

3.3V CMOS 10-BIT BUS TRANSCEIVER WITH 3-STATE OUTPUTS AND 5 VOLT TOLERANT I/O

FEATURES:

- 0.5 MICRON CMOS Technology
- ESD > 2000V per MIL-STD-883, Method 3015;
 > 200V using machine model (C = 200pF, R = 0)
- 1.27mm pitch SOIC, 0.65mm pitch SSOP, 0.635mm pitch QSOP, 0.65mm pitch TSSOP packages
- Extended commercial range of 40°C to +85°C
- VCC = 3.3V ±0.3V, Normal Range
- VCC = 2.3V to 3.6V, Extended Range
- CMOS power levels (0.4µ W typ. static)
- Rail-to-Rail output swing for increased noise margin
- All inputs, outputs and I/O are 5 Volt tolerant
- Supports hot insertion

Drive Features for LVC861A:

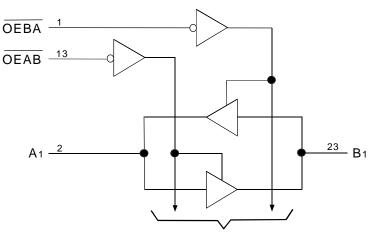
- High Output Drivers: ±24mA
- Reduced system switching noise

APPLICATIONS:

- 5V and 3.3V mixed voltage systems
- Data communication and telecommunication systems

FUNCTIONAL BLOCK DIAGRAM

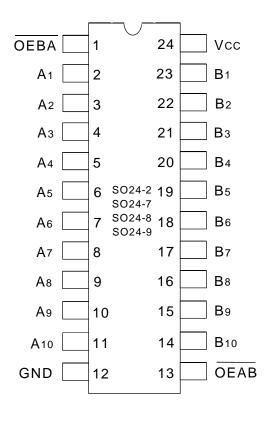
DESCRIPTION:


This 10-bit bus transceiver is built using advanced dual metal CMOS technology. The LVC861A device is designed for asynchronous communication between data buses. The control-function implementation allows for maximum flexibility in timing.

This device allows data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic levels at the output-enable (OEAB and OEBA) inputs.

To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Inputs can be driven from either 3.3V or 5V devices. This feature allows the use of this device as a translator in a mixed 3.3V/5V system environment. Inputs can be driven from either 3.3V or 5V devices.


The LVC861A has been designed with a $\pm 24\text{mA}$ output driver. This driver is capable of driving a moderate to heavy load while maintaing speed performance.

TO NINE OTHER CHANNELS

EXTENDED COMMERCIAL TEMPERATURE RANGE

PIN CONFIGURATION

SOIC/ SSOP/ QSOP/ TSSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Description	Max.	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	– 0.5 to +6.5	V
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	– 0.5 to +6.5	V
Tstg	Storage Temperature	– 65 to +150	°C
Іоит	DC Output Current	– 50 to +50	mA
Ік	Continuous Clamp Current,	- 50	mA
Іок	$V_{I} < 0 \text{ or } V_{O} < 0$		
Icc	Continuous Current through	±100	mA
lss	each Vcc or GND		
			8LVC

NOTES:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. Vcc terminals.

3. All terminals except Vcc.

CAPACITANCE (TA = +25°C, f = 1.0MHz)

Court Output Capacitance Vour = 0V 5.5 8 Ci/O I/O Port VIN = 0V 6.5 8	Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
Capacitance VIN = 0V 6.5 8	CIN	Input Capacitance	VIN = 0V	4.5	6	pF
	Соит		Vout = 0V	5.5	8	pF
Capacitance	Сі/о	I/O Port Capacitance	VIN = 0V	6.5	8	pF

NOTE:

1. As applicable to the device type.

PIN DESCRIPTION

Pin Names	Description
CEAB, CEBA	Output-enable Inputs (Active LOW)
Ax	Data Inputs
Вх	3-State Outputs

FUNCTION TABLE (1)

