial	Unit
Vcc	Supply Voltage Relative to GND	-0.5 to +4.6	-0.5 to +4.6	٧
VTERM	Terminal Voltage with Respect to GND	-0.5 to Vcc+0.5	-0.5 to Vcc+0.5	٧
Та	Operating Temperature	0 to +70	-40 to +85	°C
TBIAS	Temperature Under Bias	-10 to +85	-10 to +85	°C
Tstg	Storage Temperature	-55 to +125	-55 to +125	°C
ЮИТ	DC Output Current	50	50	mA

NOTES:

Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS
may cause permanent damage to the device. This is a stress rating only
and functional operation of the device at these or any other conditions above
those indicated in the operational sections of this specification is not implied.
Exposure to absolute maximum rating conditions for extended periods may
affect reliability.

DC Electrical Characteristics (Vcc = 3.3V ±10%)

Symbol	Parameter	Test Condition	Min.	Max.	Unit
IILiI	Input Leakage Current	Vcc = Max., Vin = GND to Vcc		15	μΑ
llLol	Output Leakage Current	$V_{CC} = Max., \overline{CS} \ge V_{H}, V_{OUT} = GND to V_{CC},$		5	μΑ
Vol	Output Low Voltage	IoL = 8mA, Vcc = Min.	_	0.4	V
Vон	Output High Voltage	I _{OH} = -4mA, V _{CC} = Min.	2.4	_	V

4083 tbl 03

4083 tbl 06

			-10 ⁽¹⁾	-12	-15	
Symbol	Parameter	Test Condition	Max.	Max.	Max.	Unit
lcc	Dynamic Operating Current	$V_{CC} = Max., \overline{CS} \le V_{IL},$ $f = f_{MAX}, Outputs Open$	295	275	255	mA
ISB	Standby Power Supply Current	$V_{CC} = Max., \overline{CS} \ge V_{H},$ $f = f_{Max}, Outputs Open$	95	85	85	mA
ISB1	Full Standby Power Supply Current	$\label{eq:control_control} \overline{CS} \geq Vcc - 0.2V, f = 0 \\ V_{IN} > Vcc - 0.2V or < 0.2V$	10	10	10	mA

NOTES

1. Commercial temperature only, Vcc = -5% to +10%.

4083 tbl 07

AC Test Conditions

Input Pulse Levels	GND to 3.0V		
Input Rise/Fall Times	3ns		
Input Timing Reference Levels	1.5V		
Output Reference Levels	1.5V		
Output Load	See Figures 1 and 2		

4083 tbl 08

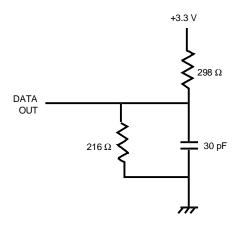


Figure 1. Output Load

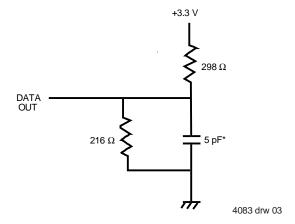
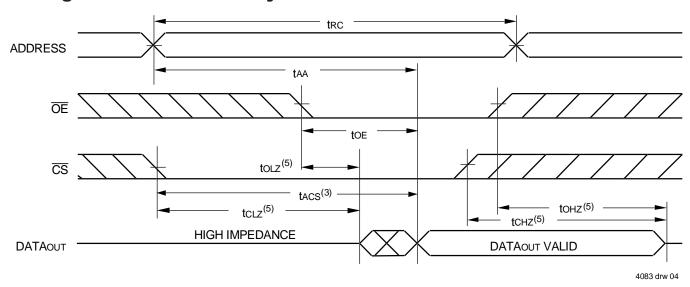


Figure 2. Output Load (for tolz, toHz, tcHz, tcLz, twHz, tow)
* Includes scope and jig.

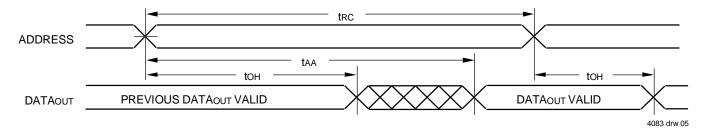
AC Electrical Characteristics (2)

 $(Vcc = 3.3V \pm 10\%)$

		-10 ⁽³⁾		-12		-15		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cycle								
trc	Read Cycle Time	10	_	12		15		ns
taa	Address Access Time	_	10		12	_	15	ns
tacs	Chip Select Access Time		10		12		15	ns
tc_z ⁽¹⁾	Chip Select to Output in Low-Z	3	_	3	_	3		ns
toe	Output Enable to Output Valid	_	4		6		7	ns
toLz ⁽¹⁾	Output Enable to Output in Low-Z	0	_	0		0		ns
tcHz ⁽¹⁾	Chip Deselect to Output in High-Z		5		6		7	ns
tонz ⁽¹⁾	Output Disable to Output in High-Z		5	_	6		7	ns
tон	Output Hold from Address Change	3	_	3		3		ns
tPU ⁽¹⁾	Chip Select to Power-Up Time	0	_	0	_	0	_	ns
tpD ⁽¹⁾	Chip Deselect to Power-Down Time	_	10		12		15	ns
Write Cycle								
twc	Write Cycle Time	10	_	12		15		ns
tcw	Chip Select to End-of-Write	8	_	10	_	12		ns
taw	Address Valid to End-of-Write	8	_	10		12	_	ns
tas	Address Set-up Time	0	_	0	_	0		ns
twp	Write Pulse Width	8	_	10	_	12	_	ns
twr	Write Recovery Time	0	_	0	_	0		ns
twHZ ⁽¹⁾	Write Enable to Output in High-Z		5	_	5	_	5	ns
tow	Data to Write Time Overlap	6	_	6		7	_	ns
tрн	Data Hold from Write Time	0	_	0	_	0		ns
tow ⁽¹⁾	Output Active from End-of-Write	3		3		3		ns

