

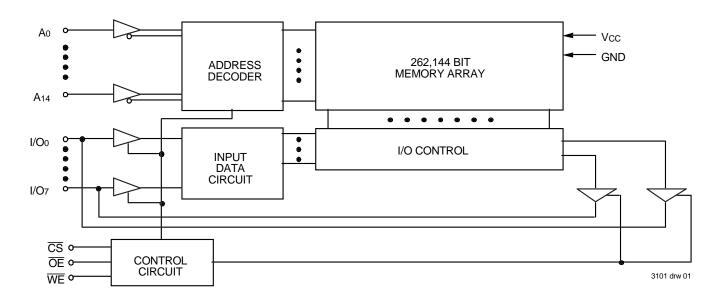
Lower Power 3.3V CMOS Fast SRAM 256K (32K x 8-Bit)

IDT71V256SA

Features

- ◆ Ideal for high-performance processor secondary cache
- ◆ Commercial (0°C to +70°C) and Industrial (-40°C to +85°C) temperature range options
- Fast access times:
 - Commercial and Industrial: 10/12/15/20ns
- Low standby current (maximum):
 - 2mA full standby
- Small packages for space-efficient layouts:
 - 28-pin 300 mil SOJ
 - 28-pin TSOP Type I
- Produced with advanced high-performance CMOS technology
- Inputs and outputs are LVTTL-compatible
- Single 3.3V(±0.3V) power supply

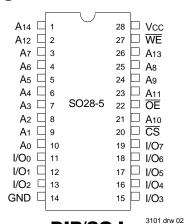
Description

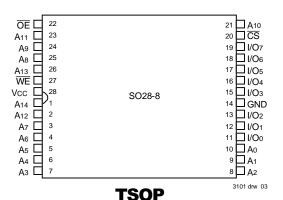

The IDT71V256SA is a 262,144-bit high-speed static RAM organized as 32K x 8. It is fabricated using IDT's high-performance, high-reliability CMOS technology.

The IDT71V256SA has outstanding low power characteristics while at the same time maintaining very high performance. Address access times of as fast as 10ns are ideal for 3.3V secondary cache in 3.3V desktop designs.

When power management logic puts the IDT71V256SA in standby mode, its very low power characteristics contribute to extended battery life. By taking \overline{CS} HIGH, the SRAM will automatically go to a low power standby mode and will remain in standby as long as \overline{CS} remains HIGH. Furthermore, under full standby mode (\overline{CS} at CMOS level, f=0), power consumption is guaranteed to always be less than 6.6mW and typically will be much smaller.

The IDT71V256SA is packaged in a 28-pin 300 mil SOJ and a 28-pin 300 mil TSOP Type I.


Functional Block Diagram


FEBRUARY 2001

©2000 Integrated Device Technology, Inc. DSC-3101/06

Pin Configurations

DIP/SOJ Top View

Top View

Pin Descriptions

Name	Description
A0 - A14	Addresses
I/Oo - I/O7	Data Input/Output
c s	Chip Select
WE	Write Enable
ŌĒ	Output Enable
GND	Ground
Vcc	Power

3101 tbl 01

Truth Table⁽¹⁾

WE	<u>CS</u>	ŌĒ	I/O	Function
Х	Н	Х	High-Z	Standby (ISB)
Х	VHC	Х	High-Z	Standby (ISB1)
Н	L	Н	High-Z	Output Disable
Н	L	L	Dout	Read
L	L	Х	Din	Write

NOTE:

3101 tbl 02

1. H = VIH, L = VIL, X = Don't Care

Absolute Maximum Ratings(1)

Symbol	Rating	Com'l.			
Vcc	Supply Voltage Relative to GND	-0.5 to +4.6	V		
VTERM ⁽²⁾	Terminal Voltage Relative to GND	-0.5 to Vcc+0.5	V		
TBIAS	Temperature Under Bias	-55 to +125	°C		
Tstg	Storage Temperature	-55 to +125	°C		
Рт	Power Dissipation	1.0	W		
Іоит	DC Output Current	50	mA		

NOTES:

3101 tbl 03

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS
 may cause permanent damage to the device. This is a stress rating only and
 functional operation of the device at these or any other conditions above those
 indicated in the operational sections of this specification is not implied. Exposure
 to absolute maximum rating conditions for extended periods may affect
 reliability.
- 2. Input, Output, and I/O terminals; 4.6V maximum.

