

3.3V CMOS 20-BIT FLIP-FLOP WITH 3-STATE OUTPUTS, 5 VOLT TOLERANT I/O AND BUS-HOLD

FEATURES:

- Typical tsk(0) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015;
 > 200V using machine model (C = 200pF, R = 0)
- 0.635mm pitch SSOP, 0.50mm pitch TSSOP and 0.40mm pitch TVSOP packages
- Extended commercial range of -40°C to +85°C
- Vcc = 3.3V ±0.3V, Normal Range
- Vcc = 2.7V to 3.6V, Extended Range
- CMOS power levels (0.4µ W typ. static)
- All inputs, outputs and I/O are 5 Volt tolerant
- Supports hot insertion

Drive Features for LVCH162721A:

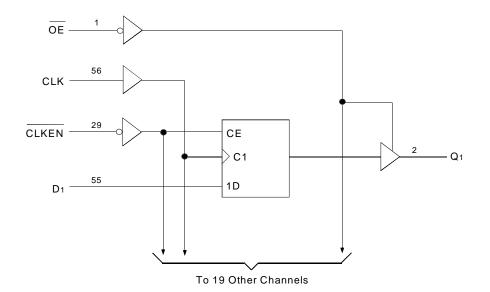
- Balanced Output Drivers: ±12mA
- Low switching noise

APPLICATIONS:

- 5V and 3.3V mixed voltage systems
- · Data communication and telecommunication systems

DESCRIPTION:

This 20-bit flip-flop is built using advanced dual metal CMOS technology. The 20 flip-flops of the LVCH162721A are edge-triggered D-type flip-flops with qualified clock storage. On the positive transition of the clock (CLK) input, the device provides true data at the Q outputs if the clock-enable (CLKEN) input is low. If CLKEN is high, no data is stored.


IDT74LVCH162721A

A buffered output-enable (\overline{OE}) input places the 20 outputs in either a normal logic state (high or low) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without the need for interface or pullup components. \overline{OE} does not affect the internal operation of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

The LVCH162721A has series resistors in the device output structure which will significantly reduce line noise when used with light loads. This driver has been designed to drive ± 12 mA at the designated threshold levels.

The LVCH162721A has "bus-hold" which retains the inputs' last state whenever the input goes to a high impedance. This prevents floating inputs and eliminates the need for pull-up/down resistors.

FUNCTIONAL BLOCK DIAGRAM

EXTENDED COMMERCIAL TEMPERATURE RANGE

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified: Operating Condition: TA = -40° C to $+85^{\circ}$ C

Symbol	Parameter		Test Conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
Vih	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V	V _{CC} = 2.3V to 2.7V		_	—	V
		Vcc = 2.7V to 3.6V		2	_	—	
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		_	_	0.7	V
		Vcc = 2.7V to 3.6V		_	_	0.8	
lih lil	Input Leakage Current	Vcc = 3.6V	VI = 0 to 5.5V	_	_	±5	μA
Іоzн	High Impedance Output Current	Vcc = 3.6V	Vo = 0 to 5.5V	_	_	±10	μA
Iozl	(3-State Output pins)						
IOFF	Input/Output Power Off Leakage	Vcc = 0V, VIN or Vo \leq 5.5V		_	_	±50	μA
Vik	Clamp Diode Voltage	Vcc = 2.3V, IIN = - 18mA		_	- 0.7	- 1.2	V
Vн	Input Hysteresis	Vcc = 3.3V		_	100	_	mV
ICCL ICCH	Quiescent Power Supply Current	Vcc = 3.6V	VIN = GND or VCC	_	—	10	μA
lccz			$3.6 \le VIN \le 5.5V^{(2)}$	_	_	10	
Δlcc	Quiescent Power Supply Current Variation	One input at Vcc - 0.6V other inputs at Vcc or GND		—	—	500	μA LVC Lir

NOTES:

1. Typical values are at Vcc = 3.3V, +25°C ambient.

2. This applies in the disabled state only.

BUS-HOLD CHARACTERISTICS

Parameter ⁽¹⁾		Test Conditions		Typ. ⁽²⁾	Max.	Unit
Bus-Hold Input Sustain Current	$V_{CC} = 3.0V$	VI = 2.0V	- 75	_	—	μA
		VI = 0.8V	75	_	_	
Bus-Hold Input Sustain Current	Vcc = 2.3V	VI = 1.7V	_	_	_	μA
		VI = 0.7V	_	_	_	
Bus-Hold Input Overdrive Current	Vcc = 3.6V	VI = 0 to 3.6V	_	_	± 500	μA
	Bus-Hold Input Sustain Current Bus-Hold Input Sustain Current	Bus-Hold Input Sustain CurrentVcc = 3.0VBus-Hold Input Sustain CurrentVcc = 2.3V	Bus-Hold Input Sustain Current $V_{CC} = 3.0V$ $V_I = 2.0V$ Bus-Hold Input Sustain Current $V_{CC} = 2.3V$ $V_I = 1.7V$ $V_I = 0.7V$ $V_I = 0.7V$	Bus-Hold Input Sustain Current $Vcc = 3.0V$ $Vi = 2.0V$ -75 Bus-Hold Input Sustain Current $Vcc = 2.3V$ $Vi = 1.7V$ $ Vi = 0.7V$ $ Vi = 0.7V$ $-$	Bus-Hold Input Sustain Current $V_{CC} = 3.0V$ $V_I = 2.0V$ -75 $-$ Bus-Hold Input Sustain Current $V_{CC} = 2.3V$ $V_I = 1.7V$ $ V_I = 0.7V$ $ -$	Bus-Hold Input Sustain Current $V_{CC} = 3.0V$ $V_{I} = 2.0V$ -75 $ -$ Bus-Hold Input Sustain Current $V_{CC} = 2.3V$ $V_{I} = 1.7V$ $ V_{I} = 0.7V$ $ -$

NOTES:

1. Pins with Bus-hold are identified in the pin description.

2. Typical values are at Vcc = 3.3V, +25°C ambient.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test	Test Conditions ⁽¹⁾			Unit
Vон	Output HIGH Voltage	Vcc = 2.3V to 3.6V	Iон = - 0.1mA	Vcc - 0.2	_	V
		Vcc = 2.3V	Iон = - 4mA	1.9	-	
			Iон = - 6mA	1.7	_	
		Vcc = 2.7V	Iон = - 4mA	2.2	_	
			Iон = - 8mA	2	_	
		Vcc = 3.0V	Iон = - 6mA	2.4	_	
			Іон = – 12mA	2	_	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	IoL = 0.1mA	_	0.2	V
		Vcc = 2.3V	IOL = 4mA	-	0.4	
			IOL = 6mA	-	0.55	
		Vcc = 2.7V	IoL = 4mA	-	0.4	
			IOL = 8mA	_	0.6	
		Vcc = 3.0V	IOL = 6mA	-	0.55	
			IOL = 12mA	_	0.8	1

NOTE:

1. VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = − 40°C to +85°C.

OPERATING CHARACTERISTICS, $T_A = 25^{\circ}C$

			Vcc = 2.5V±0.2V	Vcc = 3.3V±0.3V	Unit
Symbol	Parameter	Test Conditions	Typical	Typical	
Cpd	Power Dissipation Capacitance Outputs enabled	CL = 0pF, f = 10Mhz	—	_	pF
Cpd	Power Dissipation Capacitance Outputs disabled		—	—	pF

SWITCHING CHARACTERISTICS (1)

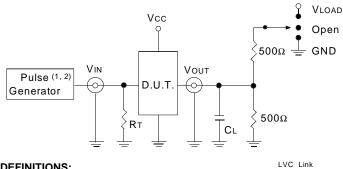
		Vcc = 2.5V±0.2V		Vcc = 2.7V		Vcc = 3.3V±0.3V		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t PLH	Propagation Delay	—	_	2	6.6	2	5.8	ns
t PHL	CLK to Qx							
tрzн	Output Enable Time	—	—	1.5	7.6	1.5	6.6	ns
tPZL	OE to Qx							
tрнz	Output Disable Time	_	_	1.5	5.9	1.5	5.6	ns
tPLZ	OE to Qx							
tsu	Set-up Time, data before CLK [↑]	—	—	3.6	—	3.1	—	ns
tsu	Set-up Time, CLKEN before CLK↑	_	_	3.1	—	2.7	—	ns
tн	Hold Time, data after CLK	_	_	0	—	0	—	ns
tн	Hold Time, CLKEN after CLK	_	—	0	—	0	—	ns
tw	Pulse Duration, CLK HIGH or LOW	_	_	3.3	_	3.3	_	ns
tsк(o)	Output Skew ⁽²⁾	_	_	_	_	_	500	ps

