

## 3.3V CMOS OCTAL **TRANSPARENT D-TYPE LATCH** WITH 3-STATE OUTPUTS, 5 VOLT **TOLERANT I/O AND BUS-HOLD**

## FEATURES:

- 0.5 MICRON CMOS Technology \_
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model (C = 200pF, R = 0)
- 1.27mm pitch SOIC, 0.65mm pitch SSOP, 0.635mm pitch QSOP, 0.65mm pitch TSSOP packages
- Extended commercial range of 40°C to +85°C \_
- Vcc = 3.3V ±0.3V, Normal Range \_
- Vcc = 2.3V to 3.6V, Extended Range \_
- CMOS power levels (0.4µW typ. static) \_
- Rail-to-Rail output swing for increased noise margin \_
- All inputs, outputs and I/O are 5 Volt tolerant \_
- Supports hot insertion \_

### Drive Features for LVCH373A:

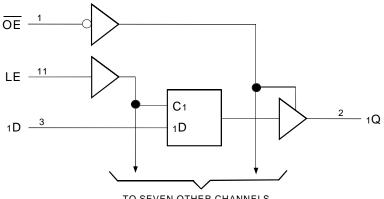
- High Output Drivers: ±24mA
- Reduced system switching noise

# APPLICATIONS:

- 5V and 3.3V mixed voltage systems
- Data communication and telecommunication systems

## **DESCRIPTION:**

The LVCH373A octal transparent D-type latch is built using advanced dual metal CMOS technology. While the latch-enable (LE) input is high, the Q outputs follow the data (D) inputs. When LE is taken low, the Q outputs are latched at the logic levels set up at the D inputs.


A buffered output-enable (OE) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a highimpedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. OE does not affect the internal operations of the latches. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

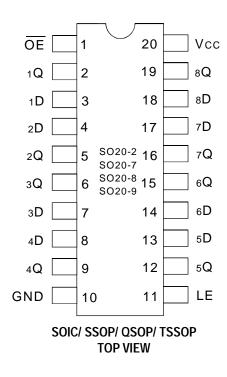
The LVCH373A has been designed with a ±24mA output driver. This driver is capable of driving a moderate to heavy load while maintaining speed performance.

Inputs can be driven from either 3.3V or 5V devices. This feature allows the use of this device as a translator in a mixed 3.3V/5V system environment.

The LVCH373A has "bus-hold" which retains the inputs' last state whenever the input goes to a high impedance. This prevents floating inputs and eliminates the need for pull-up/down resistors.

# FUNCTIONAL BLOCK DIAGRAM




TO SEVEN OTHER CHANNELS

### **EXTENDED COMMERCIAL TEMPERATURE RANGE**

### **APRIL 1999**

### **EXTENDED COMMERCIAL TEMPERATURE RANGE**

## **PIN CONFIGURATION**



### **PIN DESCRIPTION**

| Pin Names | Description                      |
|-----------|----------------------------------|
| Œ         | Output-enable Input (Active LOW) |
| LE        | Latch-enable Input               |
| xD        | Data Inputs <sup>(1)</sup>       |
| xQ        | Data Outputs                     |

### NOTE:

1. These pins have "Bus-hold". All other pins are standard inputs, outputs, or I/Os.

## ABSOLUTE MAXIMUM RATINGS (1)

| Symbol               | Description                          | Max.          | Unit |
|----------------------|--------------------------------------|---------------|------|
| VTERM <sup>(2)</sup> | Terminal Voltage with Respect to GND | – 0.5 to +6.5 | V    |
| VTERM(3)             | Terminal Voltage with Respect to GND | – 0.5 to +6.5 | V    |
| Tstg                 | Storage Temperature                  | – 65 to +150  | °C   |
| Ιουτ                 | DC Output Current                    | – 50 to +50   | mA   |
| Ік                   | Continuous Clamp Current,            | - 50          | mA   |
| Іок                  | $V_{I} < 0 \text{ or } V_{O} < 0$    |               |      |
| Icc                  | Continuous Current through           | ±100          | mA   |
| lss                  | each Vcc or GND                      |               |      |
|                      | •                                    |               | 8LVC |

#### NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. Vcc terminals.
- 3. All terminals except Vcc.

## **CAPACITANCE** (TA = +25°C, f = 1.0MHz)

| Symbol | Parameter <sup>(1)</sup> | Conditions | Тур. | Max. | Unit      |
|--------|--------------------------|------------|------|------|-----------|
| CIN    | Input Capacitance        | VIN = 0V   | 4.5  | 6    | pF        |
| Соит   | Output<br>Capacitance    | Vout = 0V  | 5.5  | 8    | pF        |
| Ci/o   | I/O Port<br>Capacitance  | VIN = 0V   | 6.5  | 8    | pF        |
|        |                          |            |      |      | 8LVC Link |

