

3.3V CMOS 18-BIT UNIVERSAL BUS TRANSCEIVER WITH 3-STATE OUTPUTS, 5 VOLT TOLERANT I/O, BUS-HOLD

IDT74LVCH16601A

FEATURES:

- Typical tsk(0) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015;
 > 200V using machine model (C = 200pF, R = 0)
- 0.635mm pitch SSOP, 0.50mm pitch TSSOP and 0.40mm pitch TVSOP packages
- Extended commercial range of -40°C to +85°C
- Vcc = 3.3V ±0.3V, Normal Range
- Vcc = 2.7V to 3.6V, Extended Range
- CMOS power levels (0.4µW typ. static)
- All inputs, outputs and I/O are 5 Volt tolerant
- Supports hot insertion

Drive Features for LVCH16601A:

- High Output Drivers: ±24mA
- Reduced system switching noise

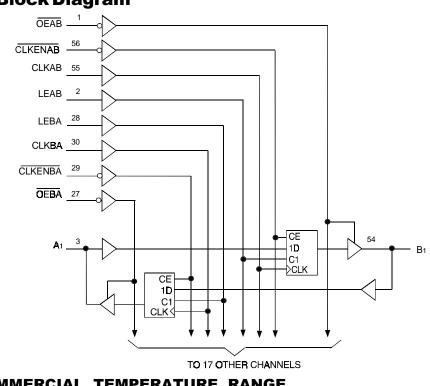
APPLICATIONS:

- 5V and 3.3V mixed voltage systems
- Data communication and telecommunication systems

DESCRIPTION

The LVCH16601A 18-bit universal bus transceiver is built using advanced dual metal CMOS technology. The LVCH16601A combines Dtype latches and D-type flip-flops to allow data flow in transparent, latched and clocked modes.

Functional Block Diagram

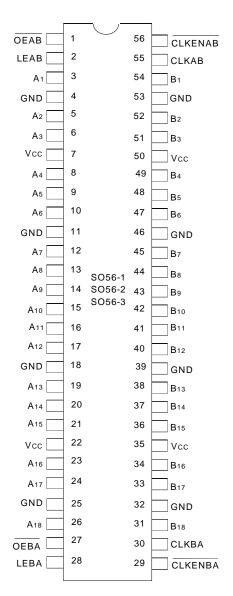

Data flow in each direction is controlled by output-enable (OEAB and OEBA), latched-enable (LEAB and LEBA), and clock (CLKAB and CLKBA) inputs. The clock can be controlled by the clock-enable (CLKENAB and CLKENBA) inputs.

For A-to-B data flow, the device operates in the transparent mode when LEAB is high. When LEAB is low, the A data is latched if CLKAB is held at a high or low logic level. If LEAB is low, the A-bus data is stored in the latch/ flip-flop on the low-to-high transition of CLKAB. Output enable OEAB is active low. When OEAB is low, the outputs are active. When OEAB is high, the outputs are in the high-impedance state. Data flow for B to A is similar to that of A to B but uses OEBA, LEBA, CLKBA and CLKENBA.

All pins can be driven from either 3.3V or 5V devices. This feature allows the use of this device as a translator in a mixed 3.3V/5V supply system.

The LVCH16601A has been designed with a ± 24 mA output driver. This driver is capable of driving a moderate to heavy load while maintaining speed performance.

The LVCH16601A has "bus-hold" which retains the inputs' last state whenever the input goes to a high impedance. This prevents floating inputs and eliminates the need for pull-up/down resistors.



