

LOW-VOLTAGE 10-BIT BUS SWITCH WITH ACTIVE HIGH AND LOW ENABLES

IDT74CBTLV3862

FEATURES:

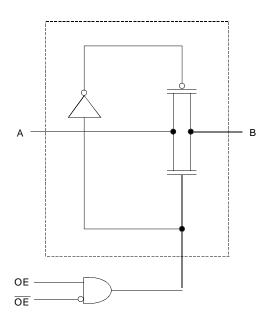
- 5Ω A/B bidirectional switch
- Isolation Under Power-Off Conditions
- Over-voltage tolerant
- Latch-up performance exceeds 100mA
- Vcc = 2.3V 3.6V, Normal Range
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model (C = 200pF, R = 0)
- Available in SSOP, QSOP, and TSSOP packages

APPLICATIONS:

3.3V High Speed Bus Switching and Bus Isolation

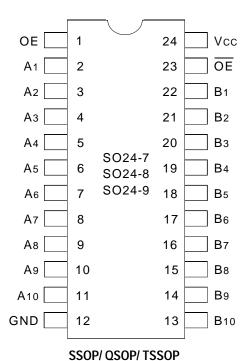
DESCRIPTION:

The CBTLV3862 provides ten bits of high-speed bus switching with low on-state resistance of the switch allowing connections to be made with minimal propagation delay.


The device is organized as one 10-bit bus switch. The switches are controlled by independent active-low enable (OE) and active-high enable (OE) controls.

To ensure the high-impedance state during power up or power down, $\overline{\text{OE}}$ should be tied to Vcc through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver, and OE should be tied to GND.

FUNCTIONAL BLOCK DIAGRAM


22 SW 13 SW OE

SIMPLIFIED SCHEMATIC, EACH **SWITCH**

 $The \, IDT logo \, is \, a \, registered \, trademark \, of \, Integrated \, Device \, Technology, \, Inc. \, detection \, and \, device \, Technology \, and \, device \, Technology \, are the following transfer and \, device \, Technology \, are the following transfer and \, device \, Technology \, are the following transfer and \, device \, Technology \, are the following transfer and \, device \, Technology \, are the following transfer and \, device \, Technology \, are the following transfer and \, device \, Technology \, are the following transfer and \, device \, Technology \, are the following transfer and \, device \, Technology \, are the following transfer and \, device \, Technology \, are the following transfer and \, device \, Technology \, are the following transfer and \, device \, Technology \, are the following transfer and \, device \, Technology \, are the following transfer and \, device \, Technology \, are the following transfer and \, device \, Technology \, are the following transfer and \, device \, Technology \, are the following transfer and \, device \, device \, are the following transfer and \, device \, devic$

PIN CONFIGURATION

TOP VIEW

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Description	Max.	Unit
Vcc	Supply Voltage Range	-0.5 to 4.6	٧
Vı	Input Voltage Range	-0.5 to 4.6	V
	Continuous Channel Current	128	mA
lıĸ	Input Clamp Current, , VI/O < 0	-50	mA
Tstg	Storage Temperature	-65 to +150	°C

NOTE:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

FUNCTION TABLE (1)

Inputs		
OE	ŌĒ	Function
L	L	Disconnect
L	Н	Disconnect
Н	L	A Port = B Port
Н	Н	Disconnect

NOTE:

H = HIGH Voltage Level
L = LOW Voltage Level

OPERATING CHARACTERISTICS, TA = 25°C

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
V cc	Supply Voltage		2.3	3.6	V
VIH	High-Level Control Input Voltage	Vcc = 2.3V to 2.7V	1.7	_	V
		Vcc = 2.7V to 3.6V	2	_	
VIL	Low-Level Control Input Voltage	Vcc = 2.3V to 2.7V	_	0.7	V
		Vcc = 2.7V to 3.6V	_	0.8	
Та	Operating Free-Air Temperature	•	-40	+85	°C

NOTE:

1. All unused control inputs of the device must be held at Vcc or GND to ensure proper device operation.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: TA = - 40°C to +85°C