NOTE:

1. As applicable to the device type.

# FUNCTION TABLE (each latch) <sup>(1)</sup>

|    | Inputs |    | Outputs        |
|----|--------|----|----------------|
| OE | LE     | хD | xQ             |
| L  | Н      | Н  | Н              |
| L  | Н      | L  | L              |
| L  | L      | Х  | Q <sub>0</sub> |
| Н  | Х      | Х  | Z              |

NOTE:

- 1. H = HIGH Voltage Level
  - L = LOW Voltage Level

X = Don't Care

- Z = High-Impedance
- $Q_0$  = Level of Q before the indicated steady-state input conditions were established.

## DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified: Operating Condition: TA = –  $40^{\circ}$ C To + $85^{\circ}$ C

| Symbol       | Parameter                                   | -                                                      | Test Conditions              | Min. | Typ. <sup>(1)</sup> | Max.  | Unit |
|--------------|---------------------------------------------|--------------------------------------------------------|------------------------------|------|---------------------|-------|------|
| Vih          | Input HIGH Voltage Level                    | Vcc = 2.3V to 2.7V                                     |                              | 1.7  | _                   | _     | V    |
|              |                                             | Vcc = 2.7V to 3.6V                                     |                              | 2    | _                   | _     |      |
| VIL          | Input LOW Voltage Level                     | Vcc = 2.3V to 2.7V                                     |                              | _    | _                   | 0.7   | V    |
|              |                                             | Vcc = 2.7V to 3.6V                                     |                              | _    | _                   | 0.8   |      |
| liµ<br>li∟   | Input Leakage Current                       | VCC = 3.6V                                             | VI = 0 to 5.5V               | -    | —                   | ±5    | μA   |
| Іогн         | High Impedance Output Current               | Vcc = 3.6V                                             | Vo = 0 to 5.5V               | -    | _                   | ±10   | μA   |
| Iozl         | (3-State Output pins)                       |                                                        |                              |      |                     |       |      |
| IOFF         | Input/Output Power Off Leakage              | Vcc = 0V, VIN or Vo                                    | ≤ 5.5V                       | _    | _                   | ±50   | μA   |
| Vik          | Clamp Diode Voltage                         | Vcc = 2.3V, IIN = - 1                                  | 18mA                         | -    | - 0.7               | - 1.2 | V    |
| Vн           | Input Hysteresis                            | Vcc = 3.3V                                             |                              | _    | 100                 | _     | mV   |
| Iccl<br>Iccн | Quiescent Power Supply Current              | Vcc = 3.6V                                             | VIN = GND or Vcc             | _    | —                   | 10    | μA   |
| lccz         |                                             |                                                        | $3.6 \le VIN \le 5.5V^{(2)}$ | _    | _                   | 10    |      |
| Δlcc         | Quiescent Power Supply<br>Current Variation | One input at Vcc - 0.6V,<br>other inputs at Vcc or GND |                              | -    | —                   | 500   |      |

NOTES:

1. Typical values are at Vcc = 3.3V, +25°C ambient.

2. This applies in the disabled state only.

## **BUS-HOLD CHARACTERISTICS**

| Symbol | Parameter <sup>(1)</sup>         |            | Test Conditions | Min. | Тур. <sup>(2)</sup> | Max.  | Unit     |
|--------|----------------------------------|------------|-----------------|------|---------------------|-------|----------|
| Івнн   | Bus-Hold Input Sustain Current   | Vcc = 3.0V | VI = 2.0V       | - 75 | _                   |       | μA       |
| Ibhl   |                                  |            | VI = 0.8V       | 75   | _                   | _     |          |
| Івнн   | Bus-Hold Input Sustain Current   | Vcc = 2.3V | VI = 1.7V       | —    | _                   | _     | μA       |
| Ibhl   |                                  |            | VI = 0.7V       | —    | _                   | _     |          |
| Івнно  | Bus-Hold Input Overdrive Current | Vcc = 3.6V | VI = 0 to 3.6V  | —    | _                   | ± 500 | μA       |
| Ibhlo  |                                  |            |                 |      |                     |       | 8LVC Lin |

