

QUICKSWITCH® PRODUCTS 3.3V HIGH SPEED BUS SWITCH

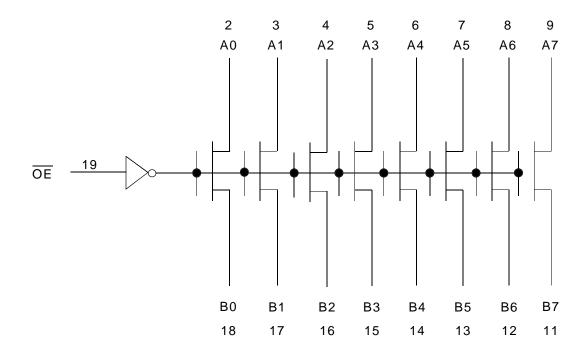
IDTQS3V245

FEATURES:

- 5Ω bi-directional switches connect inputs to outputs
- Pin Compatibility with QS3245
- 250ps Propagation Delay
- Undershoot Clamp Diodes on all Switch and Control Inputs
- LVTTL-Compatible Control Inputs
- Available in SOIC and QSOP Packages

APPLICATIONS:

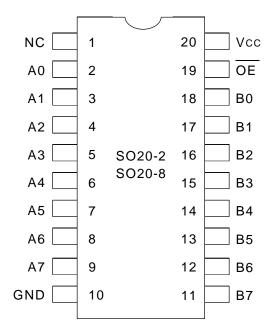
- 3.3V to 2.5V Voltage Translation
- 2.5V to 1.8V Voltage Translation
- PCI Bus Isolation Hot Swap


DESCRIPTION:

The QS3V245 is an 8-bit high speed bus switch controlled by LVTTL-compatible active low enable signal. When closed, the switches exhibit near zero propagation delay without generating additional ground bounce or switching noise.

The QS3V245 is specially designed for direct interface between 3.3V and 2.5V devices without any external components. When operating from a 3.3V supply, the logic high level at the switch output is clamped to 2.5V when the switch input signal exceeds 2.5V. This device can be used for switching 2.5V buses without signal attenuation. The ON resistance at 3.3V Vcc is less than 5Ω typical, providing near zero propagation delay through the switch. Absence of DC path from switch I/O pins to Vcc or ground makes QS3V245 an ideal device for hot swapping applications.

The QS3V245 is characterized for operation from -40 $^{\circ}$ C to +85 $^{\circ}$ C.


FUNCTIONAL BLOCK DIAGRAM

INDUSTRIAL TEMPERATURE RANGE

NOVEMBER 2000

PIN CONFIGURATION

SOIC/ QSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Description	Max.	Unit
VTERM ⁽²⁾	Supply Voltage to Ground	- 0.5 to 4.6	V
Vs	DC Switch Voltage	- 0.5 to 4.6	٧
VIN	DC Input Voltage	- 0.5 to 4.6	V
	AC Input Voltage (For a pulse width ≤ 20ns)	- 3	V
	DC Output Current Max. Sink Current/Pin	120	mA
	Maximum Power Dissipation	0.5	W
Tstg	Storage Temperature	-65 to 150	°С

NOTES:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. Vcc terminals.

CAPACITANCE (TA = +25°C, f = 1MHz, Vin = 0V, Vout = 0V)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Control Inputs		4	6	pF
CI/O	Quickswitch Channels	Switch OFF	5	7	pF

NOTE:

1. As applicable to the device type.

PIN DESCRIPTION

Pin Names	Description		
ŌĒ	Output Enable		
An	Data I/Os		
Bn	Data I/Os		

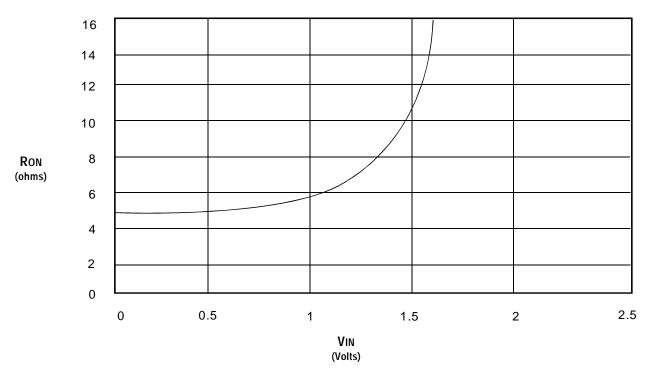
FUNCTION TABLE (1)

ŌĒ	Outputs	
Н	Disconnected	
L	An = Bn	

NOTE:

H = HIGH Voltage Level
 L = LOW Voltage Level

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE


Following Conditions Apply Unless Otherwise Specified: TA = -40° C to $+85^{\circ}$ C, Vcc = 3.3V ± 0.3 V

Symbol	Parameter	Test Conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
VIH	Input HIGH Voltage Level	Guaranteed Logic HIGH for Control Inputs	2	_	_	٧
VIL	Input LOW Voltage Level	Guaranteed Logic LOW for Control Inputs	_	_	0.8	٧
lin	Input Leakage Current (Control Inputs)	0V ≤ VIN ≤ Vcc	_	_	1	μA
loz	Off-State Current (Hi-Z)	0V ≤ Vouт ≤ Vcc, Switches OFF	_	0.001	1	μA
Ron	Switch ON Resistance	Vcc = Min., Vin = 0V, Ion = 8mA	_	5	7	Ω
		Vcc = Min., Vin = 1.7V, Ion = 8mA	_	15	20	Ω
		Vcc = 2.3V, Vin = 0V, Ion = 8mA	_	7	_	Ω
		Vcc = 2.3V, Vin = 1.3V, Ion = 8mA	_	25	_	Ω
VP	Pass Voltage ⁽²⁾	$VIN = VCC = 3.3V$, $IOUT = -5\mu A$	2.5	2.7	2.9	٧
		$V_{IN} = V_{CC} = 2.5V$, $I_{OUT} = -5\mu A$	_	1.8	_	٧

NOTES

- 1. Typical values are at Vcc = 3.3V, +25°C ambient.
- 2. Pass voltage is guaranteed, but not production tested.

