

CMOS OCTAL DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE OUTPUT VOLTAGE, 3-STATE OUTPUTS, 3.3V AND 5V I/O

IDT74LVCC4245A

FEATURES:

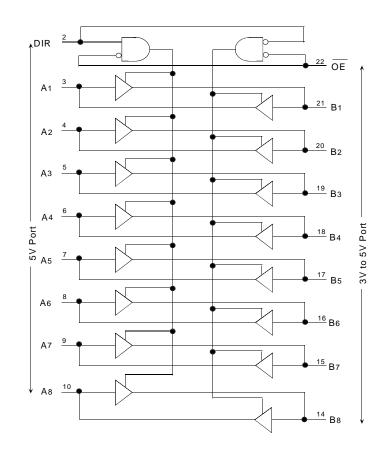
- 0.5 MICRON CMOS Technology
- VCCA = $5V \pm 0.5V$, VCCB = 2.7V to 5.5V
- CMOS power levels (0.4µW typ. static)
- Rail-to-Rail output swing for increased noise margin
- All inputs, outputs and I/O are 5 Volt tolerant
- Supports hot insertion
- Available in SOIC, SSOP, QSOP, and TSSOP packages

Drive Features for LVCC4245A:

- High Output Drivers: ±24mA
- Reduced system switching noise

APPLICATIONS:

- 5V and 3.3V mixed voltage systems
- · Data communication and telecommunication systems

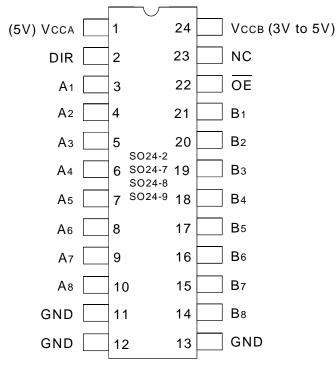

FUNCTIONAL BLOCK DIAGRAM

DESCRIPTION:

The LVCC4245A is manufactured using advanced dual metal CMOS technology. This 8-bit (octal) noninverting bus transceiver contains two separate power-supply rails. The configurable B port is designed to track V_{CCB}, which accepts voltages from 3V to 5V, and the A port is dedicated to accept a 5V supply level. This allows for translation from a 3.3V to a 5V system environment and vice-versa.

This LVCC4245A is ideal for asynchronous communication between two data buses (A and B). The device transmits data from A to B or from B to A, depending on the logic level at the direction-control (DIR) input. The output-enable (\overline{OE}) input can be used to disable the device so the buses are effectively isolated.

The LVCC4245A has been designed with a \pm 24mA output driver. This driver is capable of driving a moderate to heavy load while maintaining speed performance.



1

INDUSTRIAL TEMPERATURE RANGE

JULY 2000

PIN CONFIGURATION

SOIC/ SSOP/ QSOP/ TSSOP TOP VIEW

PIN DESCRIPTION

Pin Names	Description			
ŌĒ	Output Enable Input (Active LOW)			
DIR	Direction Control Input			
Ax	Port A Inputs or 3-State Outputs			
Bx	Port B Inputs or 3-State Outputs			
NC No Internal Connection				

FUNCTION TABLE (1)

Inputs		
ŌĒ	DIR	Outputs
L	L	Bus B Data to Bus A
L	Н	Bus A Data to Bus B
Н	Х	High Z State

NOTE:

ABSOLUTE MAXIMUM RATINGS FOR VCCA⁽¹⁾

Symbol	Description	Max.	Unit
VTERM	Terminal Voltage with Respect to GND	– 0.5 to +6	V
Tstg	Storage Temperature	– 65 to +150	°C
Іоит	DC Output Current	– 50 to +50	mA
Ік	Continuous Clamp Current,	- 50	mA
Іок	VI < 0 or Vo < 0		
Icc	Continuous Current through	±100	mA
Iss	each Vcc or GND		

ABSOLUTE MAXIMUM RATINGS

FOR VCCB⁽¹⁾

Symbol	Description	Max.	Unit
VTERM	Terminal Voltage with Respect to GND	– 0.5 to +6	V
Tstg	Storage Temperature	– 65 to +150	°C
Ιουτ	DC Output Current	– 50 to +50	mA
Ік	Continuous Clamp Current,	- 50	mA
Іок	VI < 0 or Vo < 0		
Icc	Continuous Current through	±100	mA
lss	each Vcc or GND		

NOTE:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

CAPACITANCE (TA = +25°C, f = 1.0MHz)

Symbol	nbol Parameter ⁽¹⁾ Conditions		Тур.	Max.	Unit
Cin	Input Capacitance	VIN = 0V	5	-	pF
Ci/o	I/O Port Capacitance	VIN = 0V	11		pF

