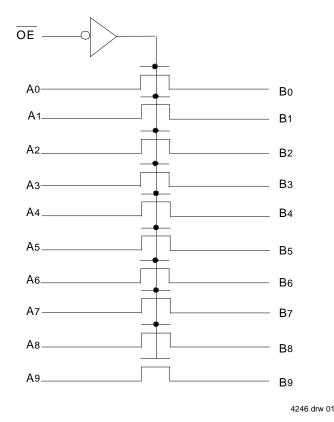


10-BIT, TWO PORT BUS SWITCH

IDT74FST3861 PRODUCT PREVIEW

FEATURES:

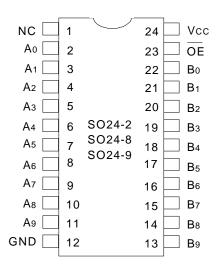

- Bus switches provide zero delay paths
- Extended commercial range of –40°C to +85°C
- Low switch on-resistance: FST3xxx –5Ω FST32xxx –28Ω
- TTL-compatible input and output levels
- ESD >2000v per MIL-STD-883, Method 3015;
 > 200V using machine model (C = 200pF, R = 0)
- · Available in SOIC, QSOP and TSSOP

DESCRIPTION:

The FST3861 belongs to IDT's family of Bus switches. Bus switch devices perform the function of connecting or isolating two ports without providing any inherent current sink or source capability. They generate little or no noise of their own while providing a low resistance path for an external driver. These devices connect input and output ports through an n-channel FET. When the gate-to source junction of this FET is adequately forward-biased, the device conducts and the resistance between input and output ports is small. Without adequate bias on the gate-to-source junction of the FET, the FET is turned off, therefore with no VCC applied, the device has not insertion capability.

The low on-resistance and simplicity of the connection between input and output ports reduces the delay in this path to close to zero.

FUNCTIONAL BLOCK DIAGRAM



PIN DESCRIPTION

Pin Names	Description	
ŌĒ	Output Enable Input (Active LOW)	
Ax	A Port Bits	
Bx	B Port Bits	

4246 tbl 01

PIN CONFIGURATION

4246 drw 02

SOIC/QSOP/TSSOP TOP VIEW

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

COMMERCIAL TEMPERATURE RANGE

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max.	Unit
VTERM(2)	Terminal Voltage with Respect to GND	-0.5 to +7.0	V
Tstg	Storage Temperature	-65 to +150	°C
Іоит	Maximum Continuous Channel Current	128	mA

NOTES:

- 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. Vcc, Control and Switch terminals

FUNCTION TABLE

Inputs	
ŌĒ	Outputs
L	Connect A to B
Н	Disconnect A from B

CAPACITANCE⁽¹⁾

4246 tbl 03

Symbol	Parameter	Conditions ⁽²⁾	Тур.	Unit
CIN	Control Input Capacitance		8	pF
CI/O	Switch Input/Output Capacitance	Switch Off	13	pF

4246 tbl 04

- 1. Capacitance is characterized but not tested.
- 2. Ta = 25°C, f = 1MHz, VIN = 0V, VOUT = 0V

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Condition Apply Unless Otherwise Specified: Commercial: TA = -40°C to +85°C, Vcc = 5.0V ± 10 %

Typ.(1) **Symbol Parameter Test Conditions** Min. Max. Unit VIHControl Input HIGH Voltage Guaranteed Logic HIGH Level 2.0 V V_{IL} Control Input LOW Voltage Guaranteed Logic LOW Level ٧ 8.0 Iн Control Input HIGH Current Vcc = Max.VI = VCCuА ±1 $V_I = GND$ Control Input LOW Current lıL ±1 **I**OZH **Current During** Vcc = Max., Vo = 0 to 5V±1 μΑ **Bus Switch DISCONNECT I**OZL ±1 Vıĸ Clamp Diode Voltage Vcc = Min., IiN = -18mA-0.7-1.2V $\overline{\text{VCC}} = 0\text{V}$, $\overline{\text{VIN or VO}} < 5.5\text{V}$ **I**OFF Switch Power Off Leakage ±1 μΑ

Vcc = Max., Vin = GND or Vcc

μΑ 4246 tbl 05

3

0.1

BUS SWITCH IMPEDANCE OVER OPERATING RANGE

Following Condition Apply Unless Otherwise Specified:

Quiescent Power Supply Current

Commercial: TA = -40°C to +85°C, VCC = 5.0V ± 10 %

Symbol	Parameter	Test Conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
Ron	Switch On Resistance ⁽²⁾	Vcc = Min., VIN = 0.0V	_	5	7	Ω
		ION = 48mA				
		Vcc = Min., VIN = 2.4V	_	10	15	-
		ION = 15mA				
los	Short Circuit Current, A to B ⁽³⁾	A(B) = 0V, B(A) = Vcc	100	_	_	mA

NOTES:

Icc

4246 tbl 06

- 1. Typical values are at Vcc = 5.0V, +25°C ambient.
- 2. The voltage drop between the indicated ports divided by the current through the switch.
- 3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Typ. ⁽²⁾	Max.	Unit
Δlcc	Quiescent Power Supply Current	Vcc = Max.		_	0.5	1.5	mA
	TTL Inputs HIGH	$VIN = 3.4V^{(3)}$					
ICCD	Dynamic Power Supply	Vcc = Max.	VIN = VCC	_	0.3	0.4	mA/
	Current ^(4,5)	Outputs Open	VIN = GND				MHz/
		1 Enable Pin Toggling					Enable
		50% Duty Cycle					
Ic	Total Power Supply Current ⁽⁶⁾	Vcc = Max.	VIN = VCC	_	3.0	4.0	mA
		Outputs Open	VIN = GND				
		1 Enable Pin Toggling					
		fi = 10MHz	VIN = 3.4	_	3.3	4.8	
		50% Duty Cycle	VIN = GND				

