

3.3V CMOS 12-BIT SYNCHRONOUS BUS EXCHANGER WITH BUS-HOLD AND 5 VOLT TOLERANT I/O

IDT74LVCH16276A

FEATURES:

- Typical tsk(0) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015;
 > 200V using machine model (C = 200pF, R = 0)
- 0.635mm pitch SSOP, 0.50mm pitch TSSOP and 0.40mm pitch TVSOP packages
- Extended commercial range of -40°C to +85°C
- Vcc = $3.3V \pm 0.3V$, Normal Range
- Vcc = 2.7V to 3.6V, Extended Range
- CMOS power levels (0.4µW typ. static)
- All inputs, outputs and I/O are 5 Volt tolerant
- Supports hot insertion

Drive Features for LVCH16276A:

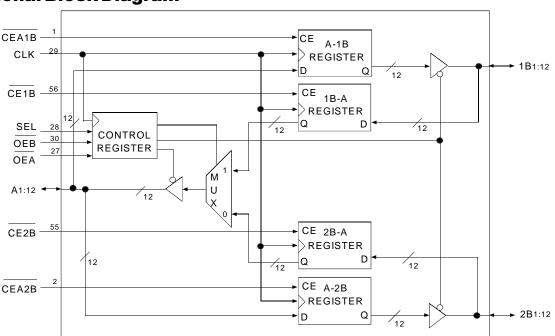
- High Output Drivers: ±24mA
- Reduced system switching noise

APPLICATIONS:

- 5V and 3.3V mixed voltage systems
- · Data communication and telecommunication systems

DESCRIPTION

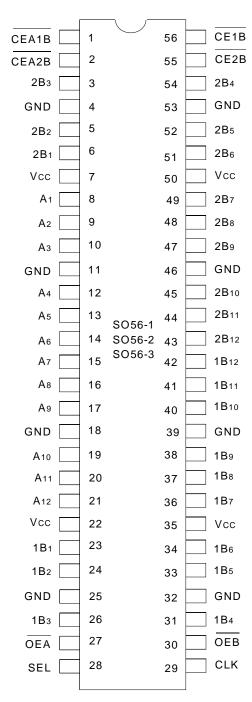
The LVCH16276A synchronous bus exchanger is built using advanced dual metal CMOS technology. The LVCH16276A is a high-speed, bidirectional, 12-bit, registered, bus multiplexer for use in synchronous memory interleaving applications. All registers have a common clock and use a clock enable (CExxx) on each data register to control data sequencing. The output enables and mux select (OEA, OEB and SEL) are also under synchronous control allowing direction changes to be edge triggered events.


The tri-port bus exchanger has three 12-bit ports. Data may be transferred between the A port and either/both of the B ports. The clock enable ($\overline{CE1B}$, $\overline{CE2B}$, $\overline{CEA1B}$ and $\overline{CEA2B}$) inputs control the data storage. Both B ports have a common output enable (\overline{OEB}) to aid in synchronously loading the B registers from the B port.

All pins of the LVCH16276A can be driven from either 3.3V or 5V devices. This feature allows the use of this device as a translator in a mixed 3.3V/5V supply system.

The LVCH16276A has been designed with a ± 24 mA output driver. This driver is capable of driving a moderate to heavy load while maintaining speed performance.

The LVCH16276A has "bus-hold" which retains the inputs' last state whenever the input goes to a high impedance. This prevents floating inputs and eliminates the need for pull-up/down resistors.


Functional Block Diagram

EXTENDED COMMERCIAL TEMPERATURE RANGE

MARCH 1999

PIN CONFIGURATION

SSOP/ TSSOP/ TVSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Description	Max.	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	- 0.5 to +6.5	V
V _{TERM} (3)	Terminal Voltage with Respect to GND	- 0.5 to +6.5	V
Tstg	Storage Temperature	- 65 to +150	°C
Іоит	DC Output Current	- 50 to +50	mA
lıĸ	Continuous Clamp Current,	- 50	mA
Іок	$V_1 < 0$ or $V_0 < 0$		
Icc	Continuous Current through	±100	mA
Iss	each Vcc or GND		

LVC Link

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. Vcc terminals.
- 3. All terminals except Vcc.

