

3.3V CMOS16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS, 5 VOLT TOLERANT I/O AND BUS-HOLD

FEATURES:

- Typical tsk(0) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015;
 > 200V using machine model (C = 200pF, R = 0)
- 0.635mm pitch SSOP, 0.50mm pitch TSSOP and 0.40mm pitch TVSOP packages
- Extended commercial range of -40°C to +85°C
- Vcc = 3.3V ±0.3V, Normal Range
- Vcc = 2.7V to 3.6V, Extended Range
- CMOS power levels (0.4µ W typ. static)
- All inputs, outputs and I/O are 5 Volt tolerant
- Supports hot insertion

Drive Features for LVCH16540A:

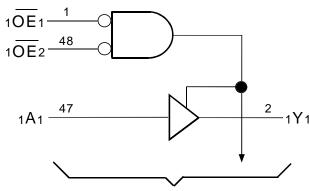
- High Output Drivers: ±24mA
- Reduced system switching noise

APPLICATIONS:

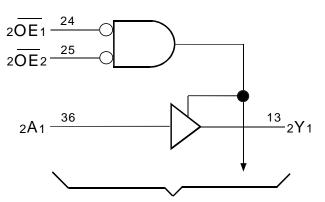
- 5V and 3.3V mixed voltage systems
- · Data communication and telecommunication systems

FUNCTIONAL BLOCK DIAGRAM

DESCRIPTION:

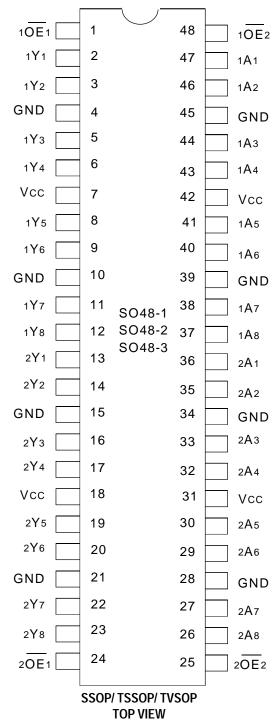

This 16-bit buffer/driver is built using advanced dual metal CMOS technology. The 3-state control gate is a 2-input AND gate with active-low inputs so that if either output-enable ($\overline{OE1}$ or $\overline{OE2}$) input is high, all corresponding outputs are in the high-impedance state. To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to Vcc through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

IDT74LVCH16540A


All pins of this 16-bit buffer/driver can be driven from either 3.3V or 5V devices. This feature allows the use of this device as a translator in a mixed 3.3V/5V supply system.

The LVCH16540A has been designed with a ± 24 mA output driver. The driver is capable of driving a moderate to heavy load while maintaining speed performance.

The LVCH16540A has "bus-hold" which retains the inputs' last state whenever the input goes to a high impedance. This prevents floating inputs and eliminates the need for pull-up/down resistors.


TO SEVEN OTHER CHANNELS

TO SEVEN OTHER CHANNELS

EXTENDED COMMERCIAL TEMPERATURE RANGE

PIN CONFIGURATION

EXTENDED COMMERCIAL TEMPERATURE RANGE

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Description	Max.	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	– 0.5 to +6.5	V
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	– 0.5 to +6.5	V
Tstg	Storage Temperature	– 65 to +150	°C
Ιουτ	DC Output Current	– 50 to +50	mA
Ік	Continuous Clamp Current,	- 50	mA
Іок	VI < 0 or Vo < 0		
Icc	Continuous Current through	±100	mA
lss	each Vcc or GND		
		•	LVC Link

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- Vcc terminals.
 All terminals except Vcc.