NOTES:

4246 tbl 07

- 1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type. TA = -40°C to +85°C
- 2. Typical values are at Vcc = 5.0V, +25°C ambient.
- 3. Per TTL driven input (VIN = 3.4V). All other inputs at Vcc or GND. Switch inputs do not contribute to ΔIcc.
- 4. This parameter represents the current required to switch the internal capacitance of the control inputs at the specified frequency. Switch inputs generate no significant power supply currents as they transition. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.
- 5. CPD = ICCD/VCC

CPD = Power Dissipation Capacitance

6. IC = IQUIESCENT + INPUTS + IDYNAMIC

 $IC = ICC + \Delta ICC DHNT + ICCD (fiN)$

Icc = Quiescent Current

 Δ ICC = Power Supply Current for a TTL High Input (VIN = 3.4V)

DH = Duty Cycle for TTL Inputs High

NT = Number of TTL Inputs at DH

Iccd = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)

fi = Control Input Frequency

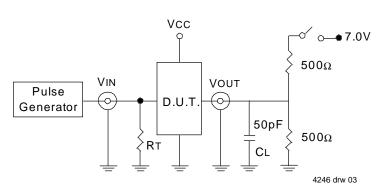
N = Number of Control Inputs Toggling at fi

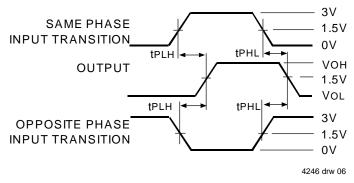
SWITCHING CHARACTERISTICS OVER OPERATING RANGE

Following Condition Apply Unless Otherwise Specified:

Commercial: TA = -40°C to +85°C, $VCC = 5.0V \pm 10$ %

Symbol	Description ⁽¹⁾	Min.	Тур.	Max.	Unit
tPLH	Data Propagation Delay	_	_	0.25	ns
tPHL	A to B, B to A ⁽²⁾				
tPZH	Switch CONNECT Delay	1.5	_	6.5	ns
tPZL	OE to A or B				
tPHZ	Switch DISCONNECT Delay	1.5	_	5.5	ns
tPLZ	OE to A or B				
Qci	Charge Injection During Switch	_	1.5	_	рС
	DISCONNECT OE to A or B(3)				


NOTES:

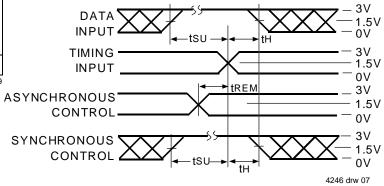

4246 tbl 08

- 1. See test circuits and waveforms.
- 2. The bus switch contributes no Propagation Delay other than the RC Delay of the load interacting with the RC of the switch.
- 3. |Qcl| Is the charge injection for a single switch DISCONNECT and applies to either single switches or multiplexers. |Qbcl| Is the charge injection for a multiplexer as the multiplexed port switches from one path to another. Charge injection is reduced because the injection from the DISCONNECT of the first path is compensated by the CONNECT of the second path.

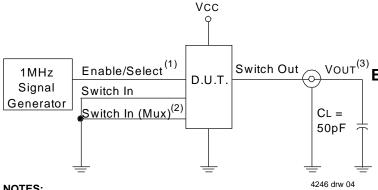
TEST CIRCUITS AND WAVEFORMS TEST CIRCUITS FOR ALL OUTPUTS

PROPAGATION DELAY

SWITCH POSITION

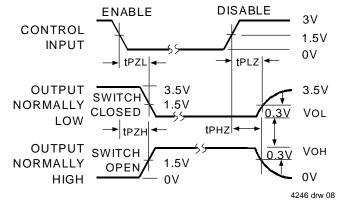

Test	Switch
Open Drain	
Disable Low	Closed
Enable Low	
All Other Tests	Open
	424C lmlr 00

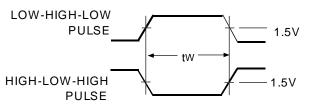
DEFINITIONS:


CL = Load capacitance: includes jig and probe capacitance.

Termination resistance: should be equal to Zou⊤ of the Pulse Generator

SET-UP, HOLD AND RELEASE TIMES

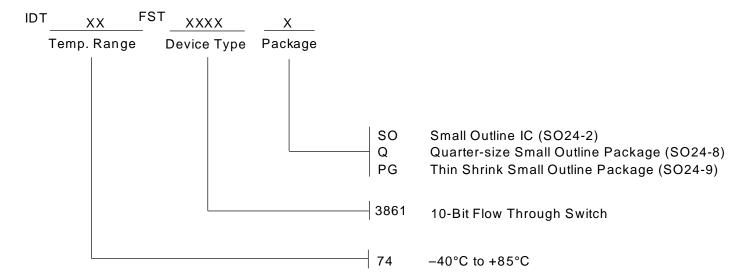

CHARGE INJECTION


NOTES:

- 1. Select is used with multiplexers for measuring |Qpc| during multiplexer select. During all other tests Enable is used.
- 2. Used with multiplexers to measure |QDCI| only
- 3. Charge Injection = $\Delta VouT$ CL, with Enable toggling for |QcI| or Select toggling for |QDCI|. Δ VOUT is the change in VOUT and is measured with a $10M\Omega$ probe.

ENABLE AND DISABLE TIMES

PULSE WIDTH



4246 drw 05

NOTES:

- 1. Diagram shown for input Control Enable-LOW and input Control Disable HIGH
- 2. Pulse Generator for All Pulses: Rate ≤ 1.0MHz; tF ≤ 2.5ns; tR ≤ 2.5ns

ORDERING INFORMATION

4246 drw 09