

3.3V CMOS 9-BIT BUS-INTERFACE FLIP-FLOP WITH 3-STATE OUTPUTS AND 5 VOLT TOLERANT I/O

FEATURES:

- 0.5 MICRON CMOS Technology
- ESD > 2000V per MIL-STD-883, Method 3015;
 - > 200V using machine model (C = 200pF, R = 0)
- 1.27mm pitch SOIC, 0.65mm pitch SSOP, 0.635mm pitch QSOP, 0.65mm pitch TSSOP packages
- Extended commercial range of 40°C to +85°C
- $VCC = 3.3V \pm 0.3V$, Normal Range
- Vcc = 2.3V to 3.6V, Extended Range
- CMOS power levels (0.4 µ W typ. static)
- Rail-to-Rail output swing for increased noise margin
- All inputs, outputs and I/O are 5 Volt tolerant
- Supports hot insertion

Drive Features for LVC823A:

- High Output Drivers: ±24mA
- Reduced system switching noise

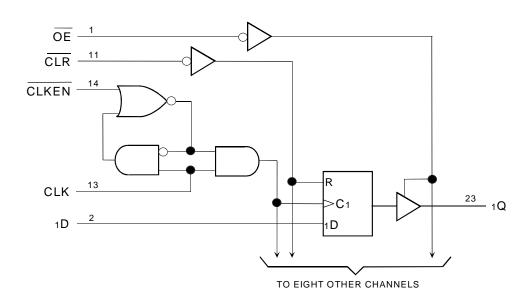
APPLICATIONS:

- 5V and 3.3V mixed voltage systems
- Data communication and telecommunication systems

DESCRIPTION:

The LVC823A 9-bit bus-interface flip-flop is built using advanced dual metal CMOS technology. The LVC823A device is designed specifically for driving highly capacitive or relatively low-impedance loads. The device is particularly suitable for implementing wider buffer registers, I/O ports, bidirectional bus drivers with parity, and working registers.

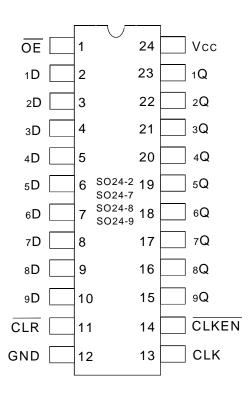
With the clock-enable (CLKEN) input low, the nine D-type edge-triggered flip-flops enter data on the low-to-high transitions of the clock. Taking CLKEN high disables the clock buffer, latching the outputs. This device has noninverting data (D) inputs. Taking the clear (CLR) input low causes the nine Q outputs to go low, independently of the clock.


A buffered output-enable (\bigcirc E) input can be used to place the nine outputs in either a normal logic state (high or low logic levels) or a high-impedance state. \bigcirc E does not affect internal operations of the latch. Previously stored data can be retained or new data can be entered while the outputs are in the high-impedance state.

The LVC823A has been designed with a ± 24 mA output driver. This driver is capable of driving a moderate to heavy load while maintaining speed performance.

To ensure the high-impedance state during power up or power down, OE should be tied to Vcc through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Inputs can be driven from either 3.3 V or 5 V devices. This feature allows the use of this device as a translator in a mixed 3.3 V/5 V system environment.


FUNCTIONAL BLOCK DIAGRAM

EXTENDED COMMERCIAL TEMPERATURE RANGE

APRIL 1999

PIN CONFIGURATION

SOIC/ SSOP/ QSOP/ TSSOP **TOP VIEW**

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Description	Max.	Unit
VTERM(2)	Terminal Voltage with Respect to GND	- 0.5 to +6.5	V
VTERM(3)	Terminal Voltage with Respect to GND	- 0.5 to +6.5	٧
Tstg	Storage Temperature	- 65 to +150	°C
Іоит	DC Output Current	- 50 to +50	mA
lıĸ	Continuous Clamp Current,	- 50	mA
Іок	$V_1 < 0$ or $V_0 < 0$		
Icc	Continuous Current through	±100	mA
Iss	each Vcc or GND		01.1/0

NOTES:

- 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. Vcc terminals.
- 3. All terminals except Vcc.

