

3.3V CMOS 16-BIT REGISTERED TRANSCEIVER WITH 3-STATE OUTPUTS, 5 VOLT TOLERANT I/O, BUS-HOLD

IDT74LVCHR16543A

FEATURES:

- Typical tsk(0) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015;
 > 200V using machine model (C = 200pF, R = 0)
- 0.635mm pitch SSOP, 0.50mm pitch TSSOP and 0.40mm pitch TVSOP packages
- Extended commercial range of -40°C to +85°C
- Vcc = 3.3V ±0.3V, Normal Range
- VCC = 2.7V to 3.6V, Extended Range
- CMOS power levels (0.4µW typ. static)
- All inputs, outputs and I/O are 5 Volt tolerant
- Supports hot insertion

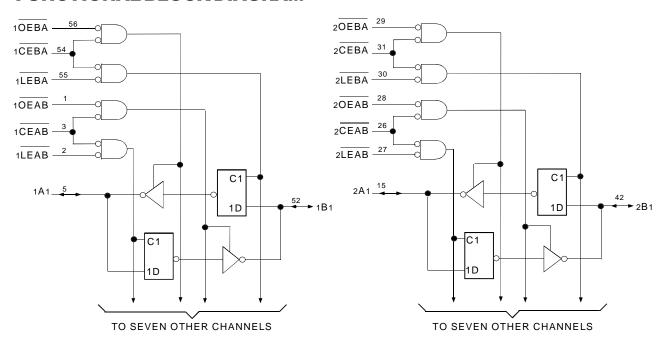
Drive Features for LVCHR16543A:

- Balanced Output Drivers: ±12 mA
- Low switching noise

APPLICATIONS:

- 5V and 3.3V mixed voltage systems
- · Data communication and telecommunication systems

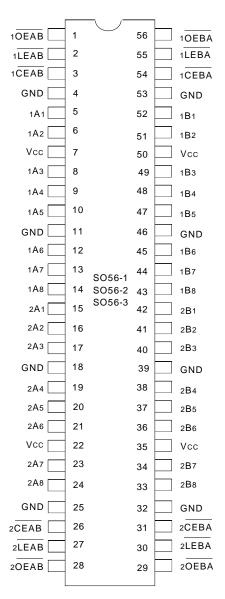
DESCRIPTION:


The LVCHR16543A 16-bit registered transceiver is built using advanced dual metal CMOS technology. The LVCHR16543A device can be used as two independent 8-bit transceivers or one 16-bit transceiver. Separate latch-enable ($\overline{\text{LEAB}}$ or $\overline{\text{LEBA}}$) and output-enable($\overline{\text{OEAB}}$ or $\overline{\text{OEBA}}$) inputs are provided for each register to permit independent control in either direction of data flow. The A-to-B enable ($\overline{\text{CEAB}}$) must be low in order to enter data from A or to output data from B. If $\overline{\text{CEAB}}$ is low and $\overline{\text{LEAB}}$ is low, the A-to-B latches are transparent; a subsequent low-to-high transition of $\overline{\text{LEAB}}$ puts the A latches in the storage mode. With $\overline{\text{CEAB}}$ and $\overline{\text{OEAB}}$ both low, the 3-state B outputs are active and reflect the data present at the output of the A latches. Data flow from B to A is similar, but requires using the $\overline{\text{CEBA}}$, $\overline{\text{LEBA}}$, and $\overline{\text{OEBA}}$ inputs. To ensure the high-impedance state during power up or power down, $\overline{\text{OE}}$ should be tied to Vcc through a pullup resistor; the minmum value of the resistor is determined by the current sinking capability of the driver.

The LVCHR16543A has series resistors in the device output structure which will significantly reduce line noise when used with light loads. The driver has been designed to drive ±12mA at the designated threshold levels.

Inputs can be driven from either 3.3V or 5V devices. This feature allows the use of this device as a translator in a mixed 3.3V/5V supply system.

