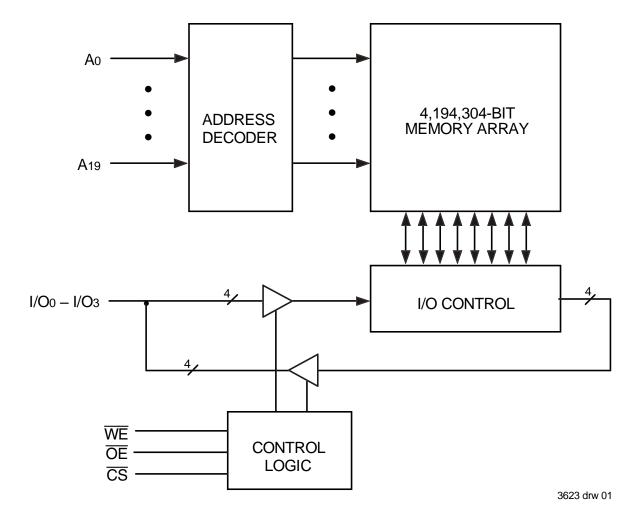
3.3V CMOS Static RAM 4 Meg (1M x 4-Bit)

IDT71V428S IDT71V428L

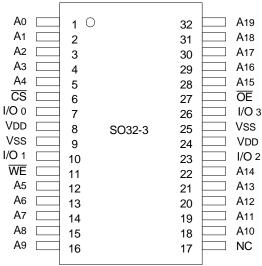
Features

- 1M x 4 advanced high-speed CMOS Static RAM
- ◆ JEDEC Center Power / GND pinout for reduced noise
- Equal access and cycle times
 - Commercial and Industrial: 10/12/15ns
- Single 3.3V power supply
- One Chip Select plus one Output Enable pin
- Bidirectional data inputs and outputs directly LVTTL-compatible
- Low power consumption via chip deselect
- Available in 32-pin, 400 mil plastic SOJ package.


Description

The IDT71V428 is a 4,194,304-bit high-speed Static RAM organized as 1M x 4. It is fabricated using IDT's high-perfomance, high-reliability CMOS technology. This state-of-the-art technology, combined with innovative circuit design techniques, provides a cost-effective solution for high-speed memory needs.

The IDT71V428 has an output enable pin which operates as fast as 5ns, with address access times as fast as 10ns. All bidirectional inputs and outputs of the IDT71V428 are LVTTL-compatible and operation is from a single 3.3V supply. Fully static asynchronous circuitry is used, requiring no clocks or refresh for operation.


The IDT71V428 is packaged in a 32-pin, 400 mil Plastic SOJ.

Functional Block Diagram

SEPTEMBER 1999

Pin Configuration

SOJ **Top View**

3623 drw 02

Pin Description

A0 - A19	Address Inputs	Input
<u>cs</u>	Chip Select	Input
WE	Write Enable	Input
ŌĒ	Output Enable	Input
I/O0 - I/O3	Data Input/Output	I/O
VDD	3.3V Power	Power
Vss	Ground	Gnd

3623 tbl 02

Capacitance

(TA = +25°C, f = 1.0MHz, SOJ package)

Symbol	Parameter ⁽¹⁾	Conditions	Max.	Unit
Cin	Input Capacitance	$V_{IN} = 3dV$	7	pF
Cı/o	I/O Capacitance	Vout = 3dV	8	pF

3623 tbl 03

NOTE:

1. This parameter is guaranteed by device characterization, but not production tested.

Truth Table(1,2)

cs	Œ	WE	l/O	Function
L	L	Н	DATAout	Read Data
L	Х	L	DATAIN	Write Data
L	Н	Н	High-Z	Output Disabled
Н	Х	Х	High-Z	Deselected - Standby (ISB)
V HC ⁽³⁾	X	X	High-Z	Deselected - Standby (ISB1)

3623 tbl 01

- 1. $H = V_{IH}$, $L = V_{IL}$, x = Don't care.
- 2. VLC = 0.2V, VHC = VCC 0.2V.
- 3. Other inputs $\geq VHC$ or $\leq VLC$.

