

3.3V CMOS OCTAL TRANSPARENT D-TYPE LATCH WITH 3-STATE OUTPUTS, 5 VOLT TOLERANT I/O AND BUS-HOLD

FEATURES:

- 0.5 MICRON CMOS Technology
- ESD > 2000V per MIL-STD-883, Method 3015;
 > 200V using machine model (C = 200pF, R = 0)
- 1.27mm pitch SOIC, 0.65mm pitch SSOP, 0.635mm pitch QSOP, 0.65mm pitch TSSOP packages
- Extended commercial range of 40°C to +85°C
- VCC = 3.3V ±0.3V, Normal Range
- VCC = 2.3V to 3.6V, Extended Range
- CMOS power levels (0.4µ W typ. static)
- Rail-to-Rail output swing for increased noise margin
- All inputs, outputs and I/O are 5 Volt tolerant
- Supports hot insertion

Drive Features for LVCH573A:

- High Output Drivers: ±24mA
- Reduced system switching noise

APPLICATIONS:

• 5V and 3.3V mixed voltage systems

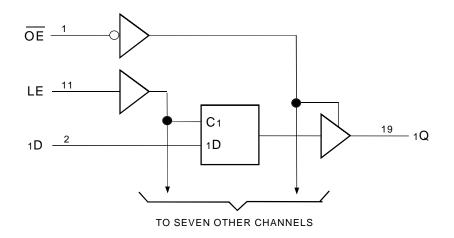
· Data communication and telecommunication systems

DESCRIPTION:

The LVCH573A octal transparent D-type latch is built using advanced dual metal CMOS technology. The device features 3-state outputs de-

FUNCTIONAL BLOCK DIAGRAM

signed specifically for driving highly capacitive or relatively low-impedance loads, and is particularly suitable for implementing buffer registers, inputoutput (I/O) ports, bidirectional bus drivers, and working registers.

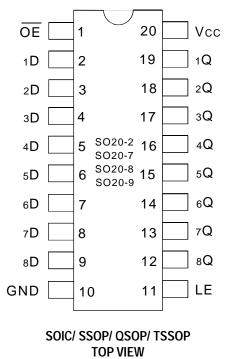

While the latch-enable (LE) input is high, the Q outputs follow the data (D) inputs. When LE is taken low, the Q outputs are latched at the logic levels at the D inputs.

A buffered output-enable (OE) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without interface or pullup components. OE does not affect the internal operations of the latch. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

The LVCH573A has been designed with a $\pm 24\text{mA}$ output driver. This driver is capable of driving a moderate to heavy load while maintaining speed performance.

Inputs can be driven from either 3.3V or 5V devices. This feature allows the use of this device as a translator in a mixed 3.3V/5V system environment.

The LVCH573A has "bus-hold" which retains the inputs' last state whenever the input goes to a high impedance. This prevents floating inputs and eliminates the need for pull-up/down resistors.



EXTENDED COMMERCIAL TEMPERATURE RANGE

APRIL 1999

EXTENDED COMMERCIAL TEMPERATURE RANGE

PIN CONFIGURATION

PIN DESCRIPTION

Pin Names	Description	
Œ	Output-enable Input (Active LOW)	
LE	Latch-enable Input	
xD	Data Inputs (1)	
xQ	3-State Outputs	

NOTE:

1. These pins have "Bus-hold". All other pins are standard inputs, outputs, or I/Os.

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Description	Max.	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	– 0.5 to +6.5	V
VTERM(3)	Terminal Voltage with Respect to GND	– 0.5 to +6.5	V
Tstg	Storage Temperature	– 65 to +150	°C
Ιουτ	DC Output Current	– 50 to +50	mA
Ік	Continuous Clamp Current,	- 50	mA
Іок	$V_{I} < 0 \text{ or } V_{O} < 0$		
Icc	Continuous Current through	±100	mA
lss	each Vcc or GND		
	•		8LVC

NOTES:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. Vcc terminals.