NOTE:

1. As applicable to the device type.

^{1.} H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (A PORT)

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: $T_A = -40^{\circ}C$ to $+85^{\circ}C$; $V_{CCA} = 4.5V$ to 5.5V⁽¹⁾

Symbol	Parameter	Test Co	nditions	Min.	Тур. ⁽²⁾	Max.	Unit
Vih	Input HIGH Voltage Level	VCCA = 4.5V, VCCB = 2.7V	Vов <u><</u> 0.1V or	2	—	_	
		VCCA = 4.5V, VCCB = 3.6V	Vob <u>></u> Vccb – 0.1V	2	_	_	V
		VCCA = 5.5V, VCCB = 5.5V		2	_	_	
VIL	Input LOW Voltage Level	VCCA = 4.5V, VCCB = 2.7V		_	—	0.8	
		VCCA = 4.5V, VCCB = 3.6V		_	_	0.8	V
		VCCA = 5.5V, VCCB = 5.5V		_	—	0.8	
Ін	Input Leakage Current	Vcca = 5.5V	VI = 0 to 5.5V	_	_	±1	μA
lıL	(Control Inputs)	VCCB = 3.6V or 5.5V					
Іогн	High Impedance Output Current	VCCA = 5.5V	Vo = 0 to 5.5V	_	_	±5	μA
Iozl	(3-State Output pins)	VCCB = 3.6V					
VH	Input Hysteresis	VCCA = 5.0V		_	100	_	mV
ICCL	Quiescent Power Supply Current	Vcca = 5.5V	VIN = GND or VCCA	_	_	80	μA
Іссн		VCCB = 3.6V or 5.5V	IOB = 0				
Δlcc	Quiescent Power Supply Current Variation	One input at 3.4V, other input	uts at VCCA or GND	_	_	1.5	mA

NOTES:

1. VCCB = 2.7V to 5.5V unless otherwise noted.

2. Typical values are at VCCA = 5.0V, + $25^{\circ}C$ ambient.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (B PORT)

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: $T_A = -40^{\circ}C$ to $+85^{\circ}C$; $V_{CCB} = 2.7V$ to 5.5V⁽¹⁾

Symbol	Parameter	Test Co	nditions	Min.	Typ. ⁽²⁾	Max.	Unit
Vih	Input HIGH Voltage Level	VCCB = 2.7V, VCCA = 4.5V	Voa <u><</u> 0.1V or	2	—	_	
		VCCB = 3.6V, VCCA = 4.5V	Voa <u>></u> Vcca – 0.1V	2	—	_	V
		VCCB = 5.5V, VCCA = 5.5V		3.85	—	_	
VIL	Input LOW Voltage Level	VCCB = 2.7V, VCCA = 4.5V		_	—	0.8	
		VCCB = 3.6V, VCCA = 4.5V		_	—	0.8	V
		VCCB = 5.5V, VCCA = 5.5V		_	—	1.65	
Іогн	High Impedance Output Current	VCCB = 3.6V	Vo = 0 to 5.5V	-	—	±5	μA
Iozl	(3-State Output pins)	VCCA = 5.5V					
VH	Input Hysteresis	VCCB = 3.3V		-	100	_	mV
ICCL	Quiescent Power Supply Current	VCCB = 3.6V or 5.5V	VIN = GND or VCCB	_	—	80	μA
Іссн		VCCA = 5.5V	IOA = 0				
Δ lcc	Quiescent Power Supply Current Variation	One input at VCCB - 0.6V, ot	her inputs at VCCB or GND	_	—	500	μA

NOTES:

1. VCCA = 4.5V to 5.5V unless otherwise noted.

2. Typical values are at VCCB = 3.3V, +25°C ambient.

OUTPUT DRIVE CHARACTERISTICS (A PORT)

Symbol	Parameter	Test Conditions ⁽¹⁾			Min.	Max.	Unit
Vон	Output HIGH Voltage	VCCA = 4.5V	VCCB = $3V$	Іон = – 0.1mA	4.4	_	V
	(B port to A port)			loн = – 24mA	3.76	_	
Vol	Output LOW Voltage	$V_{CCA} = 4.5V$	VCCB = 3V	IoL = 0.1mA	_	0.1	V
	(B port to A port)			Iol = 24mA	—	0.44	

NOTE:

1. VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. T A = −40°C to +85°C.

OUTPUT DRIVE CHARACTERISTICS (B PORT)