Inputs		Operation	
OEAB	OEBA		
L	Н	A data to B bus	
Н	L	B data to A bus	
Н	Н	Isolation	
L	L	Latch A and B	
		(A = B)	

NOTE:

1. H = HIGH Voltage Level

L = LOW Voltage Level

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified: Operating Condition: TA = -40° C To $+85^{\circ}$ C

Symbol	Parameter	1	est Conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
Vih	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	—	_	۷
		Vcc = 2.7V to 3.6V		2	—	_	
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		_	—	0.7	V
		Vcc = 2.7V to 3.6V		_	—	0.8	1
lih lil	Input Leakage Current	VCC = 3.6V	VI = 0 to 5.5V	-	—	±5	μA
Іогн	High Impedance Output Current	Vcc = 3.6V	Vo = 0 to 5.5V	-	—	±10	μA
lozl	(3-State Output pins)						
IOFF	Input/Output Power Off Leakage	Vcc = 0V, VIN or Vo	≤ 5.5V	_	_	±50	μA
Vik	Clamp Diode Voltage	Vcc = 2.3V, IIN = -1	Vcc = 2.3V, IIN = - 18mA		- 0.7	- 1.2	V
Vн	Input Hysteresis	Vcc = 3.3V		_	100		mV
ICCL ICCH	Quiescent Power Supply Current	Vcc = 3.6V	VIN = GND or Vcc	_	-	10	μA
lccz			$3.6 \le VIN \le 5.5V^{(2)}$	_	—	10	
Δlcc	Quiescent Power Supply Current Variation	One input at Vcc - 0.6V, other inputs at Vcc or GND		—	_	500	μA 8LVC Link

NOTES:

1. Typical values are at Vcc = 3.3V, +25°C ambient.

2. This applies in the disabled state only.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Co	onditions ⁽¹⁾	Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = 2.3V to 3.6V	Iон = – 0.1mA	Vcc – 0.2	_	V
		Vcc = 2.3V	Iон = – 6mA	2	_	
		Vcc = 2.3V	Iон = – 12mA	1.7	_	
		Vcc = 2.7V		2.2	_	
		Vcc = 3.0V		2.4	_	
		Vcc = 3.0V	Iон = – 24mA	2.2	_	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	Iol = 0.1mA	_	0.2	V
		Vcc = 2.3V	Iol = 6mA	_	0.4	
			Iol = 12mA	_	0.7	
		Vcc = 2.7V	Iol = 12mA	_	0.4	
		Vcc = 3.0V	Iol = 24mA	—	0.55	
	•	•	•	•	•	8LVC Link

NOTE:

1. VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = − 40°C to +85°C.

OPERATING CHARACTERISTICS, V_{CC} = 3.3V \pm 0.3V, T_A = 25°C

Symbol	Parameter	Test Conditions	Typical	Unit
Cpd	Power dissipation capacitance per transceiver Outputs enabled	CL = 0pf, f = 10Mhz	29	pF
Cpd	Power dissipation capacitance per transceiver Outputs disabled		5	pF

SWITCHING CHARACTERISTICS (1)

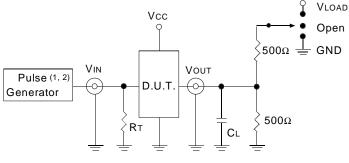
		Vcc = 2	.5±0.2V	Vcc =	= 2.7V	Vcc = 3.	.3V±0.3V	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
tplh tphl	Propagation Delay Ax or Bx to Bx or Ax	-	—		6.8	1.3	6.4	ns
tpzh tpzl	Output Enable Time ŒAB or ŒBA to Ax or Bx	-	—	_	8.2	1	7	ns
tphz tplz	Output Disable Time ŒAB or ŒBA to Ax or Bx	-	—	—	6.6	1.7	5.9	ns
tsk(0)	Output Skew ⁽²⁾	_	—	_	_	—	1	ns

NOTES:

