

QUICKSWITCH® PRODUCTS 3.3V HIGH SPEED DOUBLE-WIDTH BUS SWITCH

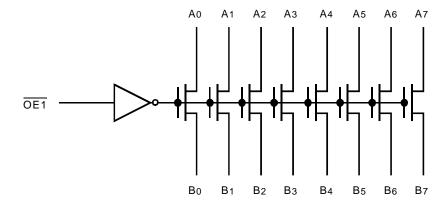
IDTQS32XV245

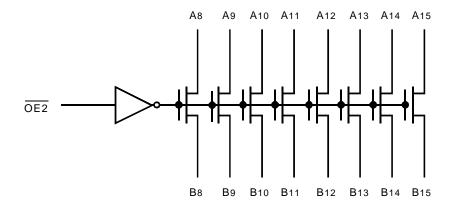
FEATURES:

- 5 Ω bi-directional switches connect inputs to outputs
- Pin Compatibility with QS3245
- 250ps Propagation Delay
- Undershoot Clamp Diodes on all Switch and Control Inputs
- LVTTL-Compatible Control Inputs
- Available in 40-pin QVSOP Package

APPLICATIONS:

- 3.3V to 2.5V Voltage translation
- 2.5V to 1.8V Voltage translation
- PCI Bus isolation hot swap

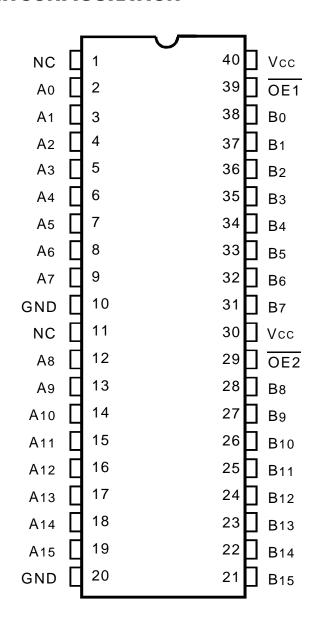

DESCRIPTION:


The QS32XV245 is a 16-bit high speed bus switch controlled by LVTTL-compatible active low enable signal. When closed, the switches exhibit near zero propagation delay without generating additional ground bounce or switching noise.

The QS32XV245 is specially designed for direct interface between 3.3V and 2.5V devices without any external components. When operating from a 3.3V supply, the logic high level at the switch output is clamped to 2.5V when the switch input signal exceeds 2.5V. This device can be used for switching 2.5V buses without signal attenuation. The ON resistance at 3.3V Vcc is less than 5Ω typical, providing near zero propagation delay through the switch. Absence of DC path from switch I/O pins to Vcc or ground makes QS32XV245 an ideal device for hot swapping applications.

The QS32XV245 is characterized for operation from -40°C to +85°C.

FUNCTIONAL BLOCK DIAGRAM



INDUSTRIAL TEMPERATURE RANGE

NOVEMBER 1999

PIN CONFIGURATION

QVSOP TOP VIEW

ABSOLUTE MAXIMUM RATING(1)

Symbol	Description	Max.	Unit
VTERM(2)	Supply Voltage to Ground	- 0.5 to 4.6	V
VTERM(3)	DC Switch Voltage Vs	- 0.5 to 4.6	V
V _{TERM} (3)	DC Input Voltage V _{IN}	- 0.5 to 4.6	٧
Vac	AC Input Voltage (pulse width ≤20ns)	- 3	٧
Vout	DC Output Current	120	mA
Рмах	Maximum Power Dissipation	0.6	W
Tstg	Storage Temperature	-65 to 150	°C

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. Vcc terminals.
- 3. All terminals except Vcc.