NOTES:

1. See test circuits and waveforms. TA = -40° C to $+85^{\circ}$ C.

2. Skew between any two outputs of the same package and switching in the same direction.

IDT74LVCH162721A 3.3V CMOS 20-BIT FLIP-FLOP WITH 3-STATE OUTPUTS


EXTENDEDCOMMERCIALTEMPERATURERANGE

TEST CIRCUITS AND WAVEFORMS

TEST CONDITIONS

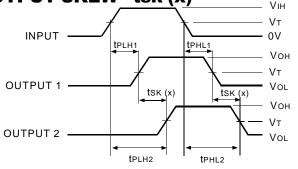
Symbol	Vcc ⁽¹⁾ = 3.3V ±0.3V	Vcc ⁽¹⁾ = 2.7V	Vcc ⁽²⁾ = 2.5V ±0.2V	Unit
VLOAD	6	6	2 x Vcc	V
Vih	2.7	2.7	Vcc	V
Vτ	1.5	1.5	Vcc/2	V
Vlz	300	300	150	mV
VHZ	300	300	150	mV
CL	50	50	30	pF
				LVC Link

TEST CIRCUITS FOR ALL OUTPUTS

DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance. RT = Termination resistance: should be equal to ZOUT of the Pulse

Generator.

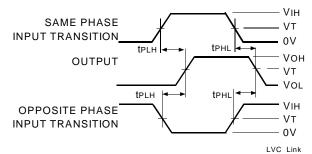

NOTE:

- 1. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2.5ns; tR \leq 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 10MHz: tF \leq 2ns: tR \leq 2ns.

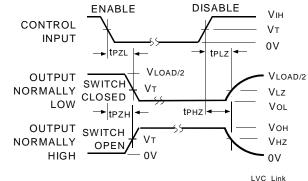
SWITCH POSITION

Test	Switch
Open Drain	VLOAD
Disable Low	
Enable Low	
Disable High	GND
Enable High	
All Other tests	Open
<u> </u>	LVC Link

OUTPUT SKEW - tsk (x)

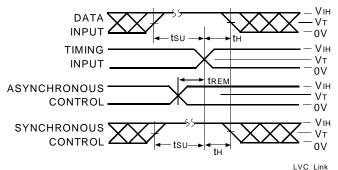

tSK(x) = |tPLH2 - tPLH1| or |tPHL2 - tPHL1|

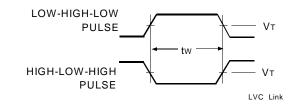
NOTES:


1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.

For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank. 2.

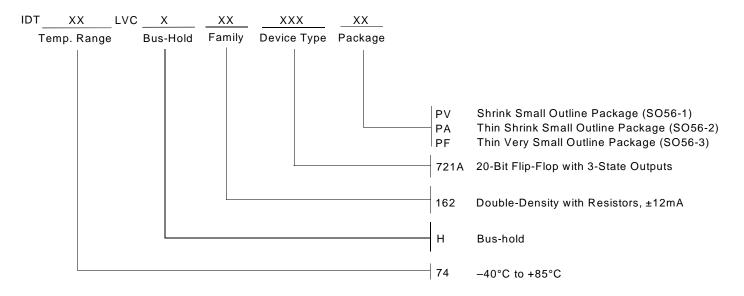
PROPAGATION DELAY


ENABLE AND DISABLE TIMES


NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

SET-UP, HOLD, AND RELEASE TIMES



PULSEWIDTH

LVC Link

ORDERING INFORMATION

CORPORATE HEADQUARTERS 2975 Stender Way Santa Clara, CA 95054 for SALES: 800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com*

*To search for sales office near you, please click the sales button found on our home page or dial the 800# above and press 2. The IDT logo is a registered trademark of Integrated Device Technology, Inc.