3. All terminals except Vcc.

CAPACITANCE (TA = +25°C, f = 1.0MHz)

Court Output Capacitance Vour = 0V 5.5 8 Ci/O I/O Port VIN = 0V 6.5 8	Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
Capacitance VIN = 0V 6.5 8	CIN	Input Capacitance	VIN = 0V	4.5	6	pF
	Соит		Vout = 0V	5.5	8	pF
Capacitance	Ci/o	I/O Port Capacitance	VIN = 0V	6.5	8	pF

NOTE:

1. As applicable to the device type.

FUNCTION TABLE (each latch) ⁽¹⁾

	Inputs		Outputs
ŌE	LE	хD	xQ
L	Н	Н	Н
L	Н	L	L
L	L	Х	Q ₀
Н	Х	Х	Z

NOTE:

1. H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

Z = High-Impedance

 Q_0 = Level of Q before the indicated steady-state input conditions were established.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified: Operating Condition: TA = – 40° C To + 85° C

Symbol	Parameter	1	est Conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
Vih	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	—	_	۷
		Vcc = 2.7V to 3.6V		2	—	_	
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		_	—	0.7	V
		Vcc = 2.7V to 3.6V		_	—	0.8	1
lih lil	Input Leakage Current	VCC = 3.6V	VI = 0 to 5.5V	-	—	±5	μA
Іогн	High Impedance Output Current	Vcc = 3.6V	Vo = 0 to 5.5V	-	—	±10	μA
lozl	(3-State Output pins)						
IOFF	Input/Output Power Off Leakage	Vcc = 0V, VIN or Vo	≤ 5.5V	_	_	±50	μA
Vik	Clamp Diode Voltage	Vcc = 2.3V, IIN = -1	8mA	-	- 0.7	- 1.2	V
Vн	Input Hysteresis	Vcc = 3.3V		_	100		mV
ICCL ICCH	Quiescent Power Supply Current	Vcc = 3.6V	VIN = GND or Vcc	_	-	10	μA
lccz			$3.6 \le VIN \le 5.5V^{(2)}$	_	—	10	
Δlcc	Quiescent Power Supply Current Variation	One input at Vcc - 0. other inputs at Vcc o		—	_	500	μA 8LVC Link

NOTES:

1. Typical values are at Vcc = 3.3V, +25°C ambient.

2. This applies in the disabled state only.

BUS-HOLD CHARACTERISTICS

Symbol	Parameter ⁽¹⁾		Test Conditions		Тур. ⁽²⁾	Max.	Unit
Івнн	Bus-Hold Input Sustain Current	Vcc = 3.0V	VI = 2.0V	- 75	_		μA
Ibhl			VI = 0.8V	75	_	_	
Івнн	Bus-Hold Input Sustain Current	Vcc = 2.3V	VI = 1.7V	—	_	_	μA
Ibhl			VI = 0.7V	—	_	_	
Івнно	Bus-Hold Input Overdrive Current	Vcc = 3.6V	VI = 0 to 3.6V	—	_	± 500	μA
Ibhlo							8LVC Lin

NOTES:

1. Pins with Bus-hold are identified in the pin description.

2. Typical values are at Vcc = 3.3V, +25°C ambient.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = 2.3V to 3.6V	Iон = - 0.1mA	Vcc - 0.2	-	V
		Vcc = 2.3V	Iон = – 6mA	2	_	
		Vcc = 2.3V	Іон = – 12mA	1.7	_	
		Vcc = 2.7V		2.2	_	
		Vcc = 3.0V		2.4	_	
		Vcc = 3.0V	Iон = – 24mA	2.2	_	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	IoL = 0.1mA	_	0.2	V
		Vcc = 2.3V	IOL = 6mA	—	0.4	
			Iol = 12mA	—	0.7	
		Vcc = 2.7V	Iol = 12mA	—	0.4	
		Vcc = 3.0V	Iol = 24mA	_	0.55	1
					•	8LVC Lini

NOTE:

1. VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = − 40°C to +85°C.

OPERATING CHARACTERISTICS, Vcc = 3.3V \pm 0.3V, T_A = 25°C

Symbol	Parameter	Test Conditions	Typical	Unit
Cpd	Power dissipation capacitance per latch outputs enabled	CL = 0pf, f = 10Mhz	37	pF
Cpd	Power dissipation capacitance per latch outputs disabled		4	pF

SWITCHING CHARACTERISTICS (1)

	Vcc = 2.5		5V±0.2V	0.2V Vcc = 2.7V		Vcc = 3.3V±0.3V		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
tplh tphl	Propagation Delay xD to xQ	_	_	—	7.7	1.5	6.9	ns
tplh tphl	Propagation Delay LE to xQ	-	_	_	8.4	2	7.7	ns
tpzh tpzl	Output Enable Time Œ to xQ	-	_	_	8.5	1.5	7.5	ns
tрнz tplz	Output Disable Time Œ to xQ	-	_	_	7	1.6	6.5	ns
tw	Pulse Duration, LE HIGH	—	_	3.3	_	3.3	_	ns
tsu	Setup Time, data before LE \downarrow	—	_	2	_	2	_	ns
tн	Hold Time, data after LE \downarrow	—	_	1.5	_	1.5	_	ns
tsk(0)	Output Skew ⁽²⁾	—	_	_	_	—	500	ps

NOTES:

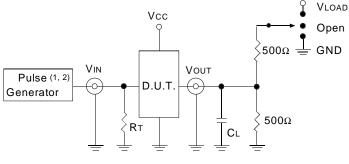
1. See test circuits and waveforms. $TA = -40^{\circ}C$ to $+85^{\circ}C$.

