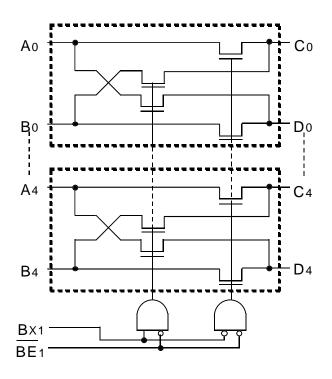
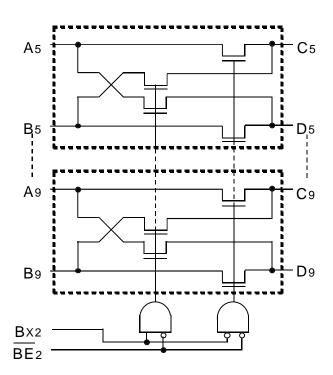
20-BIT BUS EXCHANGE SWITCH

IDT74FST1632383

FEATURES:

- Bus switches provide zero delay paths
- Extended commercial range of -40°C to +85°C
- Low switch on-resistance: 28Ω
- TTL-compatible input and output levels
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model (C = 200pF, R = 0)
- Available in SSOP, TSSOP, and TVSOP Packages

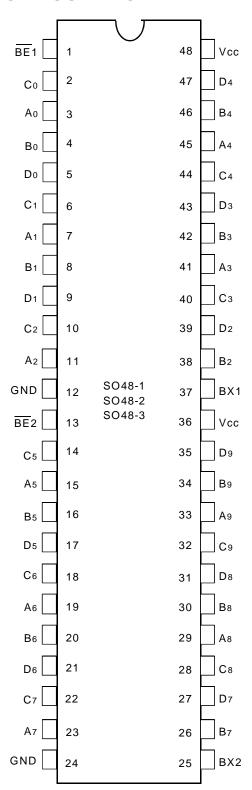

DESCRIPTION:


The FST1632383 belongs to IDT's family of Bus switches. Bus switch devices perform the function of connecting or isolating two ports without providing any inherent current sink or source capability. Thus they generate little or no noise of their own while providing a low resistance path for an external driver. These devices connect input and output ports through an n-channel FET. When the gate-to-source junction of this FET is adequately forward-biased the device conducts and the resistance between input and output ports is small. Without adequate bias on the gate-to-source junction of the FET, the FET is turned off, therefore with no Vcc applied, the device has hot insertion capability.

The low on-resistance and simplicity of the connection between input and output ports reduces the delay in this path to close to zero.

The FST1632383 integrates terminating resistors in the device, thus eliminating the need for external 25 Ω series resistors. It also provides four 4-bit TTL- compatible ports that supports 2 way bus exchange. The BX pin controls the bus exchange and the BE pin serves as the enable pin.

FUNCTIONAL BLOCK DIAGRAM



COMMERCIAL TEMPERATURE RANGE

OCTOBER 1999

PIN CONFIGURATION

SSOP/ TSSOP/ TVSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Rating	Max.	Unit
VTERM(2)	Terminal Voltage with Respect to GND	-0.5 to +7	٧
Tstg	Storage Temperature	-65 to +150	°C
Іоит	Maximum Continuous Channel Current	128	mA

FST LINK

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. Vcc, Control, and Switch terminals.

CAPACITANCE (1)

Symbol	Parameter	Conditions ⁽²⁾	Тур.	Unit
CIN	Control Input Capacitance		4	pF
CI/O	Switch Input/Output	Switch Off		pF
	Capacitance			

NOTES:

- 1. Capacitance is characterized but not tested.
- 2. $TA = 25^{\circ}C$, f = 1MHz, VIN = 0V, VOUT = 0V

PIN DESCRIPTION

Pin Names	I/O	Description
A0-9, B0-9	I/O	Buses A, B
C ₀₋₉ , D ₀₋₉	I/O	Buses C, D
BE _{1,2}	I	Bus Switch Enable (Active LOW)
BX1,2	I	Bus Exchange

FUNCTION TABLE (1)

BE ₁	BX1	A 0-4	B ₀₋₄	Description
Н	Χ	Hi-Z	Hi-Z	Disconnect
L	L	C0-4	D0-4	Connect
L	Н	D0-4	C0-4	Exchange

