DIDT 3.3 TF W

3.3V CMOS 16-BIT TRANSPARENT D-TYPE LATCH WITH 3-STATE OUTPUTS, 5 VOLT TOLERANT I/O, BUS-HOLD

FEATURES:

- Typical tsk(0) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015;
 > 200V using machine model (C = 200pF, R = 0)
- 0.635mm pitch SSOP, 0.50mm pitch TSSOP and 0.40mm pitch TVSOP packages
- Extended commercial range of -40°C to +85°C
- Vcc = 3.3V ±0.3V, Normal Range
- VCC = 2.7V to 3.6V, Extended Range
- CMOS power levels (0.4µ W typ. static)
- All inputs, outputs and I/O are 5 Volt tolerant
- Supports hot insertion

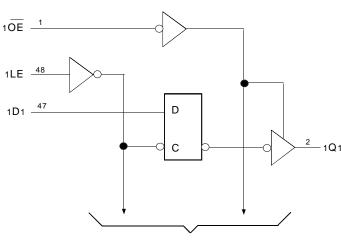
Drive Features for LVCH162373A:

- Balanced Output Drivers: ±12mA
- Low switching noise

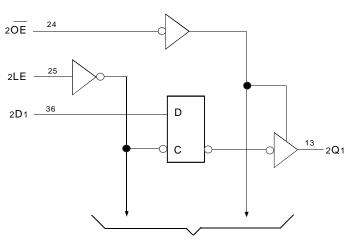
APPLICATIONS:

- 5V and 3.3V mixed voltage systems
- Data communication and telecommunication systems

DESCRIPTION:


The LVCH162373A 16-bit transparent D-type latch is built using advanced dual metal CMOS technology. This high-speed, low-power latch is ideal for temporary storage of data. The LVCH162373A can be used for implementing memory address latches, I/O ports, and bus drivers. The output enable and latch enable controls are organized to operate each device as two 8-bit latches or one 16-bit latch. Flow-through organization of signal pins simplifies layout. All inputs are designed with hysteresis for improved noise margin.

IDT74LVCH162373A

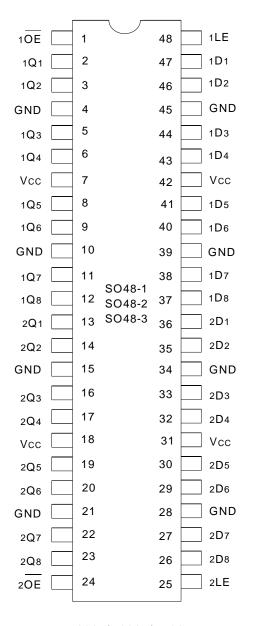

All pins of the LVCH162373A can be driven from either 3.3V or 5V devices. This feature allows the use of this device as a translator in a mixed 3.3V/5V supply system.

The LVCH162373A has series resistors in the device output structure which will significantly reduce line noise when used with light loads. The driver has been developed to drive \pm 12mA at the designated threshold levels.

The LVCH162373A has "bus-hold" which retains the inputs' last state whenever the input goes to a high impedance. This prevents floating inputs and eliminates the need for pull-up/down resistors.

TO SEVEN OTHER CHANNELS

TO SEVEN OTHER CHANNELS


FUNCTIONAL BLOCK DIAGRAM

EXTENDED COMMERCIAL TEMPERATURE RANGE

c) 1999 Integrated Device Technology, Inc.

JULY 1999

PIN CONFIGURATION

SSOP/ TSSOP/ TVSOP TOP VIEW

PIN DESCRIPTION

Pin Names	Description
xDx	Data Inputs ⁽¹⁾
xLE	Latch Enable Inputs (Active HIGH)
хŒ	Output Enable Inputs (Active LOW)
xQx	3-State Outputs

NOTE:

 These pins have "Bus-hold". All other pins are standard inputs, outputs, or I/Os.

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Description	Max.	Unit
VTERM(2)	Terminal Voltage with Respect to GND	– 0.5 to +6.5	V
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	– 0.5 to +6.5	V
Tstg	Storage Temperature	– 65 to +150	°C
Ιουτ	DC Output Current	– 50 to +50	mA
Ік	Continuous Clamp Current,	- 50	mA
Іок	VI < 0 or Vo < 0		
Icc	Continuous Current through	±100	mA
lss	each Vcc or GND		
			LVC Link

NOTES:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. Vcc terminals.