The LVCHR16543A has "bus-hold" which retains the input's last state whenever the input goes to a high impedance. This prevents floating inputs and eliminates the need for pull-up/down resistors.


FUNCTIONAL BLOCK DIAGRAM

EXTENDED COMMERCIAL TEMPERATURE RANGE

OCTOBER 1999

PIN CONFIGURATION

SSOP/ TSSOP/ TVSOP TOP VIEW

PIN DESCRIPTION

2200	
Pin Names	Description
xOEAB	A-to-B Output Enable Input (Active LOW)
х <mark>ОЕВА</mark>	B-to-A Output Enable Input (Active LOW)
xCEAB	A-to-B Enable Input (Active LOW)
х <mark>СЕВА</mark>	B-to-A Enable Input (Active LOW)
xLEAB	A-to-B Latch Enable Input (Active LOW)
xLEBA	B-to-A Latch Enable Input (Active LOW)
xAx	A-to-B Data Inputs or B-to-A 3-State Outputs ⁽¹⁾
хВх	B-to-A Data Inputs or A-to-B 3-State Outputs ⁽¹⁾

NOTE:

 These pins have "Bus-hold". All other pins are standard inputs, outputs, or I/Os.

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Description	Max.	Unit
VTERM	Terminal Voltage with Respect to GND	- 0.5 to +6.5	V
Tstg	Storage Temperature	- 65 to +150	°C
Іоит	DC Output Current	- 50 to +50	mA
lıĸ	Continuous Clamp Current,	- 50	mA
Іок	$V_1 < 0$ or $V_0 < 0$		
Icc	Continuous Current through	±100	mA
Iss	each Vcc or GND		LVC Link

NOTE:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

CAPACITANCE (TA = +25°C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	4.5	6	pF
Соит	Output Capacitance	Vout = 0V	6.5	8	pF
C _{I/O}	I/O Port Capacitance	VIN = 0V	6.5	8	pF

LVC Li

NOTE:

1. As applicable to the device type.

FUNCTION TABLE (each 8-bit section) (1, 2)

	Inputs				
xCEAB	xLEAB	х <mark>ОЕАВ</mark>	xAx	хВх	
Н	Х	Χ	X	Z	
Х	Х	Н	Χ	Z	
L	Н	L	Х	B ₀ ⁽³⁾	
L	L	L	L	L	
L	L	L	Н	Н	

NOTES:

- 1. H = HIGH Voltage Level
 - L = LOW Voltage Level
 - X = Don't Care
 - Z = High-Impedance
- A-to-B data flow is shown; B-to-A flow control is the same except using CEBA, LEBA, and OEBA.
- 3. Before LEAB LOW-to-HIGH Transition

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: TA = -40°C to +85°C

Symbol	Parameter	Test	Conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
VIH	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	_	_	V
		Vcc = 2.7V to 3.6V		2	_	_	
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		_	_	0.7	V
		Vcc = 2.7V to 3.6V		_	_	0.8	•
Іін	Input Leakage Current	Vcc = 3.6V	Vi = 0 to 5.5V	_	_	±5	μA
lıL							
Іохн	High Impedance Output Current	Vcc = 3.6V	Vo = 0 to 5.5V	_	_	±10	μΑ
lozl	(3-State Output pins)						
IOFF	Input/Output Power Off Leakage	VCC = 0V, VIN or VO ≤ 5.5 V		_	_	±50	μA
VIK	Clamp Diode Voltage	Vcc = 2.3V, IIN = - 18mA		_	- 0.7	- 1.2	V
VH	Input Hysteresis	Vcc = 3.3V		_	100	_	mV
ICCL	Quiescent Power Supply Current	Vcc = 3.6V	Vin = GND or Vcc	_	_	10	μA
Іссн							
Iccz			$3.6 \le VIN \le 5.5V^{(2)}$	_	_	10	
Δlcc	Quiescent Power Supply	One input at Vcc - 0.6V		_	_	500	μA
	Current Variation	other inputs at Vcc or GND					LVC Link