Symbol	Parameter		Test Conditions ⁽	1)	Min.	Max.	Unit
Vон	Output HIGH Voltage	VCCB = 3V	VCCA = 4.5V	Iон = - 0.1mA	2.9	—	V
	(A port to B port)	VCCB = 2.7V	$V_{CCA} = 4.5V$	Iон = – 12mA	2.2	—	
		VCCB = 3V	Vcca = 4.5V		2.46	_	
		VCCB = 2.7V	Vcca = 4.5V	Іон = – 24mA	2.1	_	
		VCCB = 3V	Vcca = 4.5V	-	2.25	_	
		VCCB = 4.5V	Vcca = 4.5V		3.76	_	
Vol	Output LOW Voltage	VCCB = 3V	Vcca = 4.5V	Iol = 0.1mA	_	0.1	V
	(A port to B port)	VCCB = 2.7V	Vcca = 4.5V	Iol = 12mA	_	0.44	
		VCCB = 2.7V	Vcca = 4.5V	Iol = 24mA	_	0.5	
		VCCB = 3V	Vcca = 4.5V		_	0.44	
		VCCB = 4.5V	Vcca = 4.5V		_	0.44	

NOTE:

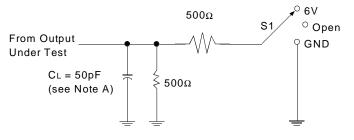
1. VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. T A = −40°C to +85°C, VccA = 4.5V.

OPERATING CHARACTERISTICS, T_A = 25^{\circ}C

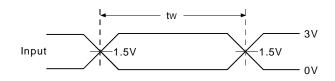
			Vcca = 5V Vccb = 3.3V	
Symbol	Parameter	Test Conditions	Typical	Unit
CPD	Power Dissipation Capacitance per transceiver Outputs Enabled	CL = 0pF, f = 10Mhz	20	pF
Cpd	Power Dissipation Capacitance per transceiver Outputs Disabled		6.5	pF

SWITCHING CHARACTERISTICS (1)

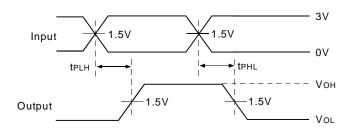
			VCCA = 5V±0.5V			
		VCCB =	5V±0.5V	Vссв = 2	.7V to 3.6V	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
t PHL	Propagation Delay	1	7.1	1	7	ns
t PLH	Ax to Bx	1	6	1	7	
t PHL	Propagation Delay	1	6.8	1	6.2	ns
t PLH	Bx to Ax	1	6.1	1	5.3	
tPZL	Output Enable Time	1	8.2	1	10	ns
tрzн	OE to Bx	1	8.1	1	10.2	
tpzl	Output Enable Time	1	9	1	9	ns
tрzн	OE to Ax	1	8.3	1	8	
tPLZ	Output Disable Time	1	4.7	1	5.2	ns
tphz	OE to Ax	1	4.9	1	5.2	
tplz	Output Disable Time	1	5.4	1	5.4	ns
tрнz	OE to Bx	1	6.3	1	7.4	


NOTE:

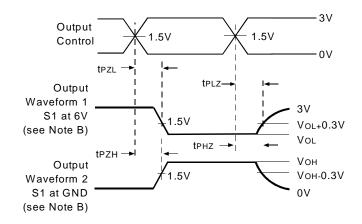
1. See test circuits and waveforms. TA = -40° C to $+85^{\circ}$ C.


PARAMETER MEASUREMENT INFORMATION FOR A TO B

<u>Vcca = 4.5V TO 5.5V AND Vccb = 2.7V TO 3.6V</u>


LOAD CIRCUIT

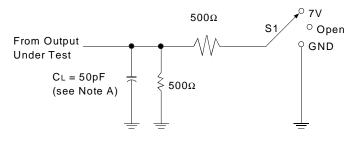
VOLTAGE WAVEFORMS PULSE DURATION


VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES NONINVERTING OUTPUTS

TEST CONDITIONS

TEST	S1
tplh / tphl	Open
tplz / tpzl	6V
tphz / tpzh	GND

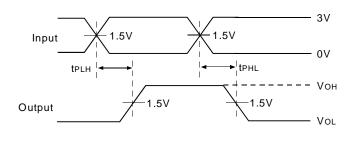
VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING


NOTES:

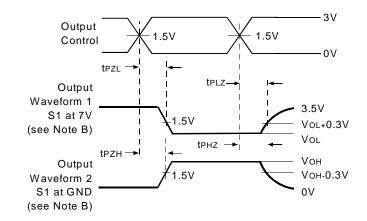
- A. CL includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is LOW except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is HIGH except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10MHz; Zo = 50 Ω ; t_F \leq 2.5ns; t_R \leq 2.5ns;
- D. The outputs are measured one at a time with one transition per measurement.