CAPACITANCE (TA = +25°C, f = 1MHz, Vin = 0V, Vout = 0V)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Control Inputs		4	6	pF
CI/O	Quickswitch Channels	Switch OFF	5	7	pF

NOTE:

1. This parameter is guaranteed but not production tested.

PIN DESCRIPTION

Pin Names	Description		
ŌĒ	Output Enable		
An	Data I/Os		
Bn	Data I/Os		

FUNCTION TABLE (1)

OE ₁	OE ₂	A 0 - A 7	A 8 - A 15	Function
Н	Н	Hi-Z	Hi-Z	Disconnect
L	Н	B0 - B7	Hi-Z	Connect
Н	L	Hi-Z	B8 - B15	Connect
L	L	Bo - B7	B8 - B15	Connect

NOTE:

- 1. H = HIGH Voltage Level
 - L = LOW Voltage Level
 - Z = High-Impedence

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Industrial: TA = - 40°C To +85°C

Symbol	Parameter	Test Conditions	Min.	Тур.(1)	Max.	Unit
VIH	Input HIGH Voltage Level	Guaranteed Logic HIGH for Control Inputs	2	_	-	٧
VIL	Input LOW Voltage Level	Guaranteed Logic LOW for Control Inputs	_	_	0.8	٧
lin	Input Leakage Current (Control Inputs)	0V ≤ VIN ≤ VCC	_	_	±1	μA
loz	Off-State Current (Hi-Z)	0V ≤ Vouт ≤ Vcc, Switches OFF	_	±0.001	±1	μA
Ron	Switch ON Resistance	Vcc = Min., Vin = 0V, Ion = 8mA	_	5	7	Ω
		Vcc = Min., Vin = 1.7V, Ion = 8mA	_	15	20	Ω
		Vcc = 2.3V, Vin = 0V, Ion = 8mA	_	7	_	Ω
		Vcc = 2.3V, Vin = 1.3V, Ion = 8mA	_	25	_	Ω
VP	Pass Voltage	$VIN = VCC = 3.3V$, $IOUT = -5\mu A$	2.5	2.7	2.9	V
		$VIN = VCC = 2.5V$, $IOUT = -5\mu A$		1.8		V

NOTES:

1. Typical values are at Vcc = 3.3V, +25°C ambient.

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾	Min.	Max.	Unit
Icco	Quiescent Power Supply Current	Vcc = Max., Vin = GND or Vcc, f = 0	_	6	μA
Δlcc	Power Supply Current ⁽²⁾ per Input HIGH	Vcc = Max., VIN = 3V or Vcc, f = 0 per Control Input	_	50	μA
ICCD	Dynamic Power Supply Current per MHz (3)	Vcc = Max., A and B Pins Open, Control Input Toggling @ 50%	_	0.15	mA/MHz
		Duty Cycle			

NOTES:

- 1. For conditions shown as Min. or Max., use the appropriate values specified under DC Electrical Characteristics.
- 2. Per TLL driven input (VIN = 3.4V). A and B pins do not contribute to Δ Icc.
- 3. This current applies to the control inputs only and represents the current required to switch internal capacitance at the specified frequency. The A and B inputs generate no significant AC or DC currents as they transition. This parameter is guaranteed but not production tested.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

 $TA = -40^{\circ}C \text{ to } +85^{\circ}C, Vcc = 3.3V \pm 0.3V$

Symbol	Parameter	Min. ⁽¹⁾	Тур.	Max.	Unit
tplh	Data Propagation Delay (1,2)			0.25	nc
t PHL	An to/from Bn		_	0.23	ns
tpzl	Switch Turn-On Delay	0.5		, E	no
tpzh	OEn to An/Bn	0.5	_	6.5	ns
tplz	Switch Turn-Off Delay (1)	0.5		4	no
tphz	OEn to An/Bn	0.5	_	4	ns

NOTES:

- 1. This parameter is guaranteed but not production tested.
- 2. The time constant for the switch alone is of the order of 0.25ns at CL = 30pF. The bus switch contributes no propagation delay other than the RC delay of the ON resistance of the switch and the load capacitance. Since this time constant is much smaller than the rise and fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