CAPACITANCE (TA = +25°C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	4.5	6	pF
Соит	Output Capacitance	Vout = 0V	6.5	8	pF
Cı/o	I/O Port Capacitance	VIN = 0V	6.5	8	pF

LVC Link

NOTE:

1. As applicable to the device type.

PIN DESCRIPTION

A(1:12)	I/O	Bidirectional Data Port A. Usually connected to the CPU's Address/Data bus. ⁽¹⁾
1B(1:12)	I/O	Bidirectional Data Port 1B. Usually connected to the even path or even bank of memory. (1)
2B(1:12)	I/O	Bidirectional Data Port 2B. Usually connected to the odd path or odd bank of memory. (1)
CLK	I	Clock Input.
CEA1B	I	Clock Enable Input for the A-1B Register. If CEA1B is LOW during the rising edge of CLK, data will be clocked into register A-1B (Active LOW).
CEA2B	I	Clock Enable Input for the A-2B Register. If CEA2B is LOW during the rising edge of CLK, data will be clocked into register A-2B (Active LOW).
CE1B	I	Clock Enable Input for the 1B-A Register. If CE1B is LOW during the rising edge of CLK, data will be clocked into register 1B-A (Active LOW).
CE2B	I	Clock Enable Input for the 2B-A Register. If CE2B is LOW during the rising edge of CLK, data will be clocked into register 2B-A (Active LOW).
SEL	I	1B or 2B Part Selection. When HIGH during the rising edge of CLK, SEL enables data transfer from 1B Port to A Port. When LOW during the
		rising edge of CLK, SEL enables data transfer from 2B Port to A Port.
ŌĒĀ	I	Synchronous Output Enable for A Port (Active LOW).
ŌĒB	I	Synchronous Output Enable for 1B Port and 2B Port (Active LOW).

NOTE:

FUNCTION TABLES (1)

	Inputs						
1Bx	2Bx	SEL	CE1B	CE2B	ŌĒĀ	CLK	Ах
Н	Χ	Н	L	Χ	L	1	Н
L	Χ	Н	L	Χ	L	1	L
Х	Χ	Н	Н	Χ	L	1	A ₀ ⁽²⁾
Χ	Н	L	Χ	L	L	1	Н
Χ	L	L	Χ	L	L	1	L
Х	Χ	L	Х	Н	L	1	A ₀ ⁽²⁾
Х	Χ	Χ	Х	Χ	Н	1	Z

		Out	puts			
Ax	CEA1B	CEA2B	OEB	CLK	1Bx	2Bx
Н	L	L	L	1	Н	Н
L	L	L	L	1	L	L
Н	L	Н	L	1	Н	B ₀ ⁽²⁾
L	L	Н	L	1	L	B ₀ ⁽²⁾
Н	Н	L	L	1	B ₀ ⁽²⁾	Н
L	Н	L	L	1	B ₀ ⁽²⁾	L
Х	Н	Н	L	1	B ₀ ⁽²⁾	B ₀ ⁽²⁾
Х	Х	Х	Н	1	Z	Z
Х	Х	Χ	L	1	Active	Active

NOTES:

- 1. H = HIGH Voltage Level
 - L = LOW Voltage Level
 - X = Don't Care
 - Z = High-Impedance
 - ↑ = LOW-to-HIGH Transition
- 2. A_0 , B_0 = Output level before the indicated steady-state input conditions were established.

^{1.} These pins have "Bus-hold". All other pins have inputs, outputs, or I/Os.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: TA = -40°C to +85°C