1. See test circuits and waveforms. TA = -40° C to $+85^{\circ}$ C.

2. Skew between any two outputs of the same package and switching in the same direction.

IDT74LVC861A 3.3V CMOS 10-BIT BUS TRANSCEIVER WITH 3-STATE OUTPUTS


EXTENDED COMMERCIAL TEMPERATURE RANGE

TEST CIRCUITS AND WAVEFORMS

TEST CONDITIONS

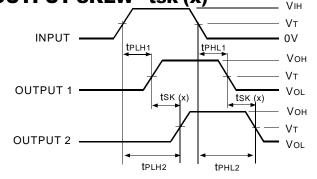
$V_{CC}^{(1)} = 3.3V \pm 0.3V$	$V_{CC}^{(1)} = 2.7V$	$V_{CC}^{(2)} = 2.5V \pm 0.2V$	Unit
6	6	2 x Vcc	۷
2.7	2.7	Vcc	۷
1.5	1.5	Vcc/2	۷
300	300	150	mV
300	300	150	mV
50	50	30	pF
	6 2.7 1.5 300 300	6 6 2.7 2.7 1.5 1.5 300 300 300 300	6 6 2 x Vcc 2.7 2.7 Vcc 1.5 1.5 Vcc / 2 300 300 150 300 300 150

TEST CIRCUITS FOR ALL OUTPUTS

LVC Link

DEFINITIONS:

- CL= Load capacitance: includes jig and probe capacitance.
- RT = Termination resistance: should be equal to ZOUT of the Pulse Generator.

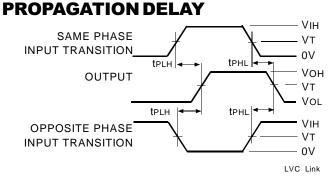

NOTES:

- 1. Pulse Generator for All Pulses: Rate \leq 10MHz: tF \leq 2.5ns: tR \leq 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2ns; tR \leq 2ns.

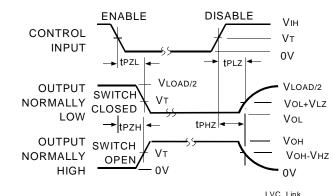
SWITCH POSITION

Test	Switch
Open Drain	VLOAD
Disable Low	
Enable Low	
Disable High	GND
Enable High	
All Other tests	Open 8LVC Link

OUTPUT SKEW - tsk (x)

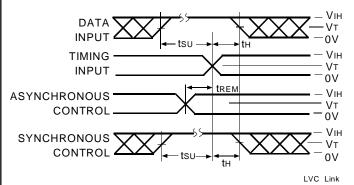

tSK(x) = |tPLH2 - tPLH1| or |tPHL2 - tPHL1|

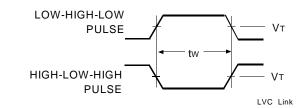
LVC Link


NOTES:

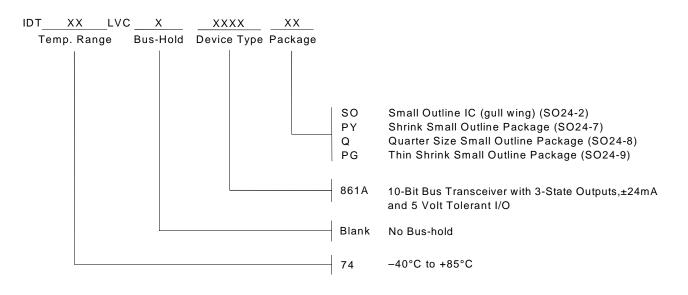
1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.

For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.


ENABLE AND DISABLE TIMES


NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.


SET-UP, HOLD, AND RELEASE TIMES

PULSEWIDTH

ORDERING INFORMATION

CORPORATE HEADQUARTERS 2975 Stender Way Santa Clara, CA 95054 for SALES: 800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com*

*To search for sales office near you, please click the sales button found on our home page or dial the 800# above and press 2. The IDT logo is a registered trademark of Integrated Device Technology, Inc.