Symbol	Parameter	-	Test Conditions		Typ. ⁽¹⁾	Max.	Unit
Vik	Control Inputs, Data I/O	Vcc = 3V, li = −18mA	1	_	_	- 1.2	V
lı	Control Inputs, Data I/O	Vcc = 3.6V, VI = Vcc	or GND	_	_	±1	μА
loz	Data I/O	Vcc = 3.6V, Vo = 0 or	3.6V, switch disabled	_	_	5	μА
loff		Vcc = 0, Vı or Vo = 0	to 3.6V	_	_	50	μА
Icc		Vcc = 3.6V, lo = 0, Vi	= Vcc or GND	_	_	10	μА
ΔICC (2)	Control Inputs	Vcc = 3.6V, One inpu	Vcc = 3.6V, One input at 3V, Other inputs at Vcc or GND		_	300	μА
Сі	Control Inputs	Vı = 3V or 0	Vi = 3V or 0		4	_	pF
CIO(OFF)		Vo = 3V or 0 (Switch Off)		_	6	_	pF
	Vcc = 2.3V	V _I = 0	Io = 64mA	_	5	8	
	Typ at Vcc = 2.5V		Io = 24mA	_	5	8	
Ron (3)		VI = 1.7V	Io = 15mA	_	27	40	Ω
		V _I = 0	Io = 64mA	_	5	7	
	Vcc = 3V		Io = 24mA	_	5	7	
		VI = 2.4V	Io = 15mA	_	10	15	1

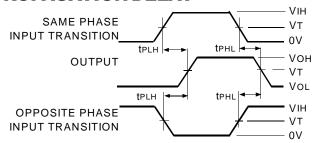
NOTES:

- 1. Typical values are at Vcc = 3.3V, +25°C ambient.
- 2. The increase in supply current is attributable to each input that is at the specified voltage level rather than Vcc or GND.
- 3. This is measured by the voltage drop between the A and B terminals at the indicated current through the switch.

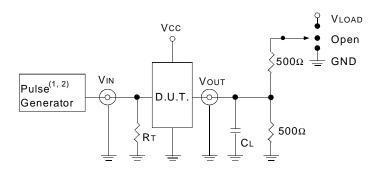
SWITCHING CHARACTERISTICS

		Vcc = 2.5V ± 0.2V		3V ± 0.3V		
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
t _{PD} (1)	Propagation Delay	_	0.15	_	0.25	ns
	A to B or B to A					
ten	Output Enable Time	1	4.5	1	4.2	ns
	OE or OE to A or B					
tois	Output Disable Time	1	5	1	5	ns
	OE or OE to A or B					

NOTE:


1. The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance when driven by an ideal voltage source (zero output impedance).

TEST CIRCUITS AND WAVEFORMS


TEST CONDITIONS

Symbol	$V_{CC^{(1)}}=3.3V\pm0.3V$	$V_{CC^{(2)}}= 2.5V \pm 0.2V$	Unit
VLOAD	6	2 x Vcc	V
Vih	3	Vcc	V
VT	1.5	Vcc/2	V
VLZ	300	150	mV
VHZ	300	150	mV
CL	50	30	pF

PROPAGATION DELAY

TEST CIRCUITS FOR ALL OUTPUTS

DEFINITIONS:

- CL = Load capacitance: includes jig and load capacitance.
- $\mathsf{RT} = \mathsf{Termination}$ resistance: should be equal to $\mathsf{Z}\mathsf{O}\mathsf{U}\mathsf{T}$ of the pulse generator.

NOTES:

- 1. Pulse Generator for all pulses: Rate \leq 10MHz; tF \leq 2.5ns, tR \leq 2.5ns
- 2. Pulse Generator for all pulses: Rate ≤ 10MHz; tF ≤ 2ns, tR ≤ 2ns

SWITCH POSITION

Test	Switch
tplz/tpzl	Vload
t _{РНZ} /t _{РZН}	GND
tpD	Open

ENABLE AND DISABLE TIMES

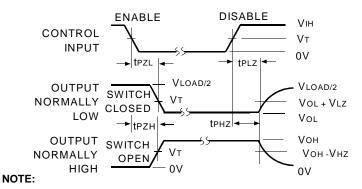
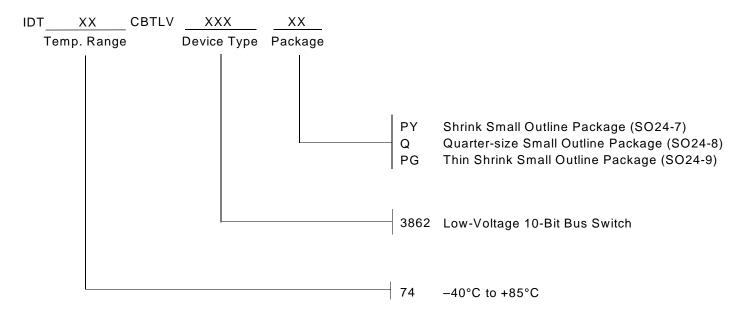



 Diagram shown for Input Control Enable-LOW and Input Control Disable-HIGH.

ORDERING INFORMATION

for SALES: 800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com for Tech Support: logichelp@idt.com (408) 654-6459