Symbol	Parameter		Test Conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
ViH	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	_	_	V
		Vcc = 2.7V to 3.6V		2	_	_	
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		_	_	0.7	V
		Vcc = 2.7V to 3.6V		_	_	0.8	
lih lil	Input Leakage Current	VCC = 3.6V	VI = 0 to 5.5V	_	_	±5	μA
lozh	High Impedance Output Current	Vcc = 3.6V	Vo = 0 to 5.5V	_	_	±10	μΑ
lozL	(3-State Output pins)						
loff	Input/Output Power Off Leakage	Vcc = 0V, Vin or Vo	≤ 5.5V	_	_	±50	μA
Vik	Clamp Diode Voltage	Vcc = 2.3V, lin = - 1	8mA	_	- 0.7	- 1.2	V
VH	Input Hysteresis	Vcc = 3.3V		_	100	_	mV
IccL Iccн	Quiescent Power Supply Current	Vcc = 3.6V	VIN = GND or Vcc	_	_	10	μA
Iccz			$3.6 \le VIN \le 5.5V^{(2)}$	_	_	10	
ΔΙCC	Quiescent Power Supply Current Variation	'	One input at Vcc - 0.6V other inputs at Vcc or GND		_	500	μA

NOTES:

- 1. Typical values are at Vcc = 3.3V, +25°C ambient.
- 2. This applies in the disabled state only.

BUS-HOLD CHARACTERISTICS

Symbol	Parameter ⁽¹⁾	Test Conditions		Min.	Typ. ⁽²⁾	Max.	Unit
Івнн	Bus-Hold Input Sustain Current	Vcc = 3.0V	VI = 2.0V	- 75	_	_	μA
Івнь			VI = 0.8V	75	_	_	
Івнн	Bus-Hold Input Sustain Current	Vcc = 2.3V	VI = 1.7V	_	_	_	μA
Івнь			VI = 0.7V	_	_	_	
Івнно	Bus-Hold Input Overdrive Current	Vcc = 3.6V	VI = 0 to 3.6V	_	_	± 500	μA
Івньо							IVC Link

NOTES

- 1. Pins with Bus-hold are identified in the pin description.
- 2. Typical values are at Vcc = 3.3V, +25°C ambient.

LVC Link

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Cor	nditions ⁽¹⁾	Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = 2.3V to 3.6V	I _{OH} = - 0.1mA	Vcc - 0.2		V
		Vcc = 2.3V	IOH = -6mA	2	_	
		Vcc = 2.3V	I _{OH} = - 12mA	1.7	_	
		Vcc = 2.7V		2.2	_	
		Vcc = 3.0V]	2.4	_	
		Vcc = 3.0V	IOH = - 24mA	2.2	_	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	IoL = 0.1mA	_	0.2	V
		Vcc = 2.3V	IOL = 6mA	_	0.4	
			IoL = 12mA	_	0.7	
		Vcc = 2.7V	IoL = 12mA	_	0.4	
		Vcc = 3.0V	IoL = 24mA	-	0.55	
		1	1			LVC I

NOTE:

1. VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = - 40°C to +85°C.

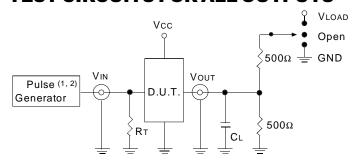
OPERATING CHARACTERISTICS, V_{CC} = 3.3V \pm 0.3V, T_{A} = 25°C

Symbol	Parameter	Test Conditions	Typical	Unit
CPD	Power Dissipation Capacitance per bus exchanger Outputs enabled	CL = 0pF, f = 10Mhz		pF
CPD	Power Dissipation Capacitance per bus exchanger Outputs disabled			pF

SWITCHING CHARACTERISTICS (1)

			Vcc = 2.7V		Vcc = 3		
Symbol	Paramo	eter	Min.	Max.	Min.	Max.	Unit
tplh tphl	Propagation Delay CLK to 1Bx or CLK to 2Bx		1.5	6.6	1.5	5.7	ns
tplh tphl	Propagation Delay CLK to Ax	SEL Stable CExB Enabled	1.5	7	1.5	5.8	ns
		SEL Changing CExB Disabled	1.5	7.5	1.5	6.5	ns
		SEL Changing CEXB Enabled	1.5	7.6	1.5	6.6	ns
tpzh tpzl	Output Enable Time CLK to Ax, CLK to 1Bx, or CLK to 2Bx		1.5	6.8	1.5	5.8	ns
tphz tplz	Output Disable Time CLK to Ax, CLK to 1Bx, or 0	CLK to 2Bx	1.5	6.6	1.5	6.6	ns
tsu	Set-Up Time, HIGH or LOV	/ Data to CLK	1.5	_	1.5	_	ns
tsu	Set-Up Time, OEA to CLK,	OEB to CLK	1.5	_	1.5	_	ns
tsu	Set-Up Time, SEL to CLK		1.5	_	1.5	_	ns
tsu	Set-Up Time, CEA1B to CL CE2B to CLK, or CEA2B to		1.8	_	1.8	_	ns
tH	Hold Time, CLK to Data		1	_	1	_	ns
tH	Hold Time, CLK to OEA, CLK to OEB, CLK to SEL		1	_	1	_	ns
tн	Hold Time, CLK to CEA1B, CLK to CE1B, CLK to CE2B, CLK to CEA2B		0.7	_	0.7	_	ns
tw	Pulse Width, CLK HIGH		2.5	_	2.5	_	ns
tsk(o)	Output Skew ⁽²⁾		_	500	_	500	ps