EXTENDED COMMERCIAL TEMPERATURE RANGE

MARCH 1999

EXTENDED COMMERCIAL TEMPERATURE RANGE

PIN CONFIGURATION

SSOP/ TSSOP/ TVSOP TOP VIEW

PIN DESCRIPTION

Pin Names	Description
OEAB	A-to-B Output Enable Input (Active LOW)
OEBA	B-to-A Output Enable Input (Active LOW)
LEAB	A-to-B Latch Enable Input
LEBA	B-to-A Latch Enable Input
CLKAB	A-to-B Clock Input
CLKBA	B-to-A Clock Input
Ax	A-to-B Data Inputs or B-to-A 3-State Outputs ⁽¹⁾
Вх	B-to-A Data Inputs or A-to-B 3-State Outputs ⁽¹⁾
CLKENAB	A-to-B Clock Enable Input (Active LOW)
CLKENBA	B-to-A Clock Enable Input (Active LOW)

NOTE:

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Description	Max.	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	– 0.5 to +6.5	V
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	– 0.5 to +6.5	V
Tstg	Storage Temperature	– 65 to +150	°C
Ιουτ	DC Output Current	– 50 to +50	mA
Ік	Continuous Clamp Current,	- 50	mA
Іок	VI < 0 or Vo < 0		
Icc	Continuous Current through	±100	mA
lss	each Vcc or GND		
		•	LVC Link

NOTES:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. Vcc terminals.

3. All terminals except Vcc.

	•				
Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
Cin	Input Capacitance	VIN = 0V	4.5	6	pF
Соит	Output Capacitance	Vout = 0V	6.5	8	pF
Ci/o	I/O Port Capacitance	VIN = 0V	6.5	8	pF
					LVC Link

CAPACITANCE (TA = +25°C, f = 1.0MHz)

NOTE:

1. As applicable to the device type.

FUNCTION TABLE (1, 2)

	Inputs				
CLKENAB	OEAB	LEAB	CLKAB	Ах	Вх
Х	Н	Х	Х	Х	Z
Х	L	Н	Х	L	L
Х	L	Н	Х	Н	Н
Н	L	L	Х	Х	B ₀ ⁽³⁾
L	L	L	\uparrow	L	L
L	L	L	\uparrow	Н	Н
L	L	L	L	Х	B ₀ ⁽³⁾
L	L	L	Н	Х	B ₀ ⁽⁴⁾

NOTES:

1. H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

Z = High-Impedance

- \uparrow = LOW-to-HIGH Transition
- A-to-B data flow is shown. B-to-A data flow is similar but uses OEBA, LEBA, CLKBA and CLKENBA.
- Output level before the indicated steady-state input conditions were established.
- Output level before the indicated steady-state input conditions were established, provided that CLKAB was HIGH before LEAB went LOW.

^{1.} These pins have "Bus-hold". All other pins are standard inputs, outputs, or I/Os.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified: Operating Condition: TA = -40° C to $+85^{\circ}$ C

Symbol	Parameter		Test Conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
Vih	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	_	_	V
		Vcc = 2.7V to 3.6V		2	_	—	
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		_	_	0.7	V
		Vcc = 2.7V to 3.6V		_	_	0.8	
lih lil	Input Leakage Current	VCC = 3.6V	Vi = 0 to 5.5V	_	—	±5	μA
Іоzн	High Impedance Output Current	Vcc = 3.6V	Vo = 0 to 5.5V	_	_	±10	μA
Iozl	(3-State Output pins)						
IOFF	Input/Output Power Off Leakage	Vcc = 0V, VIN or Vo	Vcc = 0V, VIN or Vo \leq 5.5V		_	±50	μA
Vik	Clamp Diode Voltage	Vcc = 2.3V, IIN = -1	8mA	_	- 0.7	- 1.2	V
Vн	Input Hysteresis	Vcc = 3.3V		_	100	_	mV
ICCL ICCH	Quiescent Power Supply Current	Vcc = 3.6V	VIN = GND or Vcc	_	—	10	μA
lccz			$3.6 \le VIN \le 5.5V^{(2)}$	_	_	10	
Δlcc	Quiescent Power Supply Current Variation	One input at Vcc - 0.6V other inputs at Vcc or GND		—	—	500	

NOTES:

1. Typical values are at Vcc = 3.3V, +25°C ambient.

2. This applies in the disabled state only.

BUS-HOLD CHARACTERISTICS

Symbol	Parameter ⁽¹⁾		Test Conditions	Min.	Typ. ⁽²⁾	Max.	Unit
Івнн	Bus-Hold Input Sustain Current	Vcc = 3.0V	VI = 2.0V	- 75	-		μA
IBHL			VI = 0.8V	75	—	_	
Івнн	Bus-Hold Input Sustain Current	Vcc = 2.3V	VI = 1.7V	—	_	_	μA
IBHL			VI = 0.7V	_	_		
Івнно	Bus-Hold Input Overdrive Current	Vcc = 3.6V	VI = 0 to 3.6V	—	—	± 500	μA
Ibhlo							

NOTES:

1. Pins with Bus-hold are identified in the pin description.

2. Typical values are at Vcc = 3.3V, +25°C ambient.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test	Test Conditions ⁽¹⁾		Max.	Unit
Vон	Output HIGH Voltage	Vcc = 2.3V to 3.6V	Iон = - 0.1mA	Vcc – 0.2	_	V
		Vcc = 2.3V	Iон = – 6mA	2	_	
		Vcc = 2.3V	Iон = – 12mA	1.7	_	
		Vcc = 2.7V		2.2	_	
		Vcc = 3.0V		2.4	_	
		Vcc = 3.0V	Iон = – 24mA	2.2	_	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	IOL = 0.1mA	—	0.2	V
		Vcc = 2.3V	Iol = 6mA	—	0.4	
			Iol = 12mA	—	0.7	
		Vcc = 2.7V	Iol = 12mA	—	0.4	
		Vcc = 3.0V	Iol = 24mA	—	0.55	

NOTE:

1. VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = − 40°C to +85°C.

OPERATING CHARACTERISTICS, V_{CC} = 3.3V \pm 0.3V, T_A = 25°C

Symbol	Parameter	Test Conditions	Typical	Unit
Cpd	Power Dissipation Capacitance per transceiver Outputs enabled	CL = 0pF, f = 10Mhz		pF
Cpd	Power Dissipation Capacitance per transceiver Outputs disabled			pF

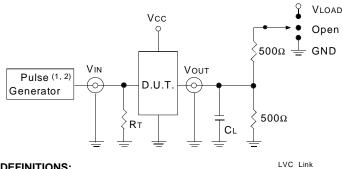
SWITCHING CHARACTERISTICS (1)

			Vcc	: = 2.7V	Vcc = 3.3	V±0.3V	
Symbol	Parameter		Min.	Max.	Min.	Max.	Unit
tPLH	Propagation Delay		—	5.4	—	4.6	ns
tPHL touu	Ax to Bx or Bx to Ax Propagation Delay			6.2		5.2	n 0
tplh tphl	LEBA to Ax, LEAB to Bx		—	0.2	_	5.2	ns
tPHL tPLH	Propagation Delay			6.3		5.3	ns
tPLH tPHL	CLKBA to Ax, CLKAB to I	Rv	—	0.5	_	0.5	115
tPZH	Output Enable Time	DA		6.8		5.6	ns
tPZH tPZL	\overline{OEBA} to Ax, \overline{OEAB} to Bx		—	0.0	_	5.0	115
tPHZ	Output Disable Time			6		5.2	ns
tPHZ	\overline{OEBA} to Ax, \overline{OEAB} to Bx		—	0	_	5.2	115
tsu	Set-up Time, HIGH or LO		1.5		1.5		ns
130	Ax to CLKAB, Bx to CLKE		1.5	_	1.5	_	115
tн	Hold Time HIGH or LOW		0.8		0.8		ns
41	Ax after CLKAB, Bx after CLKBA		0.0		0.0	_	115
tsu	Set-up Time	Clock	1		1		ns
100	HIGH or LOW	LOW	•				
	Ax to LEAB,	Clock	1	_	1	_	ns
	Bx to LEBA	HIGH					
tsu	Set-up Time,		2.1		2.1		ns
	CLKENAB to CLKAB						
tsu	Set-up Time,		2.1		2.1		ns
	CLKENBA to CLKBA						
tн	Hold Time, HIGH or LOW	1	1.8	_	1.8	_	ns
	Ax after LEAB, Bx after L	EBA					
tн	Hold Time,		0.5	—	0.5	_	ns
	CLKENAB after CLKAB						
tн	Hold Time,		0.5	_	0.5	—	ns
	CLKENBA after CLKBA						
tw	LEAB or LEBA Pulse Wid	lth	3	_	3	—	ns
	HIGH						
tw	CLKAB or CLKBA Pulse	Width	3	_	3	—	ns
	HIGH or LOW						
tsκ(o)	Output Skew ⁽²⁾		_	_	_	500	ps