Capacitance

 $(TA = +25^{\circ}C, f = 1.0MHz, SOJ package)$

Symbol	Parameter ⁽¹⁾	Conditions	Max.	Unit
CIN	Input Capacitance	VIN = 3dV	6	pF
Соит	Output Capacitance	Vout = 3dV	7	pF

NOTE:

3101 tbl 04

 This parameter is determined by device characterization, but is not production tested

Recommended Operating Temperature and Supply Voltage

Grade	Temperature	GND	Vcc
Commercial	0°C to +70°C	0V	$3.3V \pm 0.3V$
Industrial	-40°C to +85°C	0V	$3.3V \pm 0.3V$

3101 tbl 05

Recommended DC Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	3.0	3.3	3.6	٧
GND	Ground	0	0	0	٧
VIH	Input High Voltage - Inputs	2.0	_	5.0	٧
VIH	Input High Voltage - I/O	2.0	_	VCC +0.3	٧
VIL	Input Low Voltage	-0.3 ⁽¹⁾	_	0.8	٧

NOTE:

3101 tbl 06

DC Electrical Characteristics(1)

(Vcc = 3.3V ± 0.3V, VLc = 0.2V, VHc = Vcc - 0.2V, Commercial and Industrial Temperture Ranges)

Symbol	Parameter	71V256SA10	71V256SA12	71V256SA15	71V256SA20	Unit
Icc	Dynamic Operating Current $\overline{CS} \le VIL$, Outputs Open, Vcc = Max., f = fMAX ⁽²⁾	100	90	85	85	mA
ISB	Standby Power Supply Current (TTL Level) CS = V _H , V _{CC} = Max., Outputs Open, f = f _M ax ⁽²⁾	20	20	20	20	mA
ISB1		2	2	2	2	mA

NOTES:

3101 tbl 07

- 1. All values are maximum guaranteed values.
- 2. $f_{MAX} = 1/t_{RC}$, only address inputs cycling at f_{MAX} ; f = 0 means that no inputs are cycling.

DC Electrical Characteristics

 $(Vcc = 3.3V \pm 0.3V)$

			IDT71V256SA			
Symbol	Parameter	Test Conditions	Min.	Тур.	Мах.	Unit
Iu	Input Leakage Current	Vcc = Max., Vin = GND to Vcc	_	_	2	μA
ILO	Output Leakage Current	$Vcc = Max., \overline{CS} = ViH, VouT = GND to Vcc$	_	_	2	μA
Vol	Output Low Voltage	IoL = 8mA, Vcc = Min.	_	_	0.4	V
Vон	Output High Voltage	IOH = -4mA, VCC = Min.	2.4	_	_	V

3101 tbl 08

^{1.} VIL (min.) = -2.0V for pulse width less than 5ns, once per cycle.

AC Test Conditions

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	3ns
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
AC Test Load	See Figures 1 and 2

3101 tbl 09

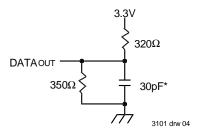


Figure 1. AC Test Load

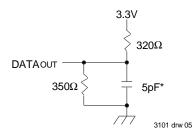
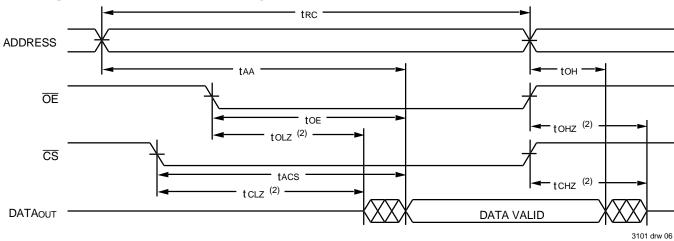