2. Skew between any two outputs of the same package and switching in the same direction.

IDT74LVCH573A 3.3V CMOS OCTAL TRANSPARENT D-TYPE LATCH

EXTENDEDCOMMERCIALTEMPERATURERANGE

Vін


Vт

TEST CIRCUITS AND WAVEFORMS

TEST CONDITIONS

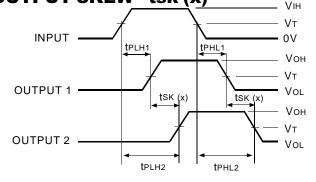
$V_{CC}^{(1)} = 3.3V \pm 0.3V$	$V_{CC}^{(1)} = 2.7V$	Vcc ⁽²⁾ = 2.5V ±0.2V	Unit
6	6	2 x Vcc	٧
2.7	2.7	Vcc	۷
1.5	1.5	Vcc/2	۷
300	300	150	mV
300	300	150	mV
50	50	30	pF
	6 2.7 1.5 300 300	6 6 2.7 2.7 1.5 1.5 300 300 300 300	6 6 2 x Vcc 2.7 2.7 Vcc 1.5 1.5 Vcc / 2 300 300 150 300 300 150

TEST CIRCUITS FOR ALL OUTPUTS

LVC Link

DEFINITIONS:

- CL= Load capacitance: includes jig and probe capacitance.
- RT = Termination resistance: should be equal to ZOUT of the Pulse Generator.

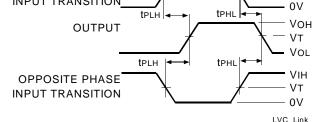

NOTES:

- 1. Pulse Generator for All Pulses: Rate \leq 10MHz: tF \leq 2.5ns: tR \leq 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2ns; tR \leq 2ns.

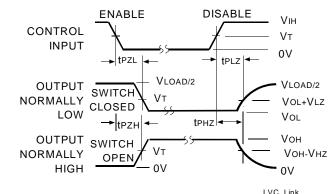
SWITCH POSITION

Test	Switch
Open Drain	Vload
Disable Low	
Enable Low	
Disable High	GND
Enable High	
All Other tests	Open 8LVC Link

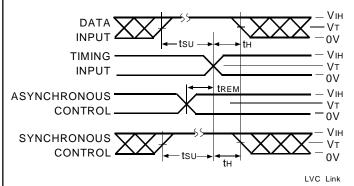
OUTPUT SKEW - tsk (x)

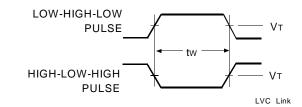

tSK(x) = |tPLH2 - tPLH1| or |tPHL2 - tPHL1|

NOTES:


1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.

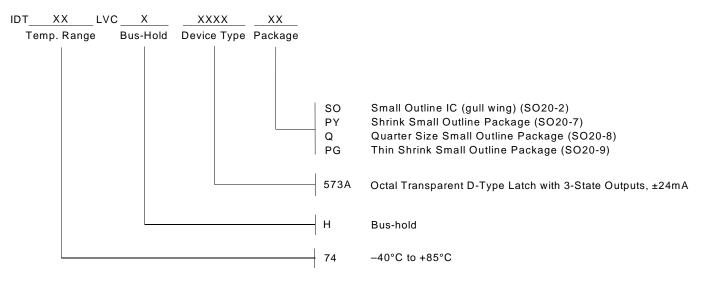
For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.


ENABLE AND DISABLE TIMES


NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

SET-UP, HOLD, AND RELEASE TIMES



PULSEWIDTH

LVC Link

ORDERING INFORMATION

CORPORATE HEADQUARTERS 2975 Stender Way Santa Clara, CA 95054 for SALES: 800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com*

*To search for sales office near you, please click the sales button found on our home page or dial the 800# above and press 2. The IDT logo is a registered trademark of Integrated Device Technology, Inc.