NOTES:

1. Typical values are at Vcc = 3.3V, +25°C ambient.

2. This applies in the disabled state only.

BUS-HOLD CHARACTERISTICS

Symbol	Parameter ⁽¹⁾		Test Conditions	Min.	Typ. ⁽²⁾	Max.	Unit
Івнн	Bus-Hold Input Sustain Current	Vcc = 3.0V	VI = 2.0V	- 75	_	-	μΑ
Івнь			VI = 0.8V	75	_	_	
Івнн	Bus-Hold Input Sustain Current	Vcc = 2.3V	VI = 1.7V	_	_	_	μA
Івнь			V _I = 0.7V	_	_	_	
Івнно	Bus-Hold Input Overdrive Current	Vcc = 3.6V	VI = 0 to 3.6V	_	_	± 500	μA
Івньо							
			<u>. </u>				LVC Link

NOTES:

1. Pins with Bus-hold are identified in the pin description.

2. Typical values are at Vcc = 3.3V, +25°C ambient.

LVC Link

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Co	onditions ⁽¹⁾	Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = 2.3V to 3.6V	IOH = - 0.1mA	Vcc - 0.2	_	V
		Vcc = 2.3V	IOH = -4mA	1.9	_	
			I _{OH} = -6mA	1.7	_	
		Vcc = 2.7V	IOH = -4mA	2.2	_	
			IOH = -8mA	2	_	
		Vcc = 3.0V	IOH = -6mA	2.4	_	
			IOH = - 12mA	2	_	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	IoL = 0.1mA	_	0.2	V
		Vcc = 2.3V	IoL = 4mA	_	0.4	
			I _{OL} = 6mA	_	0.55	
		Vcc = 2.7V	IoL = 4mA	_	0.4	
			IoL = 8mA	_	0.6	
		Vcc = 3.0V	IoL = 6mA	_	0.55	1
			IoL = 12mA	_	0.8	LVC Link

NOTE:

OPERATING CHARACTERISTICS, V_{CC} = 3.3V \pm 0.3V, T_{A} = 25°C

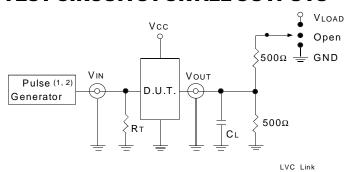
Symbol	Parameter	Test Conditions	Typical	Unit
CPD	Power Dissipation Capacitance per transceiver Outputs enabled	CL = 0pF, f = 10Mhz		pF
CPD	Power Dissipation Capacitance per transceiver Outputs disabled			pF

^{1.} VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = − 40°C to +85°C.

SWITCHING CHARACTERISTICS (1)

		Vcc =	= 2.7V	Vcc = 3.3\	/±0.3V	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
tplh	Propagation Delay	1.5	7	1.5	6	ns
t _{PHL}	xAx to xBx or xBx to xAx					
tplh	Propagation Delay	1.5	8	1.5	7	ns
tphl	xLEBA to xAx, xLEAB to xBx					
tpzh	Output Enable Time	1.5	9	1.5	8	ns
tpzl	xCEBA or xCEAB to xAx or xBx					
tpzh	Output Enable Time	1.5	9	1.5	8	ns
tpzl	xOEBA or xOEAB to xAx or xBx					
tphz	Output Disable Time	1.5	7.5	1.5	6.5	ns
tPLZ	xCEBA or xCEAB to xAx or xBx					
tphz	Output Disable Time	1.5	7.5	1.5	6.5	ns
tplz	xOEBA or xOEAB to xAx or xBx					
tsu	Set-up Time, data before $\overline{\text{CE}}$ ↑	2	_	2	_	ns
tsu	Set-up Time, data before LE ↑, CE LOW	2	_	2	_	ns
tн	Hold Time, data after $\overline{\text{CE}}$ ↑	2	_	2	_	ns
tн	Hold Time, data after $\overline{\text{LE}}$ ↑, $\overline{\text{CE}}$ LOW	2	_	2	_	ns
tw	Pulse Duration	5	_	5	_	ns
	xLEAB or xLEBA, xCEAB or xCEBA LOW					
tsk(o)	Output Skew ⁽²⁾	_	_	_	500	ps