TYPICAL ON RESISTANCE vs Vin AT Vcc = 3.3V

OUTPUT DRIVE CHARACTERISTICS

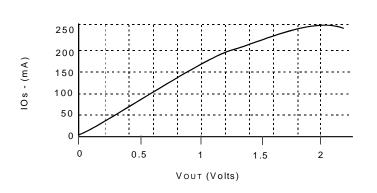
 $TA = -40^{\circ}C \text{ to } +85^{\circ}C, VCC = 3.3V \pm 0.3V$

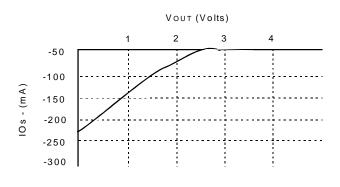
Symbol	Parameter	Test Conditions ⁽¹⁾	Min.	Max.	Unit
Icco	Quiescent Power Supply Current	Vcc = Max., Vin = GND or Vcc, f = 0	-	3	μA
Δlcc	Power Supply Current ⁽²⁾ per Input HIGH	Vcc = Max., Vin = 3V or Vcc, f = 0 per Control Input	_	50	μA
ICCD	Dynamic Power Supply Current per MHz (3)	Vcc = Max., A and B Pins Open, Control Input Toggling @ 50%	_	0.15	mA/MHz
		Duty Cycle			005

NOTES:

- 1. For conditions shown in Min. and Max., use the appropriate values specified under DC Specifications.
- 2. Per TTL driven input (VIN = 3V, Control Inputs only). A and B pins do not contribute to Icc.
- 3. This current applies to the control inputs only and represents the current required to switch internal capacitance at the specified frequency. The A and B inputs generate no significant AC or DC currents as they transition. This parameter is guaranteed, but not production tested.

SWITCHING CHARACTERISTICS(1)

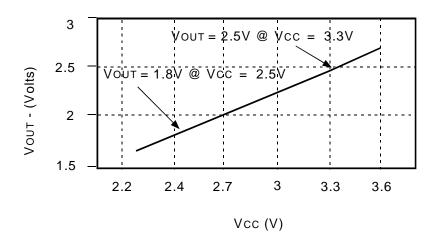

 $TA = -40^{\circ}C \text{ to } +85^{\circ}C, VCC = 3.3V \pm 0.3V$

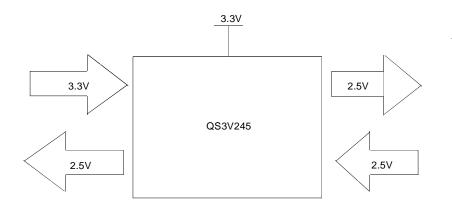

Symbol	Parameter	Min.	Тур.	Max.	Unit
tplh	Data Propagation Delay ^(2, 3)	_	_	0.25	ns
tphl	An to/from Bn				
tpzl	Switch Turn-On Delay	0.5	_	6.5	ns
tрzн	OE to An/Bn				
tplz	Switch Turn-Off Delay ⁽²⁾	0.5	_	4	ns
tphz	OE to An/Bn				

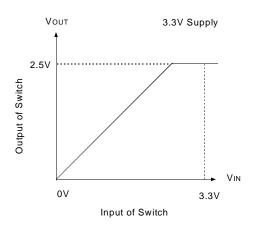
NOTES:

- 1. See test circuits and waveforms. Minimums guaranteed, but not production tested.
- 2. This parameter is guaranteed, but not production tested.
- 3. The bus switch contributes no propagation delay other than the RC delay of the ON resistance, of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25ns for CL = 30pF. Since this time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

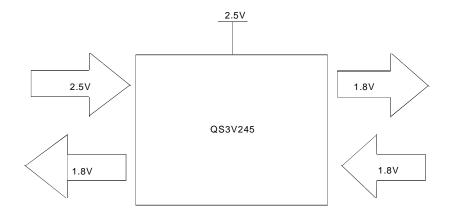
OUTPUT VI CHARACTERISTICS

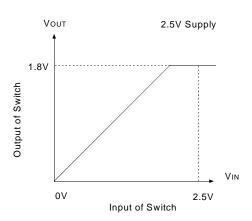


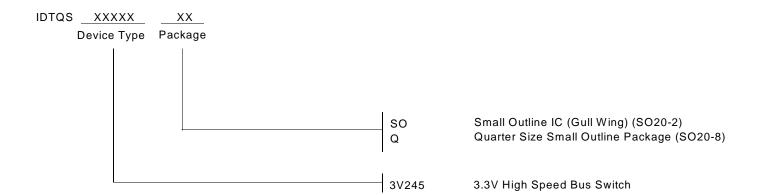

Outputs Low Characteristic


Outputs High Characteristic

PASS VOLTAGE vs Vcc




3.3V TO 2.5V VOLTAGE TRANSLATION



2.5V TO 1.8V VOLTAGE TRANSLATION

ORDERING INFORMATION

CORPORATE HEADQUARTERS

2975 Stender Way Santa Clara, CA 95054 for SALES:

800-345-7015 or 408-727-6116

fax: 408-492-8674 www.idt.com*

*To search for sales office near you, please click the sales button found on our home page or dial the 800# above and press 2.

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

QUICKSWITCH is a registered trademark of Integrated Device Technology, Inc.