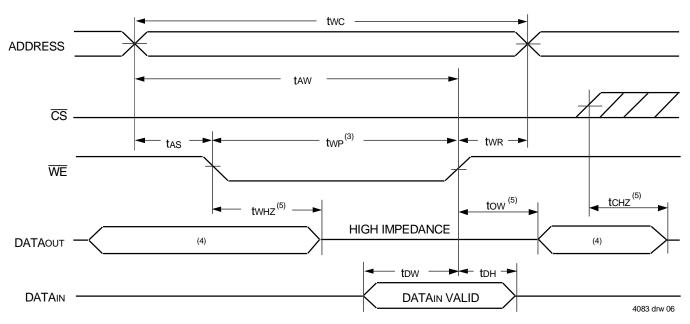

NOTES:

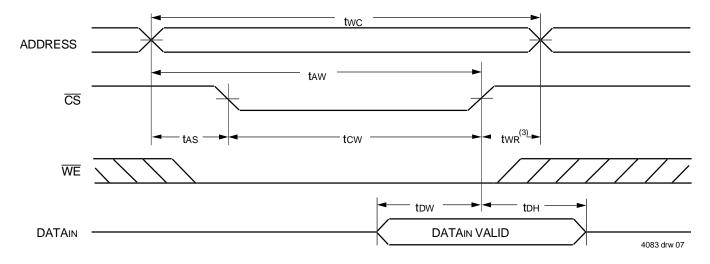
1. This parameter is guaranteed by design but not tested.


- 2. These specifications are for the individual 71V124 Static RAMs.
- 3. Commercial temperature only, Vcc = -5% to +10%.

4083 tbl 09

Timing Waveform of Read Cycle No. 1⁽¹⁾

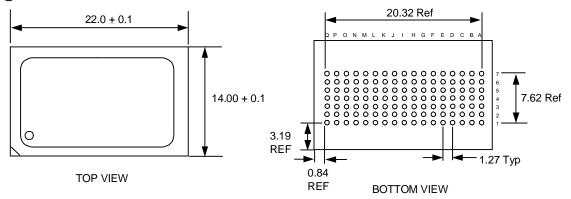

Timing Waveform of Read Cycle No. 2^(1,2,4)

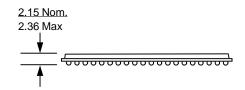

NOTES:

- 1. $\overline{\text{WE}}$ is HIGH for Read Cycle.
- 2. Device is continuously selected, \overline{CS} is LOW.
- 3. Address must be valid prior to or coincident with the later of $\overline{\text{CS}}$ transition LOW; otherwise tax is the limiting parameter.
- 4. $\overline{\mathsf{OE}}$ is LOW.
- 5. Transition is measured ±200mV from steady state.

Timing Waveform of Write Cycle No. 1 (WE Controlled Timing)(1,4,5)

Timing Waveform of Write Cycle No. 2 (CS Controlled Timing)(1, 4)

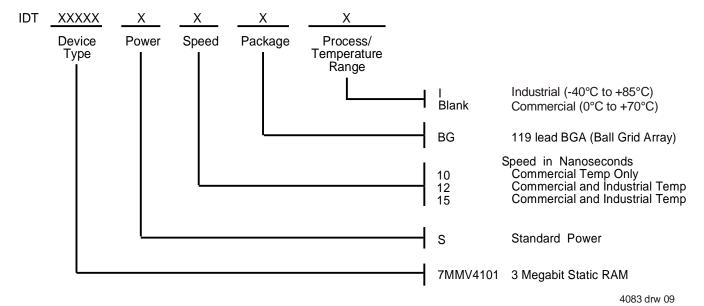



NOTES:

- 1. A write occurs during the overlap of a LOW $\overline{\text{CS}}$ and a LOW $\overline{\text{WE}}$.
- 2. $\overline{\text{OE}}$ is continuously HIGH. During a $\overline{\text{WE}}$ controlled write cycle with $\overline{\text{OE}}$ LOW, twp must be greater than or equal to twHz + tow to allow the I/O drivers to turn off and data to be placed on the bus for the required tow. If $\overline{\text{OE}}$ is HIGH during a $\overline{\text{WE}}$ controlled write cycle, this requirement does not apply and the minimum write pulse is the specified twp.
- 3. During this period, I/O pins are in the output state, and input signals must not be applied.
- 4. If the CS LOW transition occurs simultaneously with or after the WE LOW transition, the outputs remain in a high impedance state. CS must be active during the tcw write period.
- 5. Transition is measured ±200mV from steady state.

4083 drw 08

Package Dimensions



NOTES:

1. All dimensions are in mm.

Ordering Information

Datasheet History

09/18/00 Add datasheet history

Pg. 2 Reduce Icc, IsB, and IsB1 to reflect K step die shrink

CORPORATE HEADQUARTERS 2975 Stender Way Santa Clara, CA 95054 for SALES: 800-345-7015 or 408-727-6116 fax:408-492-8674 www.idt.com for Tech Support: sramhelp@idt.com 800 544-7726, x4033