NOTES:


- 1. See test circuits and waveforms. $TA = -40^{\circ}C$ to $+85^{\circ}C$.
- 2. Skew between any two outputs of the same package and switching in the same direction.

TEST CIRCUITS AND WAVEFORMS

TEST CONDITIONS

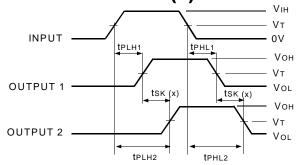
Symbol	$Vcc^{(1)} = 3.3V \pm 0.3V$	$Vcc^{(1)} = 2.7V$	$Vcc^{(2)} = 2.5V \pm 0.2V$	Unit
VLOAD	6	6	2 x Vcc	٧
VIH	2.7	2.7	Vcc	٧
VT	1.5	1.5	Vcc/2	٧
VLZ	300	300	150	mV
VHZ	300	300	150	mV
CL	50	50	30	pF

TEST CIRCUITS FOR ALL OUTPUTS

DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to ZouT of the Pulse Generator.

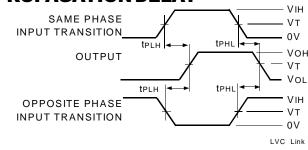

NOTES:

- 1. Pulse Generator for All Pulses: Rate ≤ 10MHz: tF ≤ 2.5ns: tR ≤ 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2ns; tR \leq 2ns.

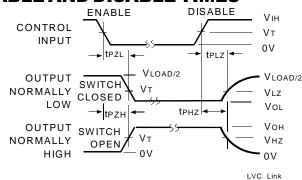
SWITCH POSITION

Test	Switch
Open Drain	VLOAD
Disable Low	
Enable Low	
Disable High	GND
Enable High	
All Other tests	Open
	LVC Link

OUTPUT SKEW - tsk (x)

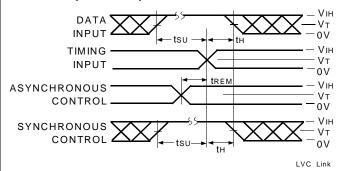


tsk(x) = |tPLH2 - tPLH1| or |tPHL2 - tPHL1|


NOTES:

- 1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.
- 2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.

PROPAGATION DELAY


ENABLE AND DISABLE TIMES

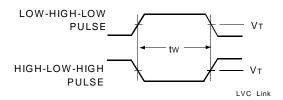
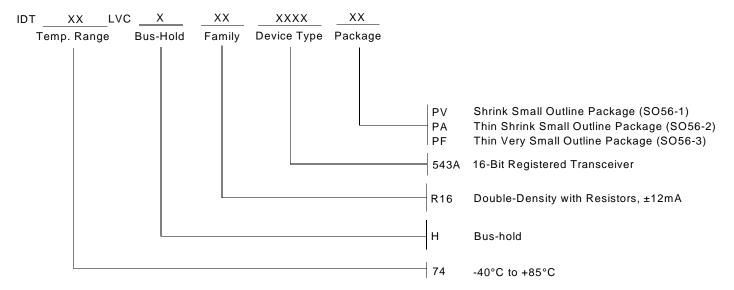

NOTE:

 Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

SET-UP, HOLD, AND RELEASE TIMES



PULSE WIDTH

LVC Link

ORDERING INFORMATION

CORPORATE HEADQUARTERS

2975 Stender Way Santa Clara, CA 95054 for SALES:

800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com*