### NOTES:

1. Pins with Bus-hold are identified in the pin description.

2. Typical values are at Vcc = 3.3V, +25°C ambient.

## **OUTPUT DRIVE CHARACTERISTICS**

| Symbol | Parameter           | Test               | Conditions <sup>(1)</sup> | Min.      | Max. | Unit |
|--------|---------------------|--------------------|---------------------------|-----------|------|------|
| Vон    | Output HIGH Voltage | Vcc = 2.3V to 3.6V | Iон = - 0.1mA             | Vcc – 0.2 | _    | V    |
|        |                     | Vcc = 2.3V         | Iон = – 6mA               | 2         | _    |      |
|        |                     | Vcc = 2.3V         | Iон = – 12mA              | 1.7       | _    |      |
|        |                     | Vcc = 2.7V         |                           | 2.2       | _    |      |
|        |                     | Vcc = 3.0V         |                           | 2.4       | _    |      |
|        |                     | Vcc = 3.0V         | Iон = – 24mA              | 2.2       | -    |      |
| Vol    | Output LOW Voltage  | Vcc = 2.3V to 3.6V | Iol = 0.1mA               | —         | 0.2  | V    |
|        |                     | Vcc = 2.3V         | Iol = 6mA                 |           | 0.4  |      |
|        |                     |                    | Iol = 12mA                | _         | 0.7  |      |
|        |                     | Vcc = 2.7V         | Iol = 12mA                | —         | 0.4  |      |
|        |                     | Vcc = 3.0V         | Iol = 24mA                | _         | 0.55 | 1    |
|        |                     |                    | I <sub>OL</sub> = 12mA    |           | 0.4  |      |

NOTE:

1. VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = − 40°C to +85°C.

# OPERATING CHARACTERISTICS, V<sub>CC</sub> = 3.3V $\pm$ 0.3V, T<sub>A</sub> = 25°C

| Sy  | ymbol | Parameter                                                | Test Conditions     | Typical | Unit |
|-----|-------|----------------------------------------------------------|---------------------|---------|------|
| Сре | D     | Power Dissipation Capacitance per latch Outputs enabled  | CL = 0pF, f = 10Mhz | 46      | pF   |
| Сре | D     | Power Dissipation Capacitance per latch Outputs disabled |                     | 3       | pF   |

## SWITCHING CHARACTERISTICS (1)

|              |                                         | Vcc = 2 | .5±0.2V | Vcc = | = 2.7V | Vcc = 3. | 3V±0.3V |      |
|--------------|-----------------------------------------|---------|---------|-------|--------|----------|---------|------|
| Symbol       | Parameter                               | Min.    | Max.    | Min.  | Max.   | Min.     | Max.    | Unit |
| <b>t</b> PLH | Propagation Delay                       | _       | _       | _     | 7.8    | 1.5      | 6.8     | ns   |
| <b>t</b> PHL | xD to xQ                                |         |         |       |        |          |         |      |
| <b>t</b> PLH | Propagation Delay                       | -       | —       | —     | 8.2    | 2        | 7.6     | ns   |
| <b>t</b> PHL | LE to xQ                                |         |         |       |        |          |         |      |
| tрzн         | Output Enable Time                      | —       | _       | —     | 8.7    | 1.5      | 7.7     | ns   |
| tPZL         | CE to xQ                                |         |         |       |        |          |         |      |
| tрнz         | Output Disable Time                     | _       | _       | _     | 7.6    | 1.5      | 7       | ns   |
| tplz         | OE to xQ                                |         |         |       |        |          |         |      |
| tw           | Pulse Duration, LE HIGH                 | —       | _       | 3.3   | _      | 3.3      | _       | ns   |
| tsu          | Setup Time, data before LE $\downarrow$ | —       | _       | 2     | —      | 2        | _       | ns   |
| tн           | Hold Time, data after LE $\downarrow$   | _       | _       | 1.5   | _      | 1.5      | _       | ns   |
| tsk(0)       | Output Skew <sup>(2)</sup>              | —       | —       | —     | —      | —        | 500     | ps   |

NOTES:

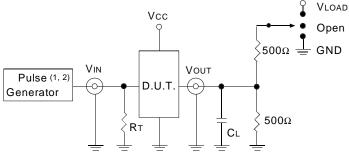
1. See test circuits and waveforms. TA =  $-40^{\circ}$ C to + 85°C.