CAPACITANCE (TA = +25°C, f = 1.0MHz)

COUT Output VOUT = 0V 5.8 Capacitance	Symbo	ool Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
Capacitance	CIN	Input Capacitance	VIN = 0V	4.5	6	pF
CI/O	Соит		Vout = 0V	5.5	8	pF
Capacitance	CI/O	I/O Port Capacitance	VIN = 0V	6.5	8	pF

NOTE:

1. As applicable to the device type.

PIN DESCRIPTION

Pin Names	Description
Œ	Output-enable Input (Active LOW)
CLK	Clock Input
CLKEN	Clock-enable Input (Active LOW)
CLR	Clear Input (Active LOW)
xD Data Inputs	
χQ	Data Outputs

FUNCTION TABLE (each flip-flop) (1)

	Outputs				
ŌE	CLR	CLKEN	CLK	хD	ДX
L	L	Χ	Х	Х	L
L	Н	L	1	Н	Н
L	Н	L	1	L	L
L	Н	Н	Х	Х	Q_0
Н	Х	Х	Х	Х	Z

NOTE:

- 1. H = HIGH Voltage Level
 - L = LOW Voltage Level
 - X = Don't Care
 - Z = High-Impedance
 - ↑ = LOW-to-HIGH Transition
 - Q₀ = Level of Q before the indicated steady-state input conditions were established.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: TA = - 40°C To +85°C

Symbol	Parameter	7	Test Conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
VIH	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	_	_	٧
		Vcc = 2.7V to 3.6V		2	_		
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		_	_	0.7	٧
		Vcc = 2.7V to 3.6V		_	_	0.8	
lih lil	Input Leakage Current	Vcc = 3.6V	VI = 0 to 5.5V	_	_	±5	μA
lozн	High Impedance Output Current	Vcc = 3.6V	Vo = 0 to 5.5V	_	_	±10	μA
lozL	(3-State Output pins)						
loff	Input/Output Power Off Leakage	$V_{CC} = 0V$, V_{IN} or $V_{O} \le 5.5V$		_	_	±50	μA
Vik	Clamp Diode Voltage	Vcc = 2.3V, lin = -1	8mA	_	- 0.7	- 1.2	٧
VH	Input Hysteresis	Vcc = 3.3V		_	100	_	mV
ICCL ICCH	Quiescent Power Supply Current	Vcc = 3.6V	VIN = GND or Vcc	_	_	10	μA
Iccz			$3.6 \le VIN \le 5.5V^{(2)}$	_	_	10	1
Δlcc	Quiescent Power Supply Current Variation	One input at Vcc - 0.6V, other inputs at Vcc or GND		_	_	500	µA

NOTES

1. Typical values are at Vcc = 3.3V, +25°C ambient.

2. This applies in the disabled state only.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = 2.3V to 3.6V	IOH = - 0.1mA	Vcc - 0.2	_	V
		Vcc = 2.3V	IOH = -6mA	2	_	
		Vcc = 2.3V	IOH = - 12mA	1.7	_	
		Vcc = 2.7V		2.2	_	
		Vcc = 3.0V		2.4	_	
		Vcc = 3.0V	IOH = - 24mA	2.2	_	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	IoL = 0.1mA	_	0.2	V
		Vcc = 2.3V	IoL = 6mA	_	0.4	
			IoL = 12mA	_	0.7	
		Vcc = 2.7V	I _{OL} = 12mA	_	0.4	
		Vcc = 3.0V	IoL = 24mA	_	0.55	

NOTE:

1. VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = - 40°C to +85°C.

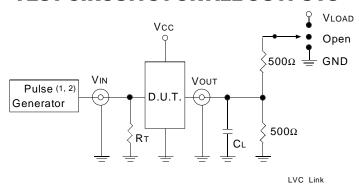
OPERATING CHARACTERISTICS, $T_A = 25$ °C

			$Vcc = 2.5V \pm 0.2V$	$Vcc = 3.3V \pm 0.3V$	Unit
Symbol	Parameter	Test Conditions	Typical	Typical	
CPD	Power dissipation capacitance per flip-flop outputs enabled	C _L = 0pF, f = 10Mhz	_	59	pF
CPD	Power dissipation capacitance per flip-flop outputs disabled		_	46	pF

SWITCHING CHARACTERISTICS (1)