TYPICAL ON RESISTANCE vs Vin AT Vcc = 3.3V

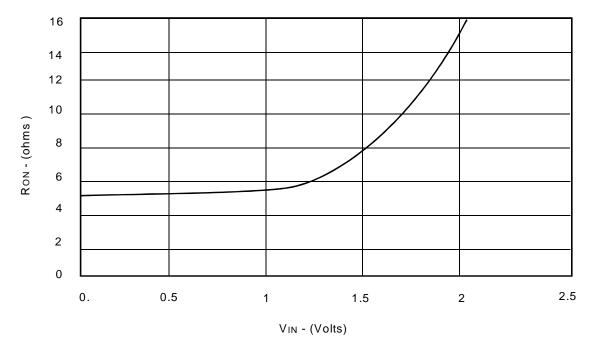
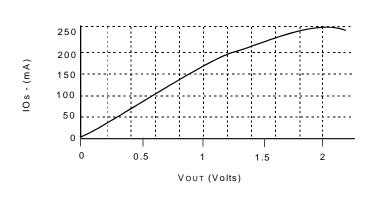
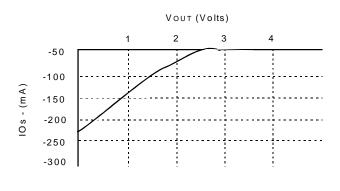




Figure. 1

OUTPUT VI CHARACTERISTICS

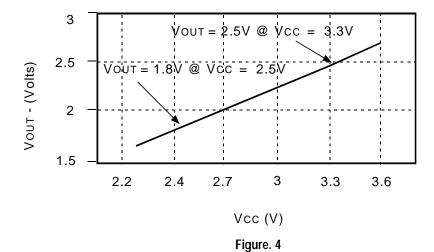

Outputs Low Characteristic

Figure. 2

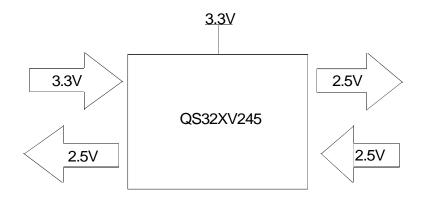

Outputs High Characteristic

Figure. 3

PASS VOLTAGE vs Vcc

3.3V TO 2.5V VOLTAGE TRANSLATION

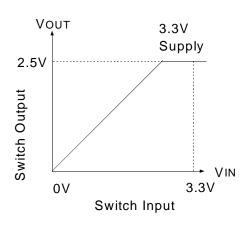
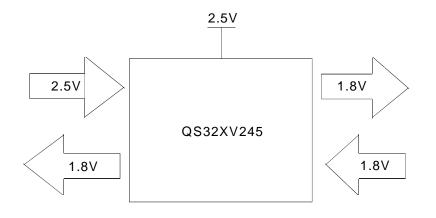



Figure. 5

Figure. 6

2.5V TO 1.8V VOLTAGE TRANSLATION

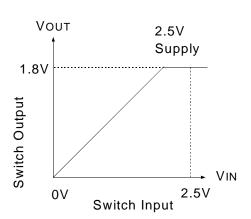
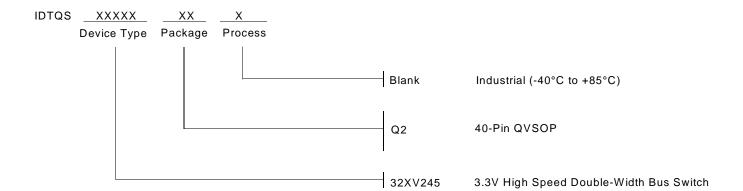



Figure. 7

Figure. 8

ORDERING INFORMATION

CORPORATE HEADQUARTERS 2975 Stender Way

Santa Clara, CA 95054

for SALES:

800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com*

*To search for sales office near you, please click the sales button found on our home page or dial the 800# above and press 2. The IDT logo, QuickSwitch, and SynchroSwitch are registered trademarks of Integrated Device Technology, Inc.