Absolute Maximum Ratings(1)

Symbol	Rating	Value	Unit
VDD	Supply Voltage Relative to Vss	-0.5 to +4.6	V
VIN, VOUT	Terminal Voltage Relative to Vss	-0.5 to VDD+0.5	V
TBIAS	Temperature Under Bias	-55 to +125	°C
Tstg	Storage Temperature	-55 to +125	°C
Рт	Power Dissipation	1	W
Гоит	DC Output Current	50	mA

NOTE:

Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may
cause permanent damage to the device. This is a stress rating only and functional
operation of the device at these or any other conditions above those indicated in the
operational sections of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect reliability.

Recommended Operating Temperature and Supply Voltage

Grade	Temperature	Vss	V DD
Commercial	0°C to +70°C	0V	See Below
Industrial	–40°C to +85°C	0V	See Below

3623 tbl 05

Recommended DC Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vdd	Supply Voltage	3.0	3.3	3.6	٧
Vss	Ground	0	0	0	٧
Vін	Input High Voltage	2.0	_	V _{DD} +0.3 ⁽¹⁾	٧
VIL	Input Low Voltage	-0.3 ⁽²⁾		0.8	٧

3623 tbl 06

NOTES:

- 1. Vih (max.) = VDD+2V for pulse width less than 5ns, once per cycle.
- 2. VIL (min.) = -2V for pulse width less than 5ns, once per cycle.

DC Electrical Characteristics

(VDD = Min. to Max., Commercial and Industrial Temperature Ranges)

			IDT71V428		
Symbol	Parameter	Test Condition	Min.	Max.	Unit
Iu	Input Leakage Current	VDD = Max., VIN = Vss to VDD		5	μΑ
ILO	Output Leakage Current	VDD = Max., $\overline{\text{CS}}$ = VIH, VOUT = VSS to VDD	_	5	μΑ
Vol	Output Low Voltage	IOL = 8mA, VDD = Min.		0.4	V
Vон	Output High Voltage	IOH = -4mA, VDD = Min.	2.4		V

3623 tbl 07

DC Electrical Characteristics(1,2,3)

(VDD = Min. to Max., VLC = 0.2V, VHC = VDD - 0.2V)

			71V428S/L10		71V428S/L12		71V428S/L15		
Symbol	Parameter		Com'l.	Ind. ⁽⁵⁾	Com'l.	Ind.	Com'l.	Ind.	Unit
Icc	Dynamic Operating Current $\overline{\text{CS}} \leq \text{VLc, Outputs Open, VDD} = \text{Max., } f = \text{fmax}^{(4)}$	S	150	150	140	140	130	130	mA
		L	140	_	130	130	120	120	mA
ISB	Dynamic Standby Power Supply Current		60	60	50	50	40	40	mA
	$\overline{\text{CS}} \ge \text{VHC}$, Outputs Open, VDD = Max., f = fMAX ⁽⁴⁾	L	40	_	35	35	30	30	mA
SB1	Full Standby Power Supply Current (static)	S	20	20	20	20	20	20	mA
	$\overline{\text{CS}} \ge \text{VHC}$, Outputs Open, VDD = Max., f = $0^{(4)}$		10	_	10	10	10	10	mA

NOTES:

- 1. All values are maximum guaranteed values.
- 2. All inputs switch between 0.2V (Low) and VDD 0.2V (High).
- 3. Power specifications are preliminary.
- 4. fmax = 1/trc (all address inputs are cycling at fmax); f = 0 means no address input lines are changing.
- Standard power 10ns (S10) speed grade only.