NOTES:


- 1. See test circuits and waveforms. $T_A = -40^{\circ}C$ to $+85^{\circ}C$.
- 2. Skew between any two outputs of the same package and switching in the same direction.

TEST CIRCUITS AND WAVEFORMS

TEST CONDITIONS

Symbol	$Vcc^{(1)} = 3.3V \pm 0.3V$	Vcc ⁽¹⁾ = 2.7V	$Vcc^{(2)} = 2.5V \pm 0.2V$	Unit
VLOAD	6	6	2 x Vcc	٧
VIH	2.7	2.7	Vcc	٧
VT	1.5	1.5	Vcc/2	٧
VLZ	300	300	150	mV
VHZ	300	300	150	mV
CL	50	50	30	pF
				LVC Link

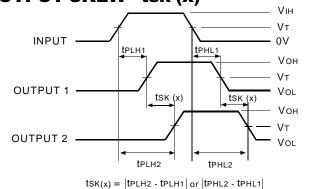
TEST CIRCUITS FOR ALL OUTPUTS

DEFINITIONS:

LVC Link

CL = Load capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to Zou⊤ of the Pulse Generator.

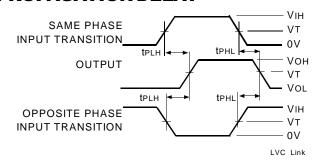

NOTE:

- 1. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2.5ns; tR \leq 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 10MHz; tr \leq 2ns; tr \leq 2ns.

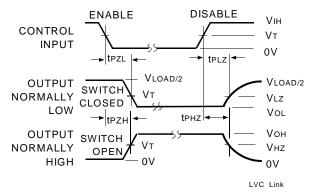
SWITCH POSITION

Test	Switch
Open Drain	VLOAD
Disable Low	
Enable Low	
Disable High	GND
Enable High	
All Other tests	Open
	LVC Link

OUTPUT SKEW - tsk (x)

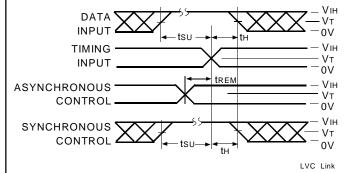


..___


1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.

2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.

PROPAGATION DELAY


ENABLE AND DISABLE TIMES

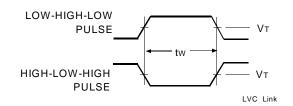
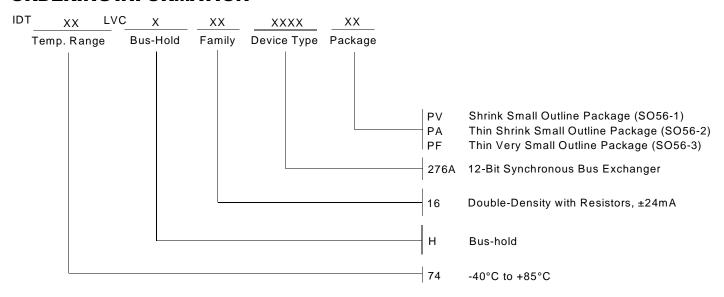

NOTE:

 Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.


SET-UP, HOLD, AND RELEASE TIMES

PULSE WIDTH

ORDERING INFORMATION

CORPORATE HEADQUARTERS

2975 Stender Way Santa Clara, CA 95054 for SALES:

800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com*