3. All terminals except Vcc.

CAPACITANCE (TA = +25°C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
Cin	Input Capacitance	VIN = 0V	4.5	6	pF
Соит	Output Capacitance	Vout = 0V	6.5	8	pF
Сі/о	I/O Port Capacitance	VIN = 0V	6.5	8	pF

NOTE:

1. As applicable to the device type.

FUNCTION TABLE (each 8-bit section)⁽¹⁾

	Inputs				
xDx	xLE	xOE	xQx		
Н	Н	L	Н		
L	Н	L	L		
Х	L	L	Q ₀ ⁽²⁾		
Х	Х	Н	Z		

NOTES:

1. H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

Z = High-Impedance

 $2.Q_0$ = Level of Q before the indicated steady-state input conditions were established.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified: Operating Condition: TA = -40° C to $+85^{\circ}$ C

Symbol	Parameter		Test Conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
Vih	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	_	—	V
		Vcc = 2.7V to 3.6V		2	_	—	
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		_	_	0.7	V
		Vcc = 2.7V to 3.6V		_	_	0.8	
lih lil	Input Leakage Current	Vcc = 3.6V	VI = 0 to 5.5V	_	_	±5	μA
Іоzн	High Impedance Output Current	Vcc = 3.6V	Vo = 0 to 5.5V	_	_	±10	μA
Iozl	(3-State Output pins)						
IOFF	Input/Output Power Off Leakage	Vcc = 0V, VIN or Vo	≤ 5.5V	_	_	±50	μA
Vik	Clamp Diode Voltage	Vcc = 2.3V, IIN = - 1	8mA	_	- 0.7	- 1.2	V
Vн	Input Hysteresis	Vcc = 3.3V		_	100	—	mV
ICCL ICCH	Quiescent Power Supply Current	Vcc = 3.6V	VIN = GND or VCC	_	—	10	μA
lccz			$3.6 \le VIN \le 5.5V^{(2)}$	_	_	10	
Δlcc	Quiescent Power Supply Current Variation	One input at Vcc - 0 other inputs at Vcc c		—	—	500	μA LVC Lir

NOTES:

1. Typical values are at Vcc = 3.3V, +25°C ambient.

2. This applies in the disabled state only.

BUS-HOLD CHARACTERISTICS

Symbol	Parameter ⁽¹⁾		Test Conditions	Min.	Typ. ⁽²⁾	Max.	Unit
Івнн	Bus-Hold Input Sustain Current	Vcc = 3.0V	VI = 2.0V	– 75	-		μA
Ibhl			VI = 0.8V	75	_	_	
Івнн	Bus-Hold Input Sustain Current	Vcc = 2.3V	VI = 1.7V	_	—	_	μA
Ibhl			VI = 0.7V	—	—	_	
Івнно	Bus-Hold Input Overdrive Current	Vcc = 3.6V	VI = 0 to 3.6V	—	—	± 500	μA
Ibhlo							LVC Lin

NOTES:

1. Pins with Bus-hold are identified in the pin description.

2. Typical values are at Vcc = 3.3V, +25°C ambient.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test (Conditions ⁽¹⁾	Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = 2.3V to 3.6V	Iон = - 0.1mA	Vcc - 0.2	-	V
		Vcc = 2.3V	Iон = - 4mA	1.9	_	
			Iон = – 6mA	1.7	_	
		Vcc = 2.7V	Iон = – 4mA	2.2	_	
			Iон = - 8mA	2	_	
		Vcc = 3.0V	Iон = – 6mA	2.4	_	
			Iон = – 12mA	2	_	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	Iol = 0.1mA	—	0.2	V
		Vcc = 2.3V	Iol = 4mA	—	0.4	
			Iol = 6mA	—	0.55	
		Vcc = 2.7V	Iol = 4mA	—	0.4	
			Iol = 8mA	—	0.6	
		Vcc = 3.0V	Iol = 6mA	—	0.55	
			Iol = 12mA	—	0.8	

NOTE:

1. VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = − 40°C to +85°C.

OPERATING CHARACTERISTICS, V_{CC} = 3.3V \pm 0.3V, T_A = 25°C

Symbol	Parameter	Test Conditions	Typical	Unit
Cpd	Power Dissipation Capacitance per latch Outputs enabled	CL = 0pF, f = 10Mhz		pF
Cpd	Power Dissipation Capacitance per latch Outputs disabled			pF

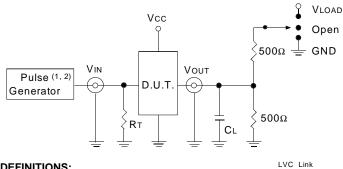
SWITCHING CHARACTERISTICS (1)