BE ₂	BX2	A 5-9	B5-9	Description
Н	Χ	Hi-Z	Hi-Z	Disconnect
L	L	C5-9	D5-9	Connect
L	Н	D5-9	C5-9	Exchange

NOTE

- 1. H = HIGH Voltage level
 - L = LOW Voltage Level
 - X = Don't Care
 - Z = High-Impedance

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified: Operating Conditions: TA = -40°C to +85°C, Vcc = 5.0V ±10%

Symbol	Parameter	1	Test Conditions ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Unit
VIH	Input HIGH Voltage	Guaranteed Logic HI	GH for Control Inputs	2	_	ı	٧
VIL	Input LOW Voltage	Guaranteed Logic LO	DW for Control Inputs	_	_	0.8	V
Iн	Input HIGH Current	Vcc = Max.	VI = VCC	_	_	±1	μA
IIL	Input LOW Voltage		VI = GND	_	_	±1	
Іоzн	High Impedance Output Current	Vcc = Max.	Vo = Vcc	_	_	±1	μA
lozl	(3-State Output pins)		Vo = GND	_	_	±1	
los	Short Circuit Current	Vcc = Max., Vo = G	$Vcc = Max., Vo = GND^{(3)}$		300	_	mA
Vik	Clamp Diode Voltage	Vcc = Min., IIN = -18	Vcc = Min., IIN = -18mA		-0.7	-1.2	V
Ron	Switch On Resistance ⁽⁴⁾	$V_{CC} = Min., V_{IN} = 0.0$ $I_{ON} = 30mA$	Vcc = Min., V _{IN} = 0.0V, IoN = 30mA		28	40	Ω
		$V_{CC} = Min., V_{IN} = 2.4$ $I_{ON} = 15mA$	4V,	20	35	48	Ω
loff	Input/Output Power Off Leakage	Vcc = 0V, Vin or Vo	$VCC = OV$, $VIN \text{ or } VO \le 4.5V$		_	±1	μA
Icc	Quiescent Power Supply Current	Vcc = Max., Vi = GN	D or Vcc	_	0.1	3	μA

NOTES:

1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical values are at Vcc = 5.0V, +25°C ambient.

3. Not more than one output should be tested at one time. Duration of the test should not exceed one second.

4. Measured by voltage drop between ports at indicated current through the switch.

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test C	Test Conditions ⁽¹⁾		Тур. ⁽²⁾	Max.	Unit
Δlcc	Quiescent Power Supply Current TTL Inputs HIGH	$VCC = Max.$ $VIN = 3.4V^{(3)}$		_	0.5	1.5	mA
ICCD	Dynamic Power Supply Current ⁽⁴⁾	Vcc = Max. Outputs Open Enable Pin Toggling 50% Duty Cycle	VIN = VCC VIN = GND	_	30	40	μΑ/ MHz/ Switch
Ic	Total Power Supply Current ⁽⁵⁾	Vcc = Max. Outputs Open Enable Pins Toggling	VIN = VCC VIN = GND		6	8	mA
		(20 Switches Toggling) fi = 10MHz 50% Duty Cycle	VIN = 3.4 VIN = GND	_	6.5	9.5	

NOTES:

- 1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at Vcc = 5.0V, +25°C ambient.
- 3. Per TTL driven input (VIN = 3.4V). All other inputs at Vcc or GND.
- 4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.
- 5. IC = IQUIESCENT + INPUTS + IDYNAMIC

 $Ic = Icc + \Delta Icc DhNT + Icco (fiN)$

Icc = Quiescent Current

 Δ Icc = Power Supply Current for a TTL High Input (ViN = 3.4V)

DH = Duty Cycle for TTL Inputs High

NT = Number of TTL Inputs at DH

ICCD = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)

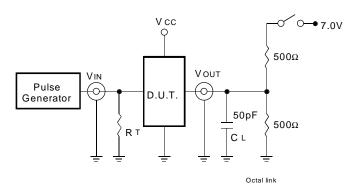
fi = Control Input Frequency

N = Number of Control Inputs Toggling at fi

All currents are in milliamps and all frequencies are in megahertz.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified: Operating Conditions: TA = -40°C to +85°C, VCC = 5.0V ±10%