Figure 2. AC Test Load (for tclz, tolz, tchz, tohz, tow, twhz)

*Includes scope and jig capacitances

AC Electrical Characteristics

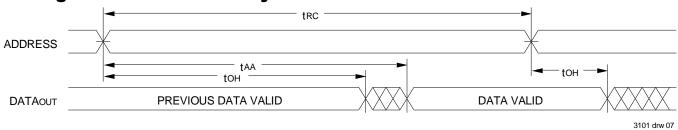
(Vcc = 3.3V ± 0.3V, Commercial and Industrial Temperature Ranges)


		71V25	71V256SA10		6SA12	71V256SA15		71V256SA20		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cy	cle									
trc	Read Cycle Time	10	_	12	_	15	_	20	_	ns
taa	Address Access Time	_	10	_	12	_	15		20	ns
tacs	Chip Select Access Time	_	10	_	12	-	15		20	ns
tcLz ⁽¹⁾	Chip Select to Output in Low-Z	5		5	_	5	_	5		ns
tcHZ ⁽¹⁾	Chip Select to Output in High-Z	0	8	0	8	0	9	0	10	ns
toe	Output Enable to Output Valid	_	6	_	6	_	7		8	ns
tolz(1)	Output Enable to Output in Low-Z	3	_	3	_	0	_	0	_	ns
tonz ⁽¹⁾	Output Disable to Output in High-Z	2	6	2	6	0	7	0	8	ns
tон	Output Hold from Address Change	3	_	3	_	3	_	3	_	ns
Write Cy	rcle									
twc	Write Cycle Time	10	_	12	_	15	_	20	_	ns
taw	Address Valid to End-of-Write	9	_	9	_	10	_	15		ns
tcw	Chip Select to End-of-Write	9		9	_	10	_	15		ns
tas	Address Set-up Time	0		0	_	0	_	0		ns
twp	Write Pulse Width	9		9	-	10	_	15	_	ns
twr	Write Recovery Time	0		0	-	0	_	0		ns
tow	Data to Write Time Overlap	6		6	_	7	_	8	_	ns
tDH	Data Hold from Write Time	0		0	_	0	_	0		ns
tow ⁽¹⁾	Output Active from End-of-Write	4		4	_	4	—	4		ns
twHz ⁽¹⁾	Write Enable to Output in High-Z	1	8	1	8	1	9	1	10	ns

NOTE:

1. This parameter guaranteed with the AC test load (Figure 2) by device characterization, but is not production tested.

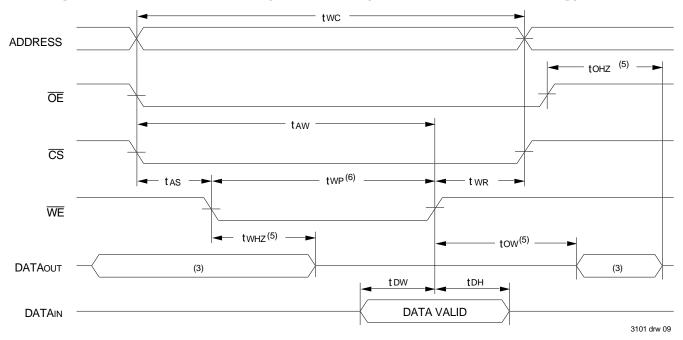
3101 tbl 10


Timing Waveform of Read Cycle No. 1⁽¹⁾


NOTES:

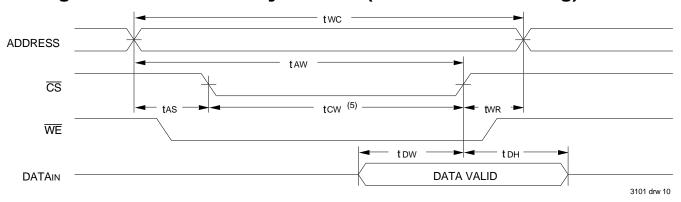
- 1. WE is HIGH for Read cycle.
- 2. Transition is measured ±200mV from steady state.

