

3.3V CMOS OCTAL BUS TRANSCEIVER WITH 3-STATE OUTPUTS AND 5 VOLT TOLERANT I/O

IDT74LVCR2245A

FEATURES:

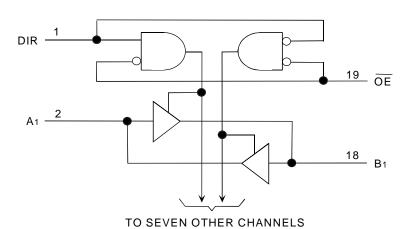
- 0.5 MICRON CMOS Technology
- ESD > 2000V per MIL-STD-883, Method 3015;
 > 200V using machine model (C = 200pF, R = 0)
- 1.27mm pitch SOIC, 0.65mm pitch SSOP,
 0.635mm pitch QSOP, 0.65mm pitch TSSOP packages
- Extended commercial range of 40°C to +85°C
- $VCC = 3.3V \pm 0.3V$, Normal Range
- Vcc = 2.3V to 3.6V, Extended Range
- CMOS power levels (0.4µW typ. static)
- Rail-to-Rail output swing for increased noise margin
- All inputs, outputs and I/O are 5 Volt tolerant
- Supports hot insertion

Drive Features for LVCR2245A:

- Balanced Output Drivers: ±12mA
- Low Switching Noise

DESCRIPTION:

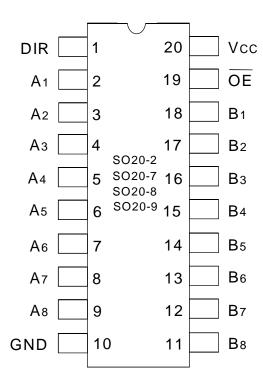
The LVCR2245A octal bus transceiver is built using advanced dual metal CMOS technology. This device is designed for asynchronous communication between data buses. The device transmits data from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable $(\overline{\text{OE}})$ input can be used to disable the device so the buses are effectively isolated.


The LVCR2245A has series resistors in the output structure which will significantly reduce line noise when used with light loads. The driver has been designed to drive ± 12 mA at the designated threshold.

Inputs can be driven from either 3.3V or 5V devices. This feature allows the use of this device as a translator in a mixed 3.3V/5V environment.

APPLICATIONS:

- 5V and 3.3V mixed voltage systems
- Data communication and telecommunication systems


FUNCTIONAL BLOCK DIAGRAM

EXTENDED COMMERCIAL TEMPERATURE RANGE

OCTOBER 1999

PIN CONFIGURATION

SOIC/ SSOP/ QSOP/ TSSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Description	Max.	Unit
VTERM	Terminal Voltage with Respect to GND	- 0.5 to +6.5	٧
Tstg	Storage Temperature	- 65 to +150	°C
Іоит	DC Output Current	- 50 to +50	mA
lıĸ	Continuous Clamp Current,	- 50	mA
Іок	V _I < 0 or V _O < 0		
Icc	Continuous Current through	±100	mA
Iss	each Vcc or GND		011/0

NOTE:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

CAPACITANCE (TA = +25°C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	4.5	6	pF
Соит	Output Capacitance	Vout = 0V	5.5	8	pF
CI/O	I/O Port Capacitance	VIN = 0V	6.5	8	pF
					8LVC Link

NOTE

1. As applicable to the device type.

PIN DESCRIPTION

Pin Names	Description
ŌĒ	Output-enable Input (Active LOW)
Ax, Bx	Data Inputs or 3-State Outputs
DIR	Direction-control Input

FUNCTION TABLE (1)

Inputs		Outputs
ŌĒ	DIR	
L	L	B data to A bus
L	Н	A data to B bus
Н	Х	Isolation

NOTE:

H = HIGH Voltage Level
 L = LOW Voltage Level
 X = Don't Care

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: TA = - 40°C To +85°C

Symbol	Parameter	7	Test Conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
VIH	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	_	_	٧
		Vcc = 2.7V to 3.6V		2	_		
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		_	_	0.7	٧
		Vcc = 2.7V to 3.6V		_	_	0.8	
lih lil	Input Leakage Current	Vcc = 3.6V	VI = 0 to 5.5V	_	_	±5	μA
lozн	High Impedance Output Current	Vcc = 3.6V	Vo = 0 to 5.5V	_	_	±10	μA
lozL	(3-State Output pins)						
loff	Input/Output Power Off Leakage	Vcc = 0V, Vin or Vo	$V_{CC} = 0V$, V_{IN} or $V_{O} \le 5.5V$		_	±50	μA
Vik	Clamp Diode Voltage	Vcc = 2.3V, lin = -1	8mA	_	- 0.7	- 1.2	٧
VH	Input Hysteresis	Vcc = 3.3V		_	100	_	mV
ICCL ICCH	Quiescent Power Supply Current	Vcc = 3.6V	VIN = GND or Vcc	_	_	10	μA
Iccz			$3.6 \le VIN \le 5.5V^{(2)}$	_	_	10	1
Δlcc	Quiescent Power Supply Current Variation	One input at Vcc - 0. other inputs at Vcc o		_	_	500	µA