2. Skew between any two outputs of the same package and switching in the same direction.

### IDT74LVCH373A 3.3V CMOS OCTAL TRANSPARENT D-TYPE LATCH

### **EXTENDED COMMERCIAL TEMPERATURE RANGE**

0V


LVC Link

# TEST CIRCUITS AND WAVEFORMS

### **TEST CONDITIONS**

| $V_{CC}^{(1)} = 3.3V \pm 0.3V$ | $V_{CC}^{(1)} = 2.7V$         | Vcc <sup>(2)</sup> = 2.5V ±0.2V             | Unit                                                                    |
|--------------------------------|-------------------------------|---------------------------------------------|-------------------------------------------------------------------------|
| 6                              | 6                             | 2 x Vcc                                     | ٧                                                                       |
| 2.7                            | 2.7                           | Vcc                                         | ۷                                                                       |
| 1.5                            | 1.5                           | Vcc/2                                       | ۷                                                                       |
| 300                            | 300                           | 150                                         | mV                                                                      |
| 300                            | 300                           | 150                                         | mV                                                                      |
| 50                             | 50                            | 30                                          | pF                                                                      |
|                                | 6<br>2.7<br>1.5<br>300<br>300 | 6 6   2.7 2.7   1.5 1.5   300 300   300 300 | 6 6 2 x Vcc   2.7 2.7 Vcc   1.5 1.5 Vcc / 2   300 300 150   300 300 150 |

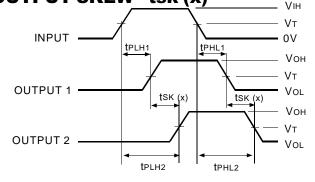
## **TEST CIRCUITS FOR ALL OUTPUTS**



#### LVC Link

### **DEFINITIONS:**

- CL= Load capacitance: includes jig and probe capacitance.
- RT = Termination resistance: should be equal to ZOUT of the Pulse Generator.

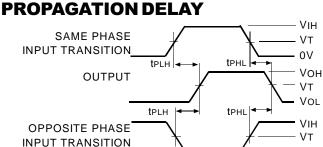

#### NOTES:

- 1. Pulse Generator for All Pulses: Rate  $\leq$  10MHz; tF  $\leq$  2.5ns; tR  $\leq$  2.5ns.
- 2. Pulse Generator for All Pulses: Rate  $\leq$  10MHz; tF  $\leq$  2ns; tR  $\leq$  2ns.

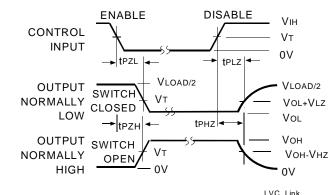
## SWITCH POSITION

| Test            | Switch          |
|-----------------|-----------------|
| Open Drain      | VLOAD           |
| Disable Low     |                 |
| Enable Low      |                 |
| Disable High    | GND             |
| Enable High     |                 |
| All Other tests | Open 81.VC Link |

# OUTPUT SKEW - tsk (x)



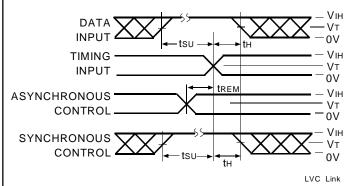

tSK(x) = |tPLH2 - tPLH1| or |tPHL2 - tPHL1|


NOTES:

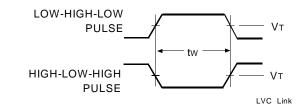
1. For tsκ(o) OUTPUT1 and OUTPUT2 are any two outputs.

For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank



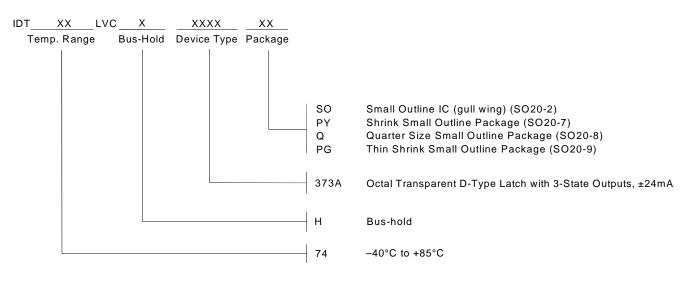

# **ENABLE AND DISABLE TIMES**




### NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

# SET-UP, HOLD, AND RELEASE TIMES




# **PULSE WIDTH**



LVC Link

## **ORDERING INFORMATION**





*CORPORATE HEADQUARTERS* 2975 Stender Way Santa Clara, CA 95054 for SALES: 800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com\*

\*To search for sales office near you, please click the sales button found on our home page or dial the 800# above and press 2. The IDT logo is a registered trademark of Integrated Device Technology, Inc.