Timing Waveform of Read Cycle No. 2^(1,2,4)


Timing Waveform of Read Cycle No. 3^(1,3,4)

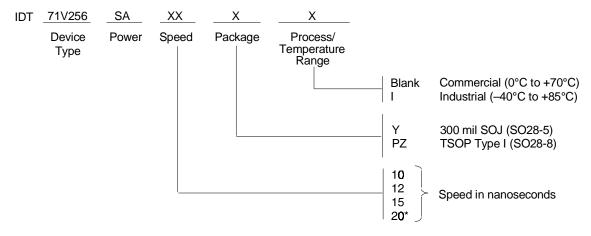
NOTES:

- 1. $\overline{\text{WE}}$ is HIGH for Read cycle.
- 2. Device is continuously selected, $\overline{\text{CS}}$ is LOW.
- 3. Address valid prior to or coincident with $\overline{\text{CS}}$ transition LOW.
- 4. \overline{OE} is LOW.
- 5. Transition is measured ±200mV from steady state.


Timing Waveform of Write Cycle No. 1 (WE Controlled Timing)(1,2,4,6)

NOTES:

- 1. A write occurs during the overlap of a LOW $\overline{\text{CS}}$ and a LOW $\overline{\text{WE}}$.
- 2. two is measured from the earlier of \overline{CS} or \overline{WE} going HIGH to the end of the write cycle.
- 3. During this period, I/O pins are in the output state so that the input signals must not be applied.
- 4. If the CS LOW transition occurs simultaneously with or after the WE LOW transition, the outputs remain in a high-impedance state.
- 5. Transition is measured ±200mV from steady state.
- 6. If \overline{OE} is LOW during a \overline{WE} controlled write cycle, the write pulse width must be the larger of twp or (twHz + tbw) to allow the I/O drivers to turn off and data to be placed on the bus for the required tbw. If \overline{OE} is HIGH during a \overline{WE} controlled write cycle, this requirement does not apply and the write pulse can be as short as the spectified twp.


Timing Waveform of Write Cycle No. 2 (CS Controlled Timing)(1,2,3,4)

NOTES

- 1. $\overline{\text{WE}}$ or $\overline{\text{CS}}$ must be HIGH during all address $\underline{\text{transitions}}$.
- 2. A write occurs during the overlap of a LOW $\overline{\text{CS}}$ and a LOW $\overline{\text{WE}}$.
- 3. two is measured from the earlier of \overline{CS} or \overline{WE} going HIGH to the end of the write cycle.
- 4. If the $\overline{\text{CS}}$ LOW transition occurs simultaneously with or after the $\overline{\text{WE}}$ LOW transition, the outputs remain in a high-impedance state.
- 5. If \overline{OE} is LOW during a \overline{WE} controlled write cycle, the write pulse width must be the larger of twp or (twHz + toW) to allow the I/O drivers to turn off and data to be placed on the bus for the required tow. If \overline{OE} is HIGH during a \overline{WE} controlled write cycle, this requirement does not apply and the write pulse can be as short as the spectified twp.

Ordering Information — Commercial and Industrial

^{*} Available in SOJ package only.

3101 drw 11

Datasheet Document History

1/7/00		Updated to new format
	Pg. 1, 3, 4, 7	Expanded Industrial Temperature offerings
	Pg. 1, 2, 7	Removed 28-pin 300 mil plastic DIP package offering
	Pg. 6	Removed Note No. 1 from Write Cycle No. 1 diagram; renumbered notes and footnotes
	Pg. 7	Revised Ordering Information
	Pg. 8	Added Datasheet Document History
08/09/00		Not recommended for new designs
02/01/01		Removed "Not recommended for new designs"

CORPORATE HEADQUARTERS

2975 Stender Way Santa Clara, CA 95054 for SALES:

800-345-7015 or 408-727-6116 fax:408-492-8674 www.idt.com

for Tech Support: sramhelp@idt.com 800 544-7726, x4033