PARAMETER MEASUREMENT INFORMATION FOR A TO B

<u>Vcca = 4.5V TO 5.5V AND Vccв = 3.6V TO 5.5V</u>


LOAD CIRCUIT

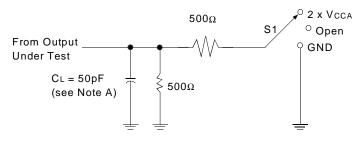
VOLTAGE WAVEFORMS PULSE DURATION


VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES NONINVERTING OUTPUTS

TEST CONDITIONS

TEST	S1
tplh / tphl	Open
tplz / tpzl	7V
tрнz / tрzн	GND

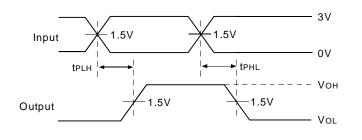
VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING


NOTES:

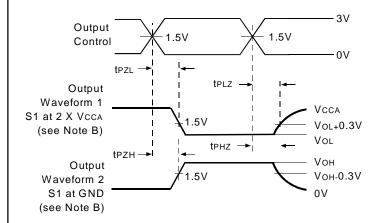
- A. CL includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is LOW except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is HIGH except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10MHz; Zo = 50 Ω ; tr \leq 2.5ns; tr \leq 2.5ns.
- D. The outputs are measured one at a time with one transition per measurement.

PARAMETER MEASUREMENT INFORMATION FOR B TO A

Vcca = 4.5V TO 5.5V AND Vccb = 2.7V TO 3.6V


LOAD CIRCUIT

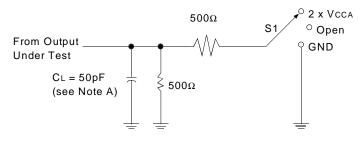
VOLTAGE WAVEFORMS PULSE DURATION


VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES NONINVERTING OUTPUTS

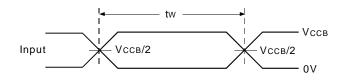
TEST CONDITIONS

TEST	S1
tplh / tphl	Open
tplz / tpzl	2 X Vcca
tpнz / tpzн	GND

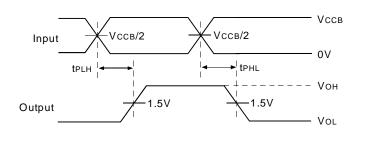
VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING


NOTES:

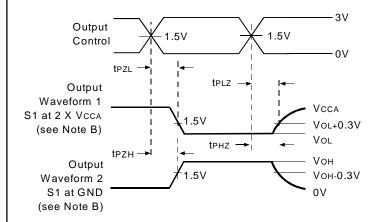
- A. CL includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is LOW except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is HIGH except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10MHz; Zo = 50 Ω ; tF \leq 2.5ns; tR \leq 2.5ns.
- D. The outputs are measured one at a time with one transition per measurement.


PARAMETER MEASUREMENT INFORMATION FOR B TO A

<u>Vcca = 4.5V TO 5.5V AND Vccв = 3.6V TO 5.5V</u>

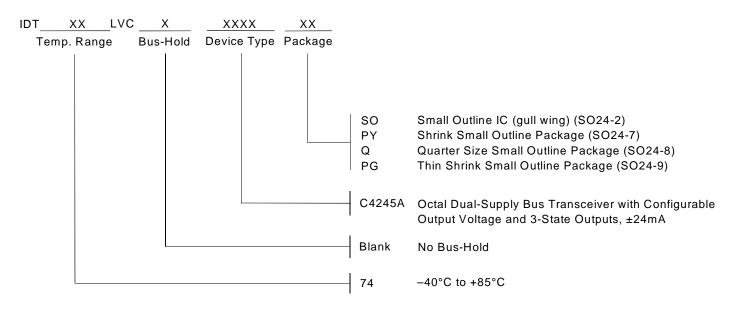

LOAD CIRCUIT

VOLTAGE WAVEFORMS PULSE DURATION


VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES NONINVERTING OUTPUTS

TEST CONDITIONS

TEST	S1
tplh / tphl	Open
tplz / tpzl	2 X Vcca
tрнz / tрzн	GND


VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

NOTES:

- A. CL includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is LOW except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is HIGH except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10MHz; Zo = 50 Ω ; tr \leq 2.5ns; tr \leq 2.5ns.
- D. The outputs are measured one at a time with one transition per measurement.

ORDERING INFORMATION

CORPORATE HEADQUARTERS 2975 Stender Way Santa Clara, CA 95054 for SALES: 800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com*

*To search for sales office near you, please click the sales button found on our home page or dial the 800# above and press 2. The IDT logo is a registered trademark of Integrated Device Technology, Inc.