NOTES

1. Typical values are at Vcc = 3.3V, +25°C ambient.

2. This applies in the disabled state only.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Cor	nditions ⁽¹⁾	Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = 2.3V to 3.6V	IOH = - 0.1mA	Vcc - 0.2	_	V
		Vcc = 2.3V	IOH = -4mA	1.9	_	
			IOH = -6mA	1.7	_	
		Vcc = 2.7V	IOH = -4mA	2.2	_	
			IOH = -8mA	2	_	
		Vcc = 3.0V	IOH = -6mA	2.4	_	
			IOH = - 12mA	2		
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	IoL = 0.1mA	_	0.2	٧
		Vcc = 2.3V	IoL = 4mA	_	0.4	
			IoL = 6mA	_	0.55	
		Vcc = 2.7V	IoL = 4mA	_	0.4	
			IoL = 8mA	_	0.6	
		Vcc = 3.0V	IoL = 6mA	_	0.55	
			IoL = 12mA	_	0.8	

NOTE:

1. VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = − 40°C to +85°C.

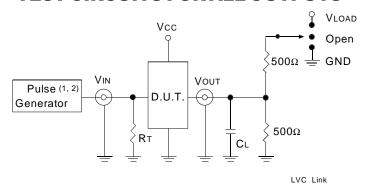
OPERATING CHARACTERISTICS, V_{CC} = 3.3V \pm 0.3V, T_{A} = 25°C

Symbol	Parameter	Test Conditions	Typical	Unit
CPD	Power dissipation capacitance per tranceiver Outputs enabled	C _L = 0pF, f = 10Mhz	48	pF
CPD	Power dissipation capacitance per tranceiver Outputs disabled		4	pF

SWITCHING CHARACTERISTICS (1)

		Vcc = 2.5V±0.2V		Vcc = 2.5V±0.2V		Vcc = 3.	3V±0.3V	Unit
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	
tplh	Propagation Delay	_	-	_	7.3	1.5	6.3	ns
tphl	Ax or Bx to Bx or Ax							
tpzh	Output Enable Time	_	_	_	9.5	1.5	8.2	ns
tpzl	OE or DIR to Ax or Bx							
tphz	Output Disable Time	_	_	_	8.5	1.7	7.8	ns
tPLZ	OE or DIR to Ax or Bx							
tsk(0)	Output Skew ⁽²⁾	_	_	_	_	_	1	ns

NOTES:


- 1. See test circuits and waveforms. $TA = -40^{\circ}C$ to $+85^{\circ}C$.
- 2. Skew between any two outputs of the same package and switching in the same direction.

TEST CIRCUITS AND WAVEFORMS

TEST CONDITIONS

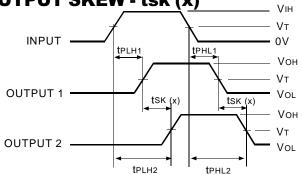
Symbol	$V_{CC}^{(1)} = 3.3V \pm 0.3V$	$V_{CC}^{(1)} = 2.7V$	$V_{CC}^{(2)} = 2.5V \pm 0.2V$	Unit			
VLOAD	6	6	2 x Vcc	٧			
VIH	2.7	2.7	Vcc	٧			
VT	1.5	1.5	Vcc/2	٧			
VLZ	300	300	150	mV			
VHZ	300	300	150	mV			
CL	50	50	30	pF			
			8	LVC Link			

TEST CIRCUITS FOR ALL OUTPUTS

DEFINITIONS:

CL= Load capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to ZouT of the Pulse Generator.

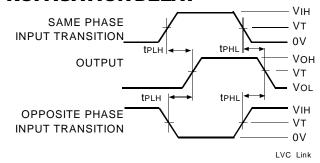

NOTES:

- 1. Pulse Generator for All Pulses: Rate ≤ 10MHz: tF ≤ 2.5ns: tR ≤ 2.5ns.
- 2. Pulse Generator for All Pulses: Rate ≤ 10MHz; tF ≤ 2ns; tR ≤ 2ns.

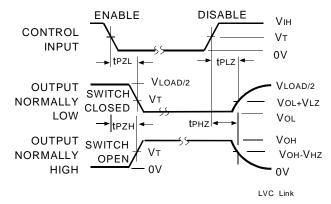
SWITCH POSITION

Test	Switch
Open Drain	Vload
Disable Low	
Enable Low	
Disable High	GND
Enable High	
All Other tests	Open

OUTPUT SKEW - tsk (x)

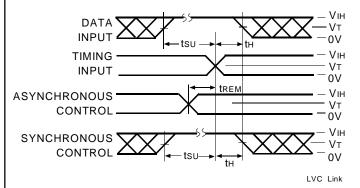


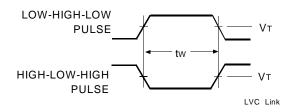
tsk(x) = |tPLH2 - tPLH1| or |tPHL2 - tPHL1|


NOTES:

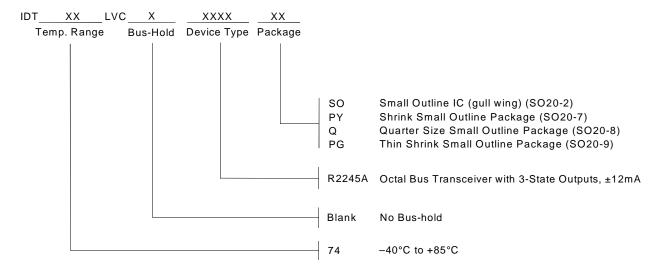
- 1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.
- For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.

PROPAGATION DELAY


ENABLE AND DISABLE TIMES


NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.


SET-UP, HOLD, AND RELEASE TIMES

PULSE WIDTH

ORDERING INFORMATION

CORPORATE HEADQUARTERS

2975 Stender Way Santa Clara, CA 95054 for SALES:

800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com*

*To search for sales office near you, please click the sales button found on our home page or dial the 800# above and press 2.

The IDT logo is a registered trademark of Integrated Device Technology, Inc.