NOTES:

1. See test circuits and waveforms. TA = -40° C to $+85^{\circ}$ C.

2. Skew between any two outputs of the same package and switching in the same direction.


IDT74LVCH16601A 3.3V CMOS 18-BIT UNIVERSAL BUS TRANSCEIVER

TEST CIRCUITS AND WAVEFORMS

TEST CONDITIONS

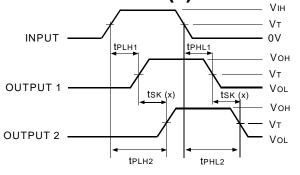
Symbol	Vcc ⁽¹⁾ = 3.3V ±0.3V	$Vcc^{(1)} = 2.7V$	Vcc ⁽²⁾ = 2.5V ±0.2V	Unit
VLOAD	6	6	2 x Vcc	۷
Vih	2.7	2.7	Vcc	۷
Vτ	1.5	1.5	Vcc/2	۷
Vlz	300	300	150	mV
VHZ	300	300	150	mV
CL	50	50	30	pF
				LVC Link

TEST CIRCUITS FOR ALL OUTPUTS

DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance. RT = Termination resistance: should be equal to ZOUT of the Pulse

Generator.

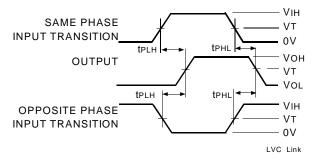

NOTE:

- 1. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2.5ns; tR \leq 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 10MHz: tF \leq 2ns: tR \leq 2ns.

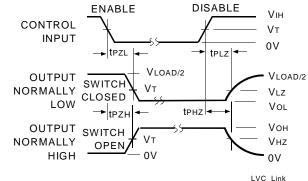
SWITCH POSITION

Test	Switch
Open Drain	VLOAD
Disable Low	
Enable Low	
Disable High	GND
Enable High	
All Other tests	Open
	LVC Link

OUTPUT SKEW - tsk (x)

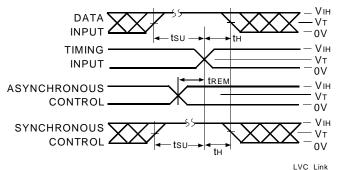


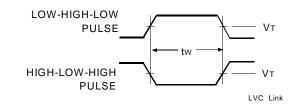
tSK(x) = |tPLH2 - tPLH1| or |tPHL2 - tPHL1|


NOTES:

- 1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.
- For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank. 2.

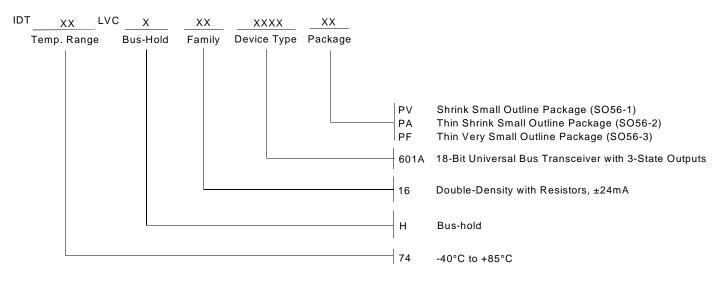
PROPAGATION DELAY


ENABLE AND DISABLE TIMES


NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

SET-UP, HOLD, AND RELEASE TIMES



PULSEWIDTH

LVC Link

ORDERING INFORMATION

CORPORATE HEADQUARTERS 2975 Stender Way Santa Clara, CA 95054 for SALES: 800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com*

*To search for sales office near you, please click the sales button found on our home page or dial the 800# above and press 2. The IDT logo is a registered trademark of Integrated Device Technology, Inc.