		Vcc =	2.7V	Vcc = 3.3	V ± 0.3V	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
t PLH	Propagation Delay	—	6	1.6	5.3	ns
t PHL	xDx to xQx					
t PLH	Propagation Delay	_	6.4	2.1	5.7	ns
t PHL	xLE to xQx					
tрzн	Output Enable Time	_	7.1	1.3	6.1	ns
tPZL	xCE to xQx					
tphz	Output Disable Time	_	7.7	2.5	7.3	ns
t PLZ	xCE to xQx					
tsu	Set-up Time HIGH or LOW, xDx to xLE	2.3	_	2.3	_	ns
tн	Hold Time HIGH or LOW, xDx after xLE	1.6	-	1.6	-	ns
tw	xLE Pulse Width HIGH	3.3	-	3.3	_	ns
tsк (о)	Output Skew ⁽²⁾	_	_	—	500	ps

NOTES:

1. See test circuits and waveforms. TA = -40° C to + 85°C.

2. Skew between any two outputs of the same package and switching in the same direction.


IDT74LVCH162373A 3.3V CMOS 16-BIT TRANSPARENT D-TYPE LATCH

TEST CIRCUITS AND WAVEFORMS

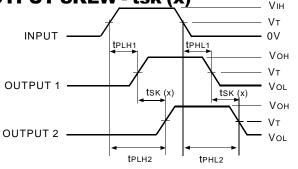
TEST CONDITIONS

Symbol	$Vcc^{(1)} = 3.3V \pm 0.3V$	Vcc ⁽¹⁾ = 2.7V	Vcc ⁽²⁾ = 2.5V ±0.2V	Unit
VLOAD	6	6	2 x Vcc	V
Vih	2.7	2.7	Vcc	V
Vτ	1.5	1.5	Vcc/2	V
Vlz	300	300	150	mV
VHZ	300	300	150	mV
CL	50	50	30	pF
				LVC Link

TEST CIRCUITS FOR ALL OUTPUTS

DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance. RT = Termination resistance: should be equal to ZOUT of the Pulse Generator.

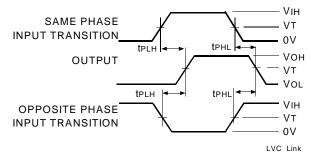

NOTE:

- 1. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2.5ns; tR \leq 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 10MHz: tF \leq 2ns: tR \leq 2ns.

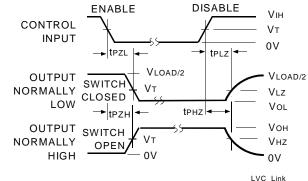
SWITCH POSITION

Test	Switch
Open Drain	VLOAD
Disable Low	
Enable Low	
Disable High	GND
Enable High	
All Other tests	Open
	LVC Link

OUTPUT SKEW - tsk (x)

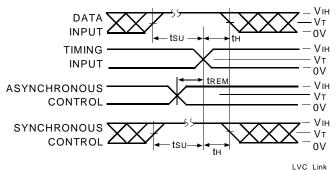


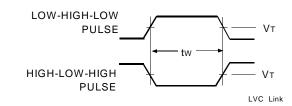
tSK(x) = |tPLH2 - tPLH1| or |tPHL2 - tPHL1|


NOTES:

- 1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.
- For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank. 2.

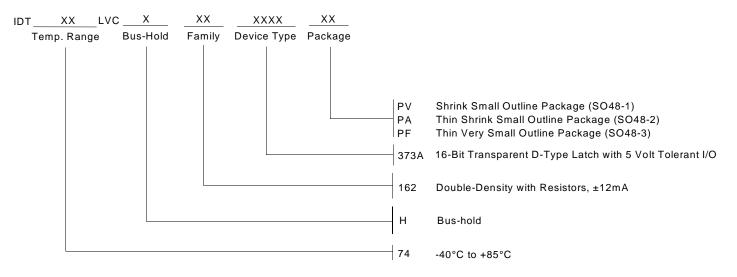
PROPAGATION DELAY


ENABLE AND DISABLE TIMES


NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

SET-UP, HOLD, AND RELEASE TIMES



PULSEWIDTH

LVC Link

ORDERING INFORMATION

CORPORATE HEADQUARTERS 2975 Stender Way Santa Clara, CA 95054 for SALES: 800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com*

*To search for sales office near you, please click the sales button found on our home page or dial the 800# above and press 2. The IDT logo is a registered trademark of Integrated Device Technology, Inc.