CAPACITANCE (TA = +25°C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
Cin	Input Capacitance	VIN = 0V	4.5	6	pF
Соит	Output Capacitance	Vout = 0V	6.5	8	pF
Ci/o	I/O Port Capacitance	VIN = 0V	6.5	8	pF

NOTE:

1. As applicable to the device type.

PIN DESCRIPTION

Pin Names	Description
xOEx	3–State Output Enable Inputs (Active LOW)
хАх	Data Inputs ⁽¹⁾
хҮх	3-State Outputs

NOTE:

1. These pins have "Bus-hold". All other pins are standard inputs, outputs, or I/Os.

FUNCTION TABLE (each 8-bit section) ⁽¹⁾

	Inputs		Outputs
xOE1	xOE2	хАх	хҮх
L	L	L	Н
L	L	Н	L
Н	Х	Х	Z
Х	Н	Х	Z

NOTE:

- 1. H = HIGH Voltage Level
 - L = LOW Voltage Level
 - X = Don't Care
 - Z = High-Impedance

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified: Operating Condition: TA = -40° C to $+85^{\circ}$ C

Symbol	Parameter		Test Conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
Vih	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	_	—	V
		Vcc = 2.7V to 3.6V		2	_	—	
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		_	_	0.7	V
		Vcc = 2.7V to 3.6V		_	_	0.8	
lih lil	Input Leakage Current	Vcc = 3.6V	VI = 0 to 5.5V	_	_	±5	μA
Іоzн	High Impedance Output Current	Vcc = 3.6V	Vo = 0 to 5.5V	_	_	±10	μA
Iozl	(3-State Output pins)						
IOFF	Input/Output Power Off Leakage	Vcc = 0V, VIN or Vo	≤ 5.5V	_	_	±50	μA
Vik	Clamp Diode Voltage	Vcc = 2.3V, IIN = - 1	8mA	_	- 0.7	- 1.2	V
Vн	Input Hysteresis	Vcc = 3.3V		_	100	—	mV
ICCL ICCH	Quiescent Power Supply Current	Vcc = 3.6V	VIN = GND or VCC	_	—	10	μA
lccz			$3.6 \le VIN \le 5.5V^{(2)}$	_	_	10	
Δlcc	Quiescent Power Supply Current Variation	One input at Vcc - 0 other inputs at Vcc c		—	—	500	μA LVC Lir

NOTES:

1. Typical values are at Vcc = 3.3V, +25°C ambient.

2. This applies in the disabled state only.

BUS-HOLD CHARACTERISTICS

Symbol	Parameter ⁽¹⁾		Test Conditions	Min.	Typ. ⁽²⁾	Max.	Unit
Івнн	Bus-Hold Input Sustain Current	$V_{CC} = 3.0V$	VI = 2.0V	- 75	_		μA
IBHL			VI = 0.8V	75	_	_	
Івнн	Bus-Hold Input Sustain Current	Vcc = 2.3V	VI = 1.7V	_	_	_	μA
Ibhl			VI = 0.7V	_	_		
Івнно	Bus-Hold Input Overdrive Current	Vcc = 3.6V	VI = 0 to 3.6V	_	_	± 500	μA
Ibhlo							

NOTES:

1. Pins with Bus-hold are identified in the pin description.

2. Typical values are at Vcc = 3.3V, +25°C ambient.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Co	nditions ⁽¹⁾	Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = 2.3V to 3.6V	Iон = - 0.1mA	Vcc – 0.2	_	V
		Vcc = 2.3V	IOH = - 6mA	2	_	
		Vcc = 2.3V	Іон = – 12mA	1.7	_	
		Vcc = 2.7V		2.2	_	
		Vcc = 3.0V		2.4	_	
		Vcc = 3.0V	Іон = – 24mA	2.2	_	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	IoL = 0.1mA	-	0.2	V
		Vcc = 2.3V	Iol = 6mA	—	0.4	
			Iol = 12mA	—	0.7	
		Vcc = 2.7V	Iol = 12mA	_	0.4	
		Vcc = 3.0V	Iol = 24mA	_	0.55	
L	1	1		1	2.00	LVC

NOTE:

1. VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = − 40°C to +85°C.

OPERATING CHARACTERISTICS, V_CC = 3.3V \pm 0.3V, T_A = 25°C

Symbol	Parameter	Test Conditions	Typical	Unit
Cpd	Power Dissipation Capacitance per buffer/driver Outputs enabled	CL = 0pF, f = 10Mhz	34	pF
Cpd	Power Dissipation Capacitance per buffer/driver Outputs disabled		2	pF

SWITCHING CHARACTERISTICS (1)