3623 tbl 08

AC Test Conditions

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	1.5ns
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
AC Test Load	See Figure 1, 2 and 3

3623 tbl 09

AC Test Loads

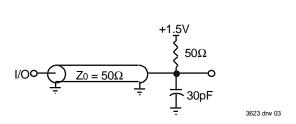



Figure 1. AC Test Load

3623 drw 04

 * Including jig and scope capacitance.

Figure 2. AC Test Load (for tclz, tolz, tchz, tohz, tow, and twhz)

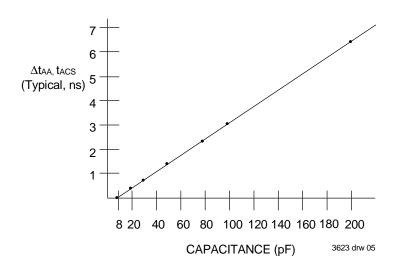
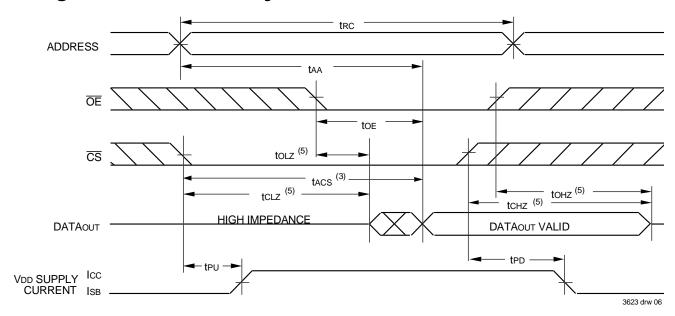


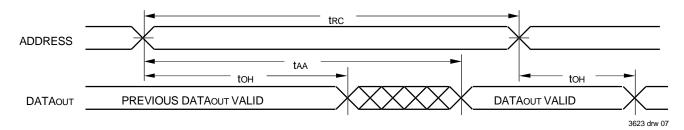
Figure 3. Output Capacitive Derating

AC Electrical Characteristics (VDD = 3.3V ± 10%, Commercial and Industrial Temperature Ranges)

		71V428	S/L10 ⁽²⁾	71V42	8S/L12	71V42	8S/L15	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
READ CYCLE								
trc	Read Cycle Time	10		12		15		ns
taa	Address Access Time		10		12		15	ns
tacs	Chip Select Access Time		10		12		15	ns
tclz ⁽¹⁾	Chip Select to Output in Low-Z	4		4		4		ns
tcHZ ⁽¹⁾	Chip Deselect to Output in High-Z		5		6		7	ns
toE	Output Enable to Output Valid		5		6		7	ns
tolz ⁽¹⁾	Output Enable to Output in Low-Z	0		0		0		ns
tohz ⁽¹⁾	Output Disable to Output in High-Z		5		6		7	ns
toн	Output Hold from Address Change	4		4		4		ns
tpu ⁽¹⁾	Chip Select to Power Up Time	0		0		0		ns
tpD ⁽¹⁾	Chip Deselect to Power Down Time		10		12		15	ns
WRITE CYCL	E							
twc	Write Cycle Time	10		12		15	_	ns
taw	Address Valid to End of Write	8		8		10	_	ns
tcw	Chip Select to End of Write	8		8		10		ns
tas	Address Set-up Time	0		0		0		ns
twp	Write Pulse Width	8		8		10		ns
twr	Write Recovery Time	0		0		0		ns
tow	Data Valid to End of Write	6		6		7		ns
tон	Data Hold Time	0		0		0		ns
tow ⁽¹⁾	Output Active from End of Write	3		3		3		ns
twhz ⁽¹⁾	Write Enable to Output in High-Z		6		7		7	ns

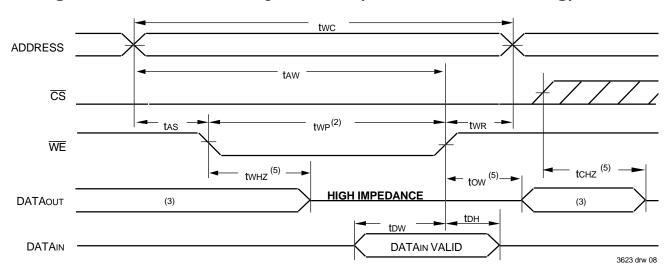

NOTES:

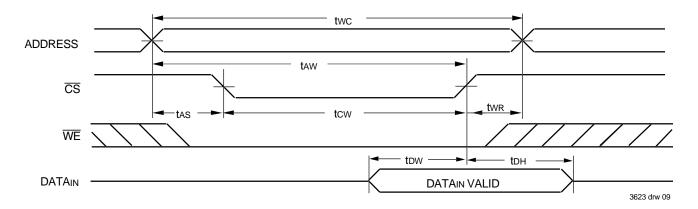
1. This parameter guaranteed with the AC load (Figure 2) by device characterization, but is not production tested.


3623 tbl 10

^{2. 0°}C to +70°C temperature range only for low power 10ns (L10) speed grade.

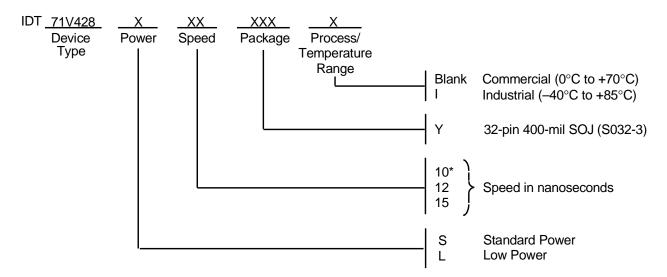
Timing Waveform of Read Cycle No. 1(1)


Timing Waveform of Read Cycle No. 2(1,2,4)


NOTES:

- 1. WE is HIGH for Read Cycle.
- 2. Device is continuously selected, $\overline{\text{CS}}$ is LOW.
- 3. Address must be valid prior to or coincident with the later of $\overline{\text{CS}}$ transition LOW; otherwise tax is the limiting parameter.
- 4. \overline{OF} is LOW
- 5. Transition is measured $\pm 200 \text{mV}$ from steady state.

Timing Waveform of Write Cycle No.1 (WE Controlled Timing)(1,2,4)


Timing Waveform of Write Cycle No.2 (CS Controlled Timing)(1,4)

NOTES:

- 1. A write occurs during the overlap of a LOW $\overline{\text{CS}}$ and a LOW $\overline{\text{WE}}$
- 2. \overline{OE} is continuously \overline{H} \overline{GH} . If during a \overline{WE} controlled write cycle \overline{OE} is LOW, twp must be greater than or equal to twHz + tbw to allow the I/O drivers to turn off and data to be placed on the bus for the required tbw. If \overline{OE} is HIGH during a \overline{WE} controlled write cycle, this requirement does not apply and the minimum write pulse is as short as the specified twp.
- 3. During this period, I/O pins are in the output state, and input signals must not be applied.
- 4. If the CS LOW transition occurs simultaneously with or after the WE LOW transition, the outputs remain in a high-impedance state.
- 5. Transition is measured ±200mV from steady state.

Ordering Information

^{*} Commercial only for low power (L10) speed grade and Industrial only for standard power (S10) speed grade.

3623 drw 10

Datasheet Document History

8/31/99		Updated to new format
	Pg. 2	Added footnote for VHC in Truth Table
	Pg. 4	Added footnote on jig and scope capacitance in Figure 2
	Pg. 7	Revised footnote on Write Cycle No. 1 diagram
	Pg. 9	Added Datasheet Document History
9/29/99	Pp. 1–9	Added Industrial temperature range offerings

CORPORATE HEADQUARTERS

2975 Stender Way Santa Clara, CA 95054 for SALES:

800-345-7015 or 408-727-6116 fax: 408-492-8674

www.idt.com

for Tech Support: sramhelp@idt.com 800-544-7726, x4033