Symbol	Description	Condition ⁽¹⁾	Min. ⁽²⁾	Тур.	Max.	Unit
tplh	Data Propagation Delay	CL = 50pF	_	_	1.25	ns
tphl	Ai to Ci, Di Bi to Ci, Di ^(3,4)	$RL = 500\Omega$				
tBX	Switch Multiplex Delay		1.5	_	7.5	ns
	BX to Ai, Bi, Ci, Di					
tpzh	Switch Turn on Delay		1.5	_	7.5	ns
tpzl	BE to Ai, Bi, Ci, Di					
tphz	Switch Turn off Delay		1.5	_	5.5	ns
tPLZ	BE to Ai, Bi ⁽³⁾					
Qci	Charge Injection, Typical ^(5,7)		_	1.5		pC
Qcdi	Charge Injection, Typical ^(6,7)		_	0.5	_	

NOTES:

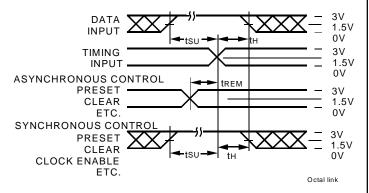
- 1. See test circuit and waveforms.
- 2. Minimum limits guaranteed but not tested.
- 3. This parameter is guaranteed by design but not tested.
- 4. The bus switch contributes no propagation delay other than the RC delay of the on resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 2.5ns for 50pF load. Since this time is constant and much smaller than the rise/fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay on the bus switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.
- 5. Measured at switch turn off, load = 50 pF in parallel with 10 M Ω scope probe, Vin = 0.0 volts.
- 6. Measured at switch turn off through bus multiplexer, (e.g.- A to C = >A to D), load = 50 pF in parallel with 10 MΩ scope probe, VIN at A = 0.0 volts. Charge injection is reduced because the injection from the turn off of the A to C switch is compensated by the turn on of the B to C switch.
- 7. Characterized parameter. Not 100% tested.

TEST CIRCUITS AND WAVEFORMS

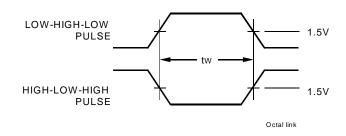
TEST CIRCUITS FOR ALL OUTPUTS

SWITCH POSITION

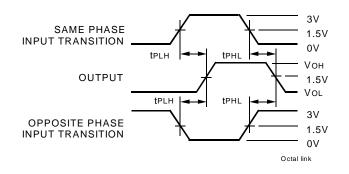
Test	Switch
Open Drain	
Disable Low	Closed
Enable Low	
All Other Tests	Open

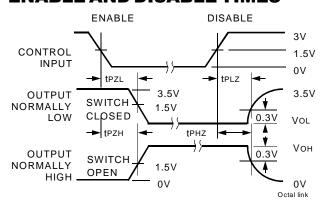

FCT LINK

DEFINITIONS:

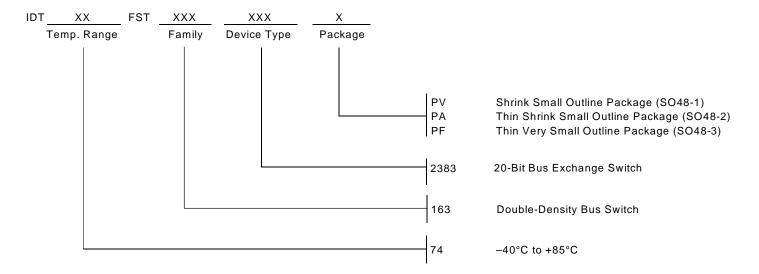

CL = Load capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to ZouT of the Pulse Generator.


SET-UP, HOLD, AND RELEASE TIMES


PULSE WIDTH

PROPAGATION DELAY


ENABLE AND DISABLE TIMES

NOTES:

- 1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH
- 2. Pulse Generator for All Pulses: Rate \leq 1.0MHz; tF \leq 2.5ns; tR \leq 2.5ns

ORDERING INFORMATION

CORPORATE HEADQUARTERS 2975 Stender Way Santa Clara, CA 95054 for SALES: 800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com*