		Vcc = 2.	5V±0.2V	Vcc =	= 2.7V	Vcc = 3.	3V±0.3V	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
fmax		_	_	150	_	150	-	MHz
tplh	Propagation Delay	_	_	_	8.9	1.4	8	ns
tphl	CLK to xQ							
tphL	Propagation Delay	_	_	_	8.8	2.5	7.9	ns
	CLR to xQ							
tрzн	Output Enable Time	_	_	_	8.3	1.6	7.2	ns
tpzl	Œ to xQ							
tphz	Output Disable Time	_	_	_	7.1	1.1	6	ns
tPLZ	Œ to xQ							
tw	Pulse Duration, CLR LOW	_	_	3.3	_	3.3	_	ns
	Pulse Duration, CLK HIGH or LOW	_	_	3.3	_	3.3	_	
tsu	Setup Time, CLR inactive before CLK↑	_	_	1	_	1	_	ns
	Setup Time, data before CLK↑	_	_	1.3	_	1.3	_	
	Setup Time, CLKEN LOW before CLK↑	_	_	1.8	_	1.8	_	
tH	Hold Time, data after CLK↑	_	_	2	_	2	_	ns
	Hold Time, CLKEN LOW after CLK↑	_	_	1.3	_	1.3	_	
tsk(0)	Output Skew ⁽²⁾	_	_	_	_	_	1	ns

NOTES:


- 1. See test circuits and waveforms. $TA = -40^{\circ}C$ to $+85^{\circ}C$.
- 2. Skew between any two outputs of the same package and switching in the same direction.

TEST CIRCUITS AND WAVEFORMS

TEST CONDITIONS

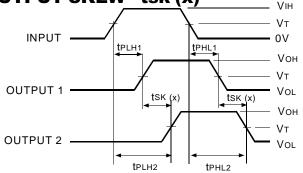
Symbol	$V_{CC}^{(1)} = 3.3V \pm 0.3V$	$V_{CC}^{(1)} = 2.7V$	$V_{CC}^{(2)} = 2.5V \pm 0.2V$	Unit
VLOAD	6	6	2 x Vcc	٧
VIH	2.7	2.7	Vcc	٧
VT	1.5	1.5	Vcc/2	٧
VLZ	300	300	150	mV
VHZ	300	300	150	mV
CL	50	50	30	pF
			8	LVC Link

TEST CIRCUITS FOR ALL OUTPUTS

DEFINITIONS:

CL= Load capacitance: includes jig and probe capacitance.

 $\mathsf{RT} = \mathsf{Termination}$ resistance: should be equal to ZouT of the Pulse Generator.

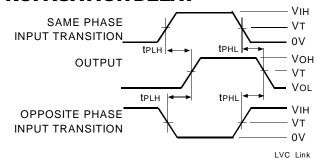

NOTES:

- 1. Pulse Generator for All Pulses: Rate ≤ 10MHz: tF ≤ 2.5ns: tR ≤ 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2ns; tR \leq 2ns.

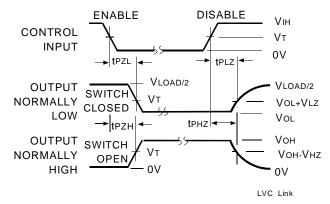
SWITCH POSITION

Test	Switch
Open Drain	Vload
Disable Low	
Enable Low	
Disable High	GND
Enable High	
All Other tests	Open

OUTPUT SKEW - tsk (x)

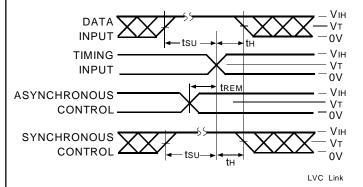


tsk(x) = |tPLH2 - tPLH1| or |tPHL2 - tPHL1|


NOTES: 1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.

2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.

PROPAGATION DELAY


ENABLE AND DISABLE TIMES

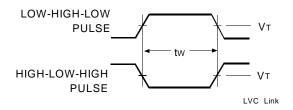
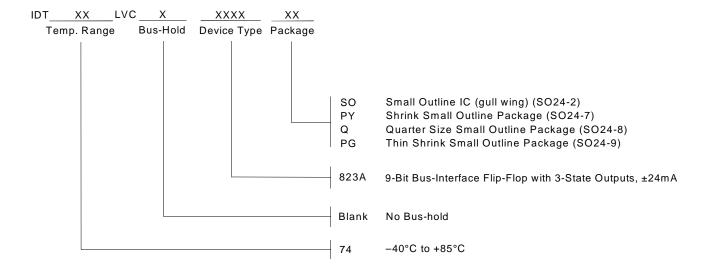

NOTE:

 Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.


SET-UP, HOLD, AND RELEASE TIMES

PULSE WIDTH

ORDERING INFORMATION

CORPORATE HEADQUARTERS

2975 Stender Way Santa Clara, CA 95054 for SALES: 800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com*