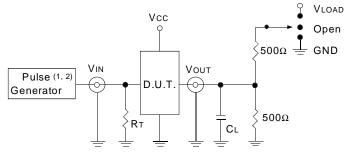
		Vcc = 2.7V		Vcc = 3.3V±0.3V		
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
t PLH	Propagation Delay		4.5	1	3.7	ns
t PHL	xAx to xYx					
tрzн	Output Enable Time	_	5.9	1.5	4.8	n 0
tPZL	xOEx to xYx					ns
t PHZ	Output Disable Time	_	6.3	1.6	5.9	n 0
tPLZ	xOEx to xYx					ns
tsk(o)	Output Skew ⁽²⁾				500	ps

NOTES:

1. See test circuits and waveforms. $TA = -40^{\circ}C$ to $+85^{\circ}C$.

2. Skew between any two outputs of the same package and switching in the same direction.

IDT74LVCH16540A 3.3V CMOS 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS


EXTENDEDCOMMERCIALTEMPERATURERANGE

TEST CIRCUITS AND WAVEFORMS

TEST CONDITIONS

Symbol	Vcc ⁽¹⁾ = 3.3V ±0.3V	$Vcc^{(1)} = 2.7V$	Vcc ⁽²⁾ = 2.5V ±0.2V	Unit
VLOAD	6	6	2 x Vcc	۷
Viн	2.7	2.7	Vcc	۷
VT	1.5	1.5	Vcc/2	۷
Vlz	300	300	150	mV
Vhz	300	300	150	mV
CL	50	50	30	pF
				LVC Link

TEST CIRCUITS FOR ALL OUTPUTS

DEFINITIONS:

- CL = Load capacitance: includes jig and probe capacitance.
- RT = Termination resistance: should be equal to ZOUT of the Pulse Generator.

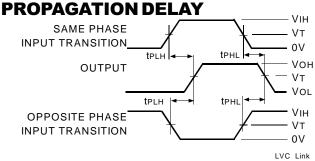
NOTE:

- 1. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2.5ns; tR \leq 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2ns; tR \leq 2ns.

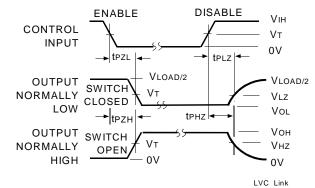
SWITCH POSITION

Test	Switch
Open Drain	VLOAD
Disable Low	
Enable Low	
Disable High	GND
Enable High	
All Other tests	Open
	LVC Link

OUTPUT SKEW - tsk (x) Vін Vт INPUT 0V **t**PLH1 tPHL1 Vон Vт OUTPUT 1 · Vol tsk (x) tsk (x) Vон Vт OUTPUT 2 Vol tPLH2 tPHL2

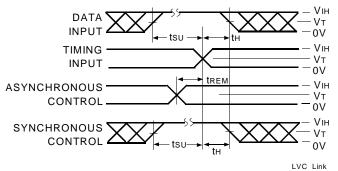

tSK(x) = |tPLH2 - tPLH1| or |tPHL2 - tPHL1|

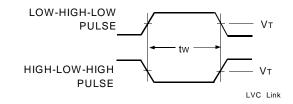
LVC Link


IVC Link

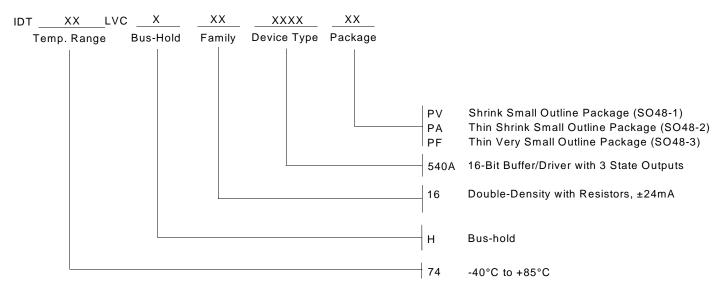
NOTES:

- 1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.
- 2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.


ENABLE AND DISABLE TIMES


NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.


SET-UP, HOLD, AND RELEASE TIMES

PULSE WIDTH

ORDERING INFORMATION

CORPORATE HEADQUARTERS 2975 Stender Way Santa Clara, CA 95054 for SALES: 800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com*

*To search for sales office near you, please click the sales button found on our home page or dial the 800# above and press 2. The IDT logo is a registered trademark of Integrated Device Technology, Inc.