

3.3V CMOS 10-BIT BUS-INTERFACE D-TYPE LATCH WITH 3-STATE OUTPUTS AND 5 VOLT TOLERANT I/O

IDT74LVC841A

FEATURES:

- 0.5 MICRON CMOS Technology
- ESD > 2000V per MIL-STD-883, Method 3015;
 - > 200V using machine model (C = 200pF, R = 0)
- 1.27mm pitch SOIC, 0.65mm pitch SSOP,
 0.635mm pitch QSOP, 0.65mm pitch TSSOP packages
- Extended commercial range of 40°C to +85°C
- Vcc = 3.3V ±0.3V, Normal Range
- Vcc = 2.3V to 3.6V, Extended Range
- CMOS power levels (0.4μW typ. static)
- Rail-to-Rail output swing for increased noise margin
- All inputs, outputs and I/O are 5 Volt tolerant
- Supports hot insertion

Drive Features for LVC841A:

- High Output Drivers: ±24mA
- Reduced system switching noise

APPLICATIONS:

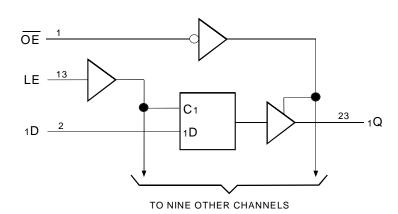
- 5V and 3.3V mixed voltage systems
- Data communication and telecommunication systems

DESCRIPTION:

The LVC841A 10-bit bus-interface D-type latch is built using advanced dual metal CMOS technology. The LVC841A is designed specifically for

driving highly capacitive or relatively low-impedance loads. It is particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

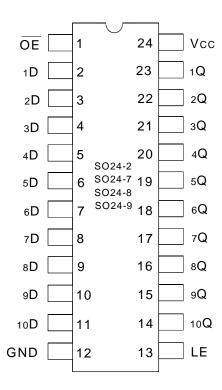
The ten latches are transparent D-type latches. The device has noninverting data (D) inputs and provides true data at its outputs.


A buffered output-enable (OE) input can be used to place the ten outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without interface or pullup components. OE does not affect internal operations of the latch. Previously stored data can be retained or new data can be entered while the outputs are in the high-impedance state.

The LVC841A has been designed with a ±24mA output driver. This driver is capable of driving a moderate to heavy load while maintaining speed performance.

To ensure the high-impedance state during power up or power down, $\bigcirc E$ should be tied to Vcc through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Inputs can be driven from either 3.3V or 5V devices. This feature allows the use of this device as a translator in a mixed 3.3V/5V system environment.


FUNCTIONAL BLOCK DIAGRAM

EXTENDED COMMERCIAL TEMPERATURE RANGE

APRIL 1999

PIN CONFIGURATION

SOIC/ SSOP/ QSOP/ TSSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Description	Max.	Unit
VTERM(2)	Terminal Voltage with Respect to GND	- 0.5 to +6.5	V
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	- 0.5 to +6.5	٧
Tstg	Storage Temperature	- 65 to +150	°C
Іоит	DC Output Current	- 50 to +50	mA
lık	Continuous Clamp Current,	- 50	mA
Іок	IOK $V_1 < 0 \text{ or } V_0 < 0$		
Icc	Continuous Current through	±100	mA
Iss	each Vcc or GND		

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. Vcc terminals.
- 3. All terminals except Vcc.

CAPACITANCE (TA = $+25^{\circ}$ C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	4.5	6	pF
Соит	Output Capacitance	Vout = 0V	5.5	8	pF
CI/O	I/O Port Capacitance	VIN = 0V	6.5	8	pF 8LVC Link

NOTE:

1. As applicable to the device type.

PIN DESCRIPTION

Pin Names	Description	
Output-enable Control (Active LOW)		
LE	Latch-enable Input	
хD	Latch Data Inputs	
Ωx	3-State Latch Data Outputs	

FUNCTION TABLE (1)

	Outputs		
ŌĒ	LE	хD	Ох
L	Н	Н	Н
L	Н	L	L
L	L	Х	Q_0
Н	Х	Х	Z

NOTE:

- 1. H = HIGH Voltage Level
 - L = LOW Voltage Level
 - X = Don't Care
 - Z = High-Impedance
 - $\mathbf{Q}_{\mathrm{o}} = \text{Level}$ of Q before the indicated steady-state input conditions were established.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: TA = - 40°C To +85°C

Symbol	Parameter	7	Test Conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
VIH	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	_	_	٧
		Vcc = 2.7V to 3.6V		2	_		
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		_	_	0.7	٧
		Vcc = 2.7V to 3.6V		_	_	0.8	
lih lil	Input Leakage Current	Vcc = 3.6V	VI = 0 to 5.5V	_	_	±5	μA
lozн	High Impedance Output Current	Vcc = 3.6V	Vo = 0 to 5.5V	_	_	±10	μA
lozL	(3-State Output pins)						
loff	Input/Output Power Off Leakage	$V_{CC} = 0V$, V_{IN} or $V_{O} \le 5.5V$		_	_	±50	μA
Vik	Clamp Diode Voltage	Vcc = 2.3V, lin = -1	8mA	_	- 0.7	- 1.2	٧
VH	Input Hysteresis	Vcc = 3.3V		_	100	_	mV
ICCL ICCH	Quiescent Power Supply Current	Vcc = 3.6V	VIN = GND or Vcc	_	_	10	μA
Iccz			$3.6 \le VIN \le 5.5V^{(2)}$	_	_	10	1
Δlcc	Quiescent Power Supply Current Variation	One input at Vcc - 0.6V, other inputs at Vcc or GND		_	_	500	µA

NOTES

1. Typical values are at Vcc = 3.3V, +25°C ambient.

2. This applies in the disabled state only.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Cor	Min.	Max.	Unit	
Vон	Output HIGH Voltage	Vcc = 2.3V to 3.6V	IOH = - 0.1mA	Vcc - 0.2	ı	V
		Vcc = 2.3V	IOH = -6mA	2	_	
		Vcc = 2.3V	IOH = - 12mA	1.7	_	
		Vcc = 2.7V		2.2	_	
		Vcc = 3.0V		2.4	_	
		Vcc = 3.0V	IOH = - 24mA	2.2	_	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	IOL = 0.1mA	_	0.2	V
		Vcc = 2.3V	Iol = 6mA	-	0.4	
			IoL = 12mA	_	0.7	
		Vcc = 2.7V	I _{OL} = 12mA	_	0.4	
		Vcc = 3.0V	IoL = 24mA	_	0.55	8LVC Link

NOTE:

1. VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = - 40°C to +85°C.

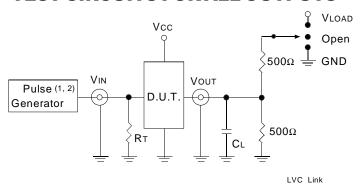
OPERATING CHARACTERISTICS, $T_A = 25$ °C

			Vcc = 2.5V±0.2V	Vcc = 3.3V±0.3V	Unit
Symbol	Parameter	Test Conditions	Typical	Typical	
CPD	Power dissipation capacitance per latch outputs enabled	C _L = 0pF, f = 10Mhz		25	pF
CPD	Power dissipation capacitance per latch outputs disabled		_	6	pF

SWITCHING CHARACTERISTICS (1)

		Vcc = 2.	5V±0.2V	Vcc =	= 2.7V	Vcc = 3.	3V±0.3V	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
tplh	Propagation Delay	_	_	_	7.5	2.4	6.7	ns
tphl	xD to xQ							
tPLH	Propagation Delay	_	_	_	8.6	2.7	7.6	ns
tphl	LE to xQ							
tpzh	Output Enable Time	_	_	_	8.5	1.3	7.2	ns
tpzl	Œ to xQ							
tphz	Output Disable Time	_	_	_	6.6	1.9	5.9	ns
tplz	Œ to xQ							
tw	Pulse Duration	_	_	3.3	_	3.3	1	ns
tsu	Setup Time, data before LE↓	_	_	2.1	_	2.1	_	ns
tH	Hold Time, data after LE↓	_	_	1	_	1	_	ns
tsk(0)	Output Skew ⁽²⁾	_	_	_	_	_	1	ns

NOTES:


- 1. See test circuits and waveforms. $TA = -40^{\circ}C$ to $+85^{\circ}C$.
- 2. Skew between any two outputs of the same package and switching in the same direction.

TEST CIRCUITS AND WAVEFORMS

TEST CONDITIONS

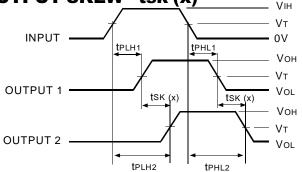
Symbol	$V_{CC}^{(1)} = 3.3V \pm 0.3V$	$V_{CC}^{(1)} = 2.7V$	$V_{CC}^{(2)} = 2.5V \pm 0.2V$	Unit
VLOAD	6	6	2 x Vcc	٧
VIH	2.7	2.7	Vcc	٧
VT	1.5	1.5	Vcc/2	٧
VLZ	300	300	150	mV
VHZ	300	300	150	mV
CL	50	50	30	pF
			8	LVC Link

TEST CIRCUITS FOR ALL OUTPUTS

DEFINITIONS:

CL= Load capacitance: includes jig and probe capacitance.

 $\mathsf{RT} = \mathsf{Termination}$ resistance: should be equal to ZouT of the Pulse Generator.

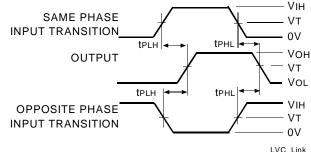

NOTES:

- 1. Pulse Generator for All Pulses: Rate ≤ 10MHz: tF ≤ 2.5ns: tR ≤ 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2ns; tR \leq 2ns.

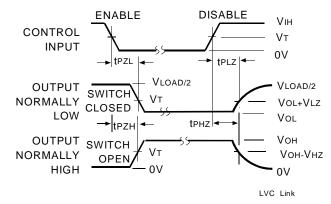
SWITCH POSITION

Test	Switch
Open Drain	Vload
Disable Low	
Enable Low	
Disable High	GND
Enable High	
All Other tests	Open

OUTPUT SKEW - tsk (x)

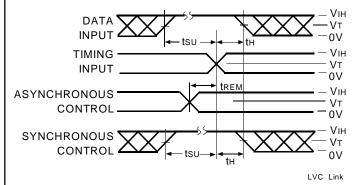


tsk(x) = |tplh2 - tplh1| or |tphl2 - tphl1|


NOTES: 1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.

2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.

PROPAGATION DELAY


ENABLE AND DISABLE TIMES

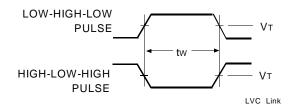
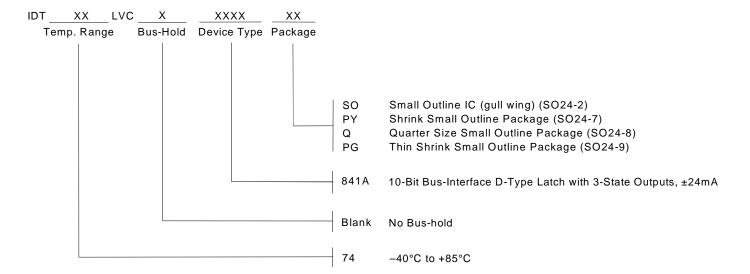

NOTE:

 Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.


SET-UP, HOLD, AND RELEASE TIMES

PULSE WIDTH

ORDERING INFORMATION

CORPORATE HEADQUARTERS

2975 Stender Way Santa Clara, CA 95054 for SALES: 800-345-7015 or 408-727-6116

fax: 408-492-8674 www.idt.com*

*To search for sales office near you, please click the sales button found on our home page or dial the 800# above and press 2.

The IDT logo is a registered